
AC 2010-1620: A WEB-BASED BAYESIAN VAN HIELE PROBLEM SOLVER FOR
COMPUTER PROGRAMMING

J. Wey Chen, Southern Taiwan University
Dr. J. Wey Chen is a Visiting Professor in the Department of Information System at Southern
Taiwan University. He formerly served a two-year appointment (2007-2009) as the Department
Chair of the Department of Information Management at Southern Taiwan University and was the
Computer Science Department Chair at Western State College of Colorado. His scholarly
interests range widely, from computer science curriculum design to e-learning and software
engineering practices.

© American Society for Engineering Education, 2010

P
age 15.112.1

A Web-based Bayesian van Hiele Problem Solver for Computer

Programming

Abstract

Computer programming teaching is often based upon the traditional lecture format. However, this

methodology may not be the best way to help many students actively understand underlying

concepts. This paper formulates an alternative pedagogical approach that encompasses the van

Hiele Model, cognitive model, and Bayesian network to design a web-based intelligent van Hiele

Problem Solver (IVHPS). The system takes full advantage of Bayesian networks (BNs), which

are a formal framework for uncertainty management to provide intelligent navigation support, and

to make individualized diagnosis of student solutions in learning computer programming. In

addition, we describe the architecture of the system and the roles of seven modules contained in

the system. They are all integrated into the environment to increase student satisfaction and

achievement by stimulating student motivation and encouraging the perception of problem

solving and programming concepts.

Introduction

"Programming" is a complicated business. For many of the students who take programming

courses, programming is a scary new subject. In his classic article on teaching programming

Dijkstra
1
 argues that learning to program is a slow and gradual process of transforming the "novel

into the familiar".

Most computing educators also find that programming is not a single skill. It is not a simple set of

discrete skills; the skills form a hierarchy
2
, and a programmer will be using many of them at any

point in time. A student faced with learning a hierarchy of skills will generally learn the lower

level skills first, and will then progress upwards
3
. In the case of coding, even though it is a small

part of the skill of programming, it implies that students will learn the basics of syntax first and

then gradually move on to semantics, integrated structure, and finally style.

As complicated as programming is, computer programming teaching is often based upon the

traditional lecture format. However, this methodology may not be the best way to help many

students actively understand underlying concepts. This paper formulates an alternative

P
age 15.112.2

pedagogical approach that encompasses the van Hiele model of geometric thought, the cognitive

model, and Bayesian network to design a web-based intelligent van Hiele Problem

Solver(IVHPS). The system takes full advantage of Bayesian networks (BNs) , which are a formal

framework for uncertainty management to provide intelligent navigation support, and to make

individualized diagnosis of student solutions in learning computer programming. In addition, we

describe the architecture of the system and the roles of seven modules contained in the system.

They are all integrated into the environment to increase student satisfaction and achievement by

stimulating student motivation and encouraging the perception of problem solving and

programming concept.

The Modified van Hiele Model for Computer Science Teaching

Adopted by Soviet educators for use in their geometry curriculum, the van Hiele model has

stimulated considerable research, interest has risen in the United States
4
 as more and more

researchers have attempted to adapt the van Hiele model
to

 learning in other mathematical areas

such as economics and chemistry
5
.

The van Hiele theory is partially based on the notion that student growth in geometry takes place

in terms of identifiable levels of understanding and that the instruction in geometry is most

successful when directed toward the student’s level. Hence, the hierarchical structure of the van

Hiele levels has been verified by Fuys, Geddes, Lovett, and Tischler
6
 and Usiskin

7
.

Computer programming has long been viewed as a vehicle for teaching students about their

problem-solving process. The literature review revealed that the van Hiele model of geometric

thought may be properly modified to apply to the learning and teaching of computer programming

because both tasks have many features in common. Soloway and his colleagues further confirmed

that computer programming and mathematical problem solving skills were mutually

transferable
8,9

.

Chen
10

 conducted a study on the Taiwanese technological university students by applying the

modified van Hiele’s five-phases of geometric thought for learning and teaching computer

programming and found that the use of van Hiele’s modified five-phases of learning model for

teaching computer programming may produce a higher level of computer programming thinking

and a significantly higher achievement in learning the Java programming language.

P
age 15.112.3

The five-levels of geometric thought for learning and teaching computer programming were

dubbed: "visual", "descriptive", "theoretical", "form logic modification and analogy", and

"abstraction and modeling". In addition, the five sequential instructional steps, which they assert

will take students through a reasoning level, will be integrated into the model to help students

progress from one level to the next higher level.

