
Paper ID #49597

A YOLO-Based Semi-Automated Labeling Approach to Improve Fault Detection
Efficiency in Railroad Videos

Dylan Lester, Marshall University

Dylan Lester is a third-year Electrical and Computer Engineering student and research assistant at Marshall
University, with a research focus on machine learning.

Prof. Pingping Zhu, Marshall University

Prof. Pingping Zhu is an assistant professor in the Department of Computer Sciences and Electrical
Engineering at Marshall University.

Dr. Husnu Saner Narman, Marshall University

Dr. Husnu S. Narman is an Associate Professor in the Department of Computer Sciences and Electrical
Engineering at Marshall University. Previously a post-doctoral fellow at Clemson University, his research
interests include distributed computing, cyber-physical systems, machine learning applications, social
networks, and advanced learning technologies. He has secured around $3.5 million in funding as PI or
Co-PI and has over 60 peer-reviewed publications. Dr. Narman has received several awards, including the
Weisberg Service Award, Academy of Distinguished Teachers Award, and Marshall University Distinguished
Artists and Scholars Junior Category Award.

Ammar Alzarrad, Marshall University

Dr. Alzarrad is an Assistant Professor in the Department of Civil Engineering at Marshall University.
He graduated with dual bachelor’s degrees in Civil Engineering and Business Administration from the
University of South Alabama. He received his M.Sc. and Ph.D. in Civil Engineering from The University
of Alabama. Before assuming his current position, he was an Assistant Professor in the Department of
Civil Engineering and Construction at Bradley University. Prior to joining academia, Dr. Alzarrad was
a Virtual Design and Construction (VDC) manager at an engineering design firm in Chicago, where he
managed multi-million projects (i.e., Wrigley Field restoration and expansion project). Dr. Alzarrad is
a PMP©, CPEM©, and the Director of The Engineering Management Graduate Program at Marshall
University.

©American Society for Engineering Education, 2025

A YOLO-Based Semi-Automated Labeling
Approach to Improve Fault Detection

Efficiency in Railroad Videos

Dylan Lester∗, James Gao†, Samuel Sutphin‡, PingPing Zhu§,
Husnu S. Narman¶, and Ammar Alzarrad∥

Email: ∗lester299@marshall.edu,†gao32@marshall.edu,‡sutphin54@marshall.edu,
§zhup@marshall.edu,¶narman@marshall.edu,∥alzarrad@marshall.edu

Abstract

Manual labeling for large-scale image and video datasets is often time-intensive, error-prone, and
costly, posing a significant barrier to efficient machine-learning workflows in fault detection from
railroad videos. This study introduces a semi-automated labeling method that utilizes a pre-trained
You Only Look Once (YOLO) model to streamline the labeling process and enhance fault detection
accuracy in railroad videos. By initiating the process with a small set of manually labeled data, our
approach iteratively trains the YOLO model, using each cycle’s output to improve model accuracy and
progressively reduce the need for human intervention.

To facilitate easy correction of model predictions, we developed a system to export YOLO’s
detection data as an editable text file, enabling rapid adjustments when detections require refinement. This
approach decreases labeling time from an average of 2–4 minutes per image to 30 seconds–2 minutes,
effectively minimizing labor costs and labeling errors. Unlike costly AI-based labeling solutions on paid
platforms, our method provides a cost-effective alternative for researchers and practitioners handling
large datasets in fault detection and other detection-based machine learning applications.

Index Terms

Machine Learning, Training, YOLO

I. INTRODUCTION

Detection-based models such as YOLO have improved rapidly and are becoming increasingly
accurate. However, training these models can be a time-consuming and labor-intensive process,
with room for human error during the data preparation and training phases. While AI-assisted
features exist to expedite training, they often come at a high cost, making them less accessible to
researchers with limited resources. Finding methods to incorporate assisted labeling has shown
to drastically improve accuracy , with Gregorio et al. seeing a 15% increase over manual labeling
methods [1]. In this study, we propose a method that offers an effective and cost-efficient
alternative to mainstream AI-assisted features. Specifically, we applied this method to detect
faults within railroad systems, focusing on insufficient ballast—missing gravel between railroad
tracks—and plant overgrowth. These faults can disrupt railroad traffic and pose safety risks.

Railroad fault detection has been extensively studied in the literature and continues to evolve
with advances in AI technology. Railroad systems can fail for various different reasons. However,
failure stems from the break down of the tracks. [2]. Most railroad fault detection processes
have transitioned from manual to automated systems [3], [4], significantly enhancing efficiency
and reliability. However, much of the existing research focuses on detecting cracks or structural
issues in the rails themselves. Detecting insufficient ballast and plant overgrowth presents unique
challenges due to the complexity of these faults and their subtle visual characteristics. During

the initial stages of training a model to detect these specific faults, we encountered significant
difficulties related to the labeling and training processes, which were both lengthy and demanding.
To address these challenges, we developed an algorithm designed to improve model accuracy
while substantially reducing the time required for training.To show improved accuracy this paper
will compare a training set with only human labeled images with the same amount of images
with the new algorithm we have developed. This paper outlines our approach, evaluates its
performance, and discusses its implications for railroad fault detection and beyond.

The remainder of this paper is organized as follows: Section II, which discusses the complex-
ities of developing the algorithm. Section III covers the process of extracting and modifying the
labels of the detected images. Section IV is an in depth covering of the algorithm used. Section
V analyzes the results of the algorithm used in training various models. Finally, Section VI has
the final remarks.

II. PROBLEM FORMULATION

YOLO is a real-time object detecting model that classifies multiple objects through a single
pass of a convolution neural network. When training a YOLO model, the availability of a large
and diverse dataset is essential for achieving high accuracy and robust performance. Generally,
the more extensive and representative the dataset used during training, the better the model’s
ability to generalize across various scenarios and detect objects accurately. For instance, in [5],
[6], over 10,000 images were employed to train a YOLO model effectively, demonstrating the
scale required for successful model development.

However, preparing such a dataset presents significant challenges, particularly due to the need
for image labeling. Each image must be annotated with bounding boxes and class labels to define
the objects within them, a process that is both time-consuming and resource-intensive. Manual
labeling can also be prone to errors, as it depends on human interpretation, which may vary
among annotators. Inconsistent or inaccurate labeling can introduce noise into the training data,
adversely affecting the performance metrics of the YOLO model, such as the F1-score and mean
Average Precision (mAP).

The complexity of the objects being detected adds another layer of difficulty. In cases where
object definitions are subjective or ambiguous, such as detecting insufficient ballast in a railroad
dataset, labeling becomes even more challenging. Ambiguity in defining what constitutes ”in-
sufficient ballast” can lead to inconsistent annotations, further complicating the training process.

To address these issues, assisted labeling techniques can play a crucial role. By leveraging
algorithms or semi-automated tools to assist in the labeling process, it becomes possible to reduce
human error and increase consistency in annotations. Assisted labeling not only accelerates the
dataset preparation process but also improves the overall quality of the labeled data.

In our lab, we encountered these challenges firsthand while training multiple YOLO models.
The models often failed to achieve satisfactory F1-scores or mAP values, prompting us to
explore alternative training techniques. We identified that developing a more efficient algorithm
for assisted labeling could significantly enhance the training process. By ensuring that images
are accurately labeled from the outset, the algorithm allows the model to extract better features
and achieve superior performance, even with smaller datasets.

For our circumstances we chose to use the YOLOv8 model, as it is known to do well with rail
oriented detection [7].However, this approach has broader implications beyond our specific use
case. Developing and refining effective assisted labeling algorithms can improve model training
across a wide range of fields, enabling researchers and practitioners to achieve better results
with fewer resources. By addressing the bottlenecks in dataset preparation, such advancements

can facilitate the application of YOLO models to diverse projects, from industrial inspections to
real-time object detection systems.