The Cognitive Theory

It is widely known that programming, even at a simple level, is a difficult activity to learn. Why is

this so? Are novice difficulties really inherent in programming or are they related to the nature of

the programming tools currently given to novices? Bonar and Soloway
11

 presented evidence that

current programming languages do not accurately reflect the cognitive strategies used by novice

programmers. Instead, Bonar and Soloway
11

 have found that novice programmers possess

knowledge and experience with step-by-step specifications in natural language. This knowledge

and experience gives them powerful intuitions for using a programming language. Programming

languages, however, are not designed to appeal to these intuitions.

On a semantic and pragmatic level, there are incompatibilities between the way natural and

programming languages are used. Many novice programming bugs can be directly traced to an

inappropriate use of natural language specification style or strategy.

In order to provide a novice with powerful intuitions for using a programming language, the

researcher represented and arranged programming knowledge according to its level of difficulty

in four cognitive levels: Lexical and Syntactic, Semantic, Schematic, and Conceptual
12

.

l The Lexical and Syntactic levels are self-explanatory. Syntax refers to mistakes in spelling,

punctuation, and the order of words in a program. Syntax errors are frequently identified by

the compiler, but the error messages may not give the students the information needed to fix

the code.

l The Semantic level (as adapted to the programming domain) deals with the semantics of

individual statements.

l The Schematic level, through the use of programming plans, allows multiple statements to be

grouped into semantically meaningful knowledge units.

l The Conceptual level deals with definable functions within the problem domain of the

application being programmed.

P
age 15.112.4

A Combined Model

The van Hiele model asserts that the learner moves sequentially through five levels of

understanding. The Cognitive Theory finds a more natural way to give novice powerful intuitions

for using a programming language by further representing and dividing programming knowledge

according to its level of difficulty in four cognitive categories. Figure 1 shows a combined model

used by the study to represent the knowledge structure of every learning node(concept).

Figure 1. Knowledge structure for each learning node

The study found that instruction developed in this structured sequence prompted the acquisition of

the next higher level of computer programming learning. Moreover, students were found to

commit less of the common programming mistakes if these five levels of thought were properly

modeled.

The Subjects and Bayesian Training Data

This study employs the data generated by sixty freshman students (2 classes) majoring in

Management Information System (MIS) in the Information Management Department at Southern

Taiwan University of Technology (STUT) and Kun Shan University (KSU). The subjects come

from two sophomore-level Java programming classes with approximately 30 students each. The

subjects are selected from these two technological universities because they are representative of

most technological universities in Taiwan.

The diagnostic test plays a critical role in implementing the system. The Java curriculum content

is structured into levels and categories based on the combined van Hiele model of geometric

thought and the Cognitive theory. The computerized diagnostic test is structured similarly. Each

P
age 15.112.5

test for a particular module is structured into topics and questions. Three questions at most will be

used to represent knowledge of a cognitive category within a van Hiele level of understanding.

The Bayesian training data consists of a set of diagnostic test items and the actual answers

compiled from sixty freshman Information Management majors. This database was selected

because it is a classic dataset used as evidence for the existence of programming bugs. Since these

test items are designed to map programming bugs with learning topics, it is highly likely that our

anticipated bugs will occur in this test set reasonably frequently. Such a design will help to

conclude robust statistics.

The Study Module

To enable communication between the system and learner at the content level, the domain model

of the system has to be adequate with respect to inferences and relations of domain entities with

the mental domain of a human expert
13

. In this sense, the domain knowledge of IVHPS is

represented in a conceptual network that depicts the interrelations between several learning nodes

(concepts) of the Java programming language. Concept knowledge in each learning node is

further divided into five van Hiele levels of understanding, and each van Hiele level of

understanding is then represented by two to three cognitive categories depending on its level of

difficulty. Representing the Java domain knowledge in a structured way ensures that the system

“knows” the dependencies between concepts, and uses this knowledge to provide customized

instruction and feedback to errors.

For our purposes, we identified a set of concepts that are taught in our Java programming

language course at the Southern Taiwan University. Each concept is represented by a node in the

graph. We add a directed line from one concept (node) to another, if knowledge of the former is a

prerequisite for understanding the latter. Thus, the DAG can be constructed manually with the aid

of the course textbook. For example, consider one instance of the if statement in Java such as:

if((a <= b) && (b <= c))

return true;

else

return false;

P
age 15.112.6

Even though it is as small as it can be, one can see that the if statement has quite a lot to it. This is

because Java is a real industry-strength language, and even the smallest portion of a program

needs some heavyweight ingredients. To understand the if statement, one must first develop some

basic concept of programming, the Java programming environment, the concepts of data types,

variable assignment, Relational operators, and logical operators. These relationships can be

modeled as depicted in Figure 2. Naturally, Figure 2 depicts a small portion of the entire DAG

implemented in the study.