III. EXTRACTING LABELS

When a trained model is used to detect, it will read an image file from a given directory and
analyze it, after it will output a label file. Labeled images are critical in training a model as it
allows the model to learn what an object is. However, the images produced by our trained model
must have their label files modified so that it could be edited within a labeling software. We
wrote a code to output an annotation file that had coordinates for each bounding box that was
detected in the given image. Inside the annotation file there are values for the x center point,
y center point, width, height, and class id. Another modification we had to make was creating
a label map for the detected data so that it could be read by labeling software. The label map
file contains the class id number and the class name. The class name is what will be read by
labeling software. Using the trained model to detect objects in unlabeled images takes less than
5 seconds to label 100 images.

Once the images are uploaded into our labeling software, any necessary adjustments can be
easily made. These modifications are automatically saved in a YOLO-readable format, ensuring
seamless integration with YOLO detection frameworks. The label extraction process is executed
during each detection of unlabeled images, making the overall workflow highly efficient.

Fig. 1: A diagram of the algorithm.

IV. ALGORITHM

Once a data set is acquired, a small subset of images from the collection will need to be
labeled manually by a human annotator. This initial step is crucial when training a base YOLO
(You Only Look Once) model, as it provides the foundational labeled data required to start
the learning process. Labeled data serves as the ground truth for the model to understand the
relationships between the input images and their corresponding outputs, such as bounding boxes
and class labels.

After the images are labeled, the YOLO model is trained using this annotated subset. During
this phase, the model learns to recognize patterns, extract features, and predict labels for objects

within the training images. Once the training is complete, the model is deployed to label the next
batch of images within the data set. This labeling process is done incrementally, ensuring that
the model progressively refines its performance on increasingly larger data sets. By iteratively
improving the model’s predictions, less manual adjustment is required in subsequent cycles,
ultimately enhancing efficiency.

For each iteration, the model’s predictions on the new batch of images are reviewed and
corrected using labeling software. These corrected labels are then incorporated into the existing
labeled data set, expanding the training set and providing the model with additional examples for
refinement. The updated labeled data set is used to retrain the YOLO model, further improving
its accuracy and robustness.

As the data set grows and the model is exposed to a more diverse range of samples, its
detection capabilities improve significantly. This progressive enhancement is crucial for deep
learning models like YOLO, which thrive on large, well-annotated data sets. The incremental
training approach not only reduces the time needed for manual review but also ensures that the
model becomes better equipped to handle edge cases and outliers in the data.

Fig.1 is a visual display of how the algorithm functions. Algorithm 1 goes into depth of how
the algorithm functions.

Algorithm 1 Assisted Labeling
1: Procedure: Manually label a number of images from the data set.
2: Train the YOLOv8 model on the labeled images.
3: Retrieve the best weight from the trained model.
4: Use the best weight to label images and edit the label files to be usable in a label editing

software.
5: Add the detected images back into a labeling software and adjust the labels as needed.
6: Add the adjusted images into the labeled data, then train the model again.

V. RESULTS

A. Dataset
The dataset used in this study, is an open-source data set that consists of one railroad track

[8]. A total of 400 images are used for the training. The defects being detected are insufficient
ballast, and plants. The images of the railroad are at a top down angle which makes for a more
accurate viewing angle.

To increase the total number of images that will be used in training, we applied augmentation
to the data set. In a study on data augmentation for machine learning, Shorten, found that using
data augmentation positively affected the training results [9]. Table I outlines the augmentation
settings that are applied to the data set.

flip horizontal
rotation between −15◦ and +15◦

sheer ±10◦ horizontal and ±10◦ vertical

TABLE I: Data augmentations applied to the data sets.