 Figure 2 Sub-DAG for the if statement

The next task in the construction of the BN is to specify a conditional probability distribution

(CPD) for each node given its parents. For variable NRLNi (Next Related Learning Node, a child

node) with parent set CPItemi (Conditional Probability of each Item), a CPD p(NRLNi|CPItemi)

P
age 15.112.7

has the property that for each configuration (instantiation) of the variables in CPItemi, the sum of

the probabilities of NRLNi is 1.0. In Figure 2, the parent set of the if statement is

{N1-Overview_of_programming, N2-Programming_language, N3-Data_type, N4-Variable,

N5-Assignment, N6-Relational operators, N7-Logical operators}. The corresponding CPD

P(if statement| N1-Overview_of_programming, N2-Programming_language,

N3-Data_type, N4-Variable, N5-Assignment, N6-Relational operators, N7-Logical

operators)

Regarding relationships among concepts and questions, for each test item it would be necessary to

specify the probability of correctly answering the question given all possible combinations of

mastering/not mastering the related concepts. The training data will be used by the Bayesian

inference engine to provide intelligent, personalized tutoring and support to the student.

A Bayesian network (BN), which consists of directed acyclic graph (DAG) and a corresponding

set of conditional probability distributions (CPDs) was used in this study to perform the following

three functions: (1) to construct and validate the course content map represented in DAG format,

(2) to model the students’ prerequisite information and to guide the student in navigating through

the Java programming concepts based on the structure depicted in Figure 2, and (3) to keep track

of student knowledge regarding each concept.

General architecture of intelligent van Hiele Problem Solver

The Web-based IVHPS that was evaluated is a system that aims to teaching the Java programming

language. The IVHPS incorporates techniques from the Intelligent Tutoring System and

Hypermedia links to tailor instruction and feedback to each individual student. Individualization

in IVHPS is based on two models: the domain model (representing knowledge about the domain

of the Java programming language) and the student model (representing knowledge about the

individual student). We will describe how these two models are used in order to provide

personalized diagnosis and instruction.

The literature reveals that novices need additional support to solve a problem. The idea is simple

but important to computer science pedagogy as learning language syntax, code flow, data

representation, and appropriate design are daunting tasks for novices.

The Web-based IVHPS to promote effective collaborative learning relies on six technologies, as

P
age 15.112.8

shown in Figure 3. The function and design principle of each component is described as follows:

Figure 3. Architecture of VHPS

The Intelligent Tutoring System

The system provides remote access for students to take the diagnostic test and based on the overall

picture of the test result, the system will provide the learner with intelligent navigation support

and learning recommendations, and integrates the features of electronic hypermedia course

P
age 15.112.9

material with intelligent tutoring tactics. The system can propose learning goals and guide users

by generating reading sequences for them.

Based on the information contained in the student model the system provides intelligent,

personalized tutoring and support to the student. In particular, based on information concerning

the knowledge level of the student in each concept of the domain knowledge, the system provides

individualized support when s/he navigates through the course material.

The system uses the direct guidance technique to inform the learner whether s/he is ready to visit

the corresponding topic or if the studying of a page is unnecessary due to the fact that the student

has already mastered the concept that is associated with this test frame. With the direct guidance

technique, the system suggests and leads the student to the particular learning level the system

considers as the most appropriate for the student to visit.

In order to select the next learning topic to present to the student, the system consults the

individual student model based on the diagnostic test data. In particular, it uses the information

that represents the knowledge concept of the student in each domain concept. First, it looks for

domain concepts related to parts of the topic that the student has already mastered. Then, among

them, it looks for topics that the student has difficulty with when answering test questions. The

tutor then selects a category for which the student has the greatest probability of making a mistake

while using it in a test. In this way, we ensure that students are not always asked to solve either too

easy or too difficult learning topics. Figure 4 is a screen shot of IVHPS displaying the diagnostic

report when the student completed all the questions in the diagnostic test.

E-mail . E-mail is used for communication between the instructor and individual students or the

entire class. Specific communication types supported by e-mail include: (1) time-sensitive

announcements to the class (i.e. scheduling and assignment changes), and (2) faster student

questions and instructor response interactions.

Discussion board. Discussion boards provide an efficient means of communication and creating

student support outside of the class. This also allows the shy students an opportunity to fully

participate since they may feel more comfortable in the electronic environment. The instructor

can then post a “thread,” or topic, for discussion and have the students respond to the topic within

a specified period of time. Similar to being in a chatroom, the instructor will monitor the

discussion for content and appropriateness.