As seen in Table II, with the data augmentation we are able to increase the number of images
used in the training by a significant amount. Pairing this with the algorithm in Algortihm 1 and
Fig. 1, we were able to optimize training a model for efficiency and accuracy.

Original Images Augmented Images Total Images

100 216 316
200 220 420
300 416 716
400 618 1018

TABLE II: Summary of the image sets with augmentations.

B. Result Evaluation
YOLOv8 models can be objectively evaluated by using the mAP value, and F1-score [10].

mAP(Mean Average Precision) compares the bounding box with the models detection to return
a score, and it is crucial that a accurate model has a higher mAP value. mAP value is calculated
using Equation (1). The f1-score is used as a more holistic evaluation, computed by precision
and recall. The F1-score is calculated using Equation (2).

mAP =
[
∑

PA]

N
(1)

F1− score = 2 ∗ Precision ∗Recall

Precision+Recall
(2)

There are two variations of mAP. mAP at 0.5 is the average precision at 0.5 threshold. mAP
at 0.9 is the average precision at 0.9 threshold. In Equation (1), N represents the number of
classes, and PA is a numerical value of the area under a curve when the recall and precision are
plotted [5]. Recall is the models capability to identify false positive detections. It is crucial that
an accurate model has a higher recall. Thus with precision and recall, the F1-score will be the
models main evaluation method.

C. Comparing Model Scores with Assisted Labeling

Fig. 2: F1-score of the 100 image set. Fig. 3: F1-score of the 200 image set.

The 100 image set is the initial set with no assisted labeling. Due to the small data size and
no assisted labeling the F1 score is not good as seen in Fig. 2. It can also be seen that the score
is somewhat unstable.

Fig. 4: F1-score of the 300 image set. Fig. 5: F1-score of the 400 image set.

As shown in Fig. 3, there is an initial increase in the score and stability of the model within
the first implementation of assisted labeling. The 100 extra labeled images added from assisted
labeling took significantly less time to add to the set as well. The same can be said for each
additional 100 images, which can be seen in Fig. 4 and Fig. 5. It can also be seen that the stability
of the curve improves with each implementation of the assisted labeling highlighting that the
model is getting more accurate with each incrimination of the algorithm. In total comparing the
100 image set with the 400 image set, the score increased from 0.81 to 0.87. With more data,
the model would continue to improve.

D. Comparing Results With a Model With No Assisted Labeling
For another comparison, we will compare the model with another model that has no assisted

labeling. This model has a total of 400 images and has the same augmentations applied that are
in Table I. As shown in Fig. 6, the model scored a 0.71 F1-score, and was notably unstable.
The assisted model shows a drastic improvement in quality over the unassisted model. It must
be noted that the unassisted model could have a fair amount of human error within the labeling
process. However, this highlights another important feature of the algorithm which is the early
implementation of assisted labeling which helps decrease human error in training from early
stages. A difficult measurement to show the effectiveness of the assisted labeling is the time that
it took to train the models. Manually labeling each image takes a significant amount of time. It
took approximately 10 hours of labeling to fully label the unassisted model. To train the assisted
model it took approximately 4-5 hours. This shows a significant time and labor reduction in the
training process. Fig. 7 shows a sample output from using the 400 image model to detect an
unlabeled image. For the purposes that we are using the model, this is an acceptable output.
However, looking at Fig. 7, shows the complexities of identifying insufficient ballast. It would
be hard to come up with an exact definition of what would be insufficient ballast. However, the

Fig. 6: The unassisted model F1-score.

Fig. 7: A sample detection from the most
accurate model.

models output closely resembles the initial labeled data which implies an accurate detection.
Table III is a summary of the models and their respective F1-scores.

Data Set F1-Score

100-image set 0.81
200-image set 0.84
300-image set 0.86
400-image set 0.87
Baseline model (400 images) 0.71

TABLE III: F1-Scores of the various models.