P
age 15.112.10

Figure 4. A screen shot of IVHPS displaying the diagnostic report

Internet assignment units: Detailed information presented in this unit can reduce the classroom

time allocated to technical and project support which, in turn, allows greater depth and breadth of

topics to be covered in class.

Tutorial unit: The tutorial unit is the realization of van Hiele’s five-levels of thought to learning

computer programming. The five sequential instructional steps will be integrated into the model

in order to facilitate the students’ progress from one level to the next higher level. Hypertext and

icon techniques will be used to switch from tutorial mode to display or run mode so that students

may obtain immediate visual feedback to enhance their learning. Figure 5 is a screen shot of

IVHPS displaying the lecture notes for the concept “Data Types”.

Quick-run unit: Constructive scaffolding is used in this component. For example, we may give

code that solves a given problem to the students. The code, in this example, is the scaffolding

mechanism that students will build upon. We then have them insert comments to describe the

semantics of the code. Alternatively, we may give comments (the scaffolding) to the students that

describe an algorithm and have students write a code that corresponds to the comments. The

ultimate goal is for students to generate all the codes and think about an efficient solution. Once

the students have finished their code, they can then immediately test and run their code in the

integrated programming environment and receive the immediate feedback. Gomes and Mendes
14

consider the use of programming patterns is one of the most effective practices to teach computer

programming language especially when the student shows incapacity to solve a

P
age 15.112.11

Figure 5. A screen shot of IVHPS displaying the lecture notes for the

concept “Data Types”.

Figure 6 A screen shot of IVHPS displaying a typical quick-run

 sample output

P
age 15.112.12

particular problem or a part of it. Figure 6 is a screen shot of IVHPS displaying a typical

quick-run sample output.

Expert template. This unit is provided to model an expert’s idea of solving a specific problem.

The unit will be designed in template format which follows the steps a human expert takes in

solving problems of this type. This allows students to compare his/her solution with the expert’s

solution in hopes of providing a learning experience that is transformative. Besides the students’

effort, the success of this process depends on two critical components: the design of the

problematic scenarios and the entire learning activities and the guidance provided by human

experts. The practical difficulty of this component is, even though the expert examination

knowledge can be reproduced in the same context, students are neither able to transform it to

similar scenarios, nor apply it to an actual situation which calls for action. Figure 7 is a screen shot

of IVHPS displaying a typical practice sample from the expert template.

Figure 7. A screen shot of IVHPS displaying a typical practice sample

from the expert template.

A Preliminary Experiment

We have conducted a preliminary experiment with the IVHPS in the Fall Semester, 2008 in the

Information System (MIS) Department at the Southern Taiwan University. A total of 52 MIS

students from the above randomly selected Java class became the subjects of this study. The

P
age 15.112.13

students were asked to complete a 57-question Diagnostic Test and received a diagnostic report

generated by the system to indicate Java topics for which they failed to pass and the topic which

the system suggest for them to start with.

Forty eight out of 52 (92.31%) participants reported that they are satisfied with the feedback from

the system’s feedback to their mistakes. The results from the preliminary experiment indicated

that the use of the Bayesian inference engine and the structured diagnostic test can be effectively

used to provide intelligent navigation support, and to make individualized diagnosis of student

solutions in learning computer programming.

A follow-up interview was further conducted to collect information regarding how individuals

reacted to the difficulty in answering diagnostic test questions. Table 1 shows the result of the

students’ responses when asked the question” What kind of suggestion and help do you need to

solve programming questions of this kind?”

Table 1 Students’ Responses to the Desired Need for Programming and

Problem Solving

Students’ Responses Tally

I want to see the entire curriculum picture of this test on-line 9

I want to communicate with my friends who can

restate/explain the problem in my vocabulary

7

I thought a fill-in-the-blank type of question would be

helpful

5

I just want to keep trying to solve it 2

I like to take this test on-line with C++ compiler 4

I need to refer to my text 5

I want to discuss questions with my classmates 8

I need somebody to layout the detailed problem plan for me 3

I want to see more real examples of the kind 5

The information collected from the follow-up interview provided useful feedback and guidelines

for the researcher to construct a second generation IVHPS by considering the traditional

didactical questions of why, what, how and for whom on the construction of the diagnostic test. It

is also essential to keep the students’ responses in mind in knowing that collaborative learning and

the utilization of some types of interaction are vital for students when solving a programming

P
age 15.112.14

problem.

Conclusions

High failure rates in many introductory programming courses may be a reflection of the limited

research that has been invested and developed in the computer programming discipline. The high

failure rates have propelled a substantial proportion of college students to assume that there is a

hidden mind somewhere in computer programs which prevents students from completing the

task
15

. We hope the proposed Modified van Hiele Model for Computer Science Teaching can

help unveil the mystery of the “hidden mind” and provide a logical link for students to

inductively learn problem-solving and programming skills. The success of this model is

attributed to the extensive review of the available literature and to the exploratory interviews

with students who participated in the first phase of study. The exploratory interviews with

students and the observations generated a set of constructive data for us to devise a functional

environment to support collaboration for learning programming in our second phase of study.

This paper discusses a new architecture of designing a van Hiele-based intelligent tutoring

system for computer programming using Bayesian technology. Centering on the explicit

knowledge structure and the way to use Bayesian training data for diagnostic and

recommendation purposes, we described the theory and implemented the prototype of the

suggested system. The current study is designed to be able to: (1) demonstrate a measurement

scheme to detect misconceptions employed by the students, and (2) provide a convenient

descriptive tool for diagnosing students' programming abilities by representing a set of bugs in

the networks. More specifically, the system is able to utilize Bayesian network techniques in

modeling the student knowledge based on the structure depicted in Figure 2.

Future work will involve incorporating the more sophisticated concepts of Java into the system.

We also hope to extend the suggested system by incorporating other programming languages such

as C++ and MS Visual Basic.

Acknowledgement

This work is funded by the National Science Council in Taiwan, under the “Science Education”

Program, Project No. NSC 97-2511-S-218-005-MY2.

P
age 15.112.15

Bibliography

1. Edsger W. Dijkstra. (1989). On the Cruelty of Really Teaching Computing Science. Comm. ACM, Vol.32, pp

1398-1404.

2. Sloane, K. & Linn, M. (1988). Instructional Conditions in Pascal Programming Classes. In R. E. Mayer (ed),

"Teaching and Learning Computer Programming", Lawrence Erlbaum Associates, pp 207-235,8.

3. Bereiter, C. and E. Ng. (1991). Three Levels of Goal Orientation in Learning. Journal of the Learning Sciences,

Vol. 1, pp 243-271.

4. National Council of Teachers of Mathematics.(1989). Curriculum and evaluation standards for school

mathematics. Reston, VA: Author.

5. Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. In M. Lindguist & A.

Shutle (eds.), Learning and teaching geometry, K-12, (1987 Yearbook of the National Council of Teachers of

Mathematics) (pp. 1-16). Reston, VA: NCTM.

6. Fuys, D., Geddes, D., Lovett, C., and Tischler, R. (1988). The van Hiele model of thinking in geometry among

adolescents. Journal for Research in Mathematics Education(Monograph No. 3). Reston, VA: National Council

of Teachers of Mathematics.

7. Usiskin, Z. (1982). Van Hiele levels of achievement in secondary school geometry(Final report of the Cognitive

Developemtn and Achievement in Secondary School Geometry Project). Chicago: University of Chicago.(ERIC

Document Reproduction Service No. ED220288)

8. Ehrlich, K., Soloway, E., & Abbott, V. (1982). Transfer effects from programming to algebra word

problems: A preliminary study (Rep. No. 257) New Haven: Yale University Department of Computer Science.

9. Soloway, E., Lockhead, J., & Clement, J. (1982). Does Computer programming enhance problem solving

ability? Some positive evidence on algebra word problems. In R. Seidel, R. Anderson, & B. Hunter (EDs.)

Computer literacy, New York: Academic Press, 1982.

10. Chen, J. & Lin, C. (2006). A van Hiele Web-based Learning System with Knowledge Management for Teaching

Programming, Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies, pp.

114-116, (ICALT2006).

11. Bonar, J. & Soloway, E. (2001). Uncovering Principles of Novice Programming Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, 10 – 13.

12. Liffick, B. & Aiken R. (1996) A novice programmer's support environment. Proceedings of the 1st conference

on Integrating technology into computer science education, Volume 28 , 24 Issue SI , 1-3

13. Peylo, C., Teiken, W., Rollinger, C., and H. Gust. (2000). An otology as domain model in a web-based

educational system for prolog, in Proceedings of the 13th International Florida Artificial Intelligence Research

Society Conference, eds. J. Etheredge and B. Manaris, AAAIPress, Menlo Park, CA, pp. 55-59.

P
age 15.112.16

14. Gomes, A. and Mendes, A. (2007). "An environment to improve programming education", ACM.International

Conference on Computer Systems and Technologies – CompSysTech07, IV. 19-1 – 19.6.

15. Pea, R.D. (1986). Language-independent conceptual “bug” in novice programming. Journal of Educational

Computing Research, (2) 1, pp. 25-36.

P
age 15.112.17