E. Effectiveness of Assisted Labeling Method
The F1-score is a key metric for evaluating model effectiveness. As shown in Table III, the

assisted labeling algorithm improves accuracy with each iteration as the dataset expands. This
progressive enhancement occurs because the model refines its predictions with increased training
data. A rising F1-score also indicates reduced human error, as mislabeled data can hinder model
performance.

In most studies involving YOLO model training, including [3] and [4], manual labeling is the
standard technique. While this method ensures high-quality annotations, it is time-consuming
and costly. The proposed algorithm in this study incorporates a manual labeling component but
significantly reduces the labor required compared to labeling an entire dataset.

Although the results demonstrate positive implications for training a model, the algorithm’s
performance depends on the quality of the initial labeled images. If the process begins with
mislabeled data, the model’s accuracy will suffer.

VI. CONCLUSION

Our research introduces a promising method for assisted labeling techniques that enhances
both the speed and accuracy of training machine learning models. By employing our algorithm,

we observed consistent improvements in F1-scores with each training iteration, alongside a
progressively faster labeling process. This methodology facilitates more accurate and efficient
detection of various railroad faults and can seamlessly integrate with any YOLO detection
framework.

Future work will focus on implementing a confidence-level adjustment system, enabling the
model to dynamically reduce the need for human intervention as its accuracy improves over
iterations. This enhancement would significantly lower labor costs and further decrease training
times. Additionally, we aim to refine our model for detecting insufficient ballast by acquiring a
more specialized dataset tailored to our requirements, which we anticipate will lead to further
improvements in performance metrics.

ACKNOWLEDGMENT

This research was supported by the U.S. Army Engineer Research and Development Center
(ERDC), grant #W912HZ249C006.

REFERENCES

[1] D. De Gregorio, A. Tonioni, G. Palli, and L. Di Stefano, “Semiautomatic labeling for deep learning in robotics,” IEEE
Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 611–620, 2019.

[2] A. Şener, B. Ergen, and M. Toğaçar, “Fault detection from images of railroad lines using the deep learning model built
with the tensorflow library,” Turkish Journal of Science and Technology, vol. 17, no. 1, pp. 47–53, 2022.

[3] A. d’Arms, H. Song, H. S. Narman, N. C. Yurtcu, P. Zhu, and A. Alzarrad, “Automated railway crack detection using
machine learning: Analysis of deep learning approaches,” in IEEE Annual Information Technology, Electronics & Mobile
Communica tion Conference, Berkley, CA, October 2024.

[4] A. Rivero, S. Radosavljevic, and P. Vanheeghe, “Application of belief theories for railway track defect detection,”
International Journal of Automation, Artificial Intelligence and Machine Learning, vol. 4, no. 1, pp. 10–35, 2024.

[5] F. M. Talaat and H. ZainEldin, “An improved fire detection approach based on yolo-v8 for smart cities,” Neural Computing
and Applications, vol. 35, no. 28, pp. 20 939–20 954, 2023.

[6] H. Liu, Y. Hou, J. Zhang, P. Zheng, and S. Hou, “Research on weed reverse detection methods based on improved you
only look once (yolo) v8: Preliminary results,” Agronomy, vol. 14, no. 8, p. 1667, 2024.

[7] Y. Wang, K. Zhang, L. Wang, and L. Wu, “An improved yolov8 algorithm for rail surface defect detection,” IEEE Access,
vol. 12, pp. 44 984–44 997, 2024.

[8] R. Universe, “Rail anomaly detection dataset,” https://universe.roboflow.com/sci-lab/rail anomaly detection/dataset/16,
n.d., accessed: 2025-01-15.

[9] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, vol. 6,
no. 1, pp. 1–48, 2019.

[10] X. Wang, H. Gao, Z. Jia, and Z. Li, “Bl-yolov8: An improved road defect detection model based on yolov8,” Sensors,
vol. 23, no. 20, p. 8361, 2023.

