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ABSTRACT

The scattering due to the interaction of dual-
frequency beams on a three-dimensional object is
considered. The difference-frequency generated
from this interaction has the potential to improve the
classification of biological tissue. This work exam-
ines the effect of the contrast parameter on the scat-
tered field produced from an ellipsoidal scatterer.

1 Introduction

In 1963, Ingard and Pridmore-Brown [5] observed
the generation of sum and difference frequencies
from the intersection of two perpendicular plane
waves in air. Darvennes and Hamilton [3] extended
this work to calculate the difference-frequency sound
outside the interaction region of two intersecting
Gaussian beams. Their work determined that the
scattering from the difference frequency depended
on the frequency ratio, intersection angle, and source
separation of the incident beams. Thierman [8] con-
ducted experimental and computational work ob-
serving the difference-frequency signal produced
from the interaction of focused beams on various
targets. For the experimental setup and parame-
ters chosen, Thierman was unable to measure any

detectable difference-frequency sound. Regardless,
he still considered the possibility of producing a re-
sponse from the interaction of dual-frequency pres-
sures prompting for more analysis on the conditions
behind difference-frequency sound.

The difference-frequency field arises from the
nonlinearity of the medium in response to a high in-
tensity incident pressure. The difference of two high
frequency incident beams generate a low frequency
signal that can better capture the acoustic features of
the medium interrogated. This particular signal is of
interest in providing an increased penetration depth
[4][7]. The application of high frequency incident
fields allows focusing and improved resolution of the
tissue.

In this work, a computational model is presented
for the solution of the forward scattered field due
to the difference frequency component. This is un-
dertaken by first solving for the first order pressure
fields P1 in the linearized wave equation due to the
dual frequency field. The difference frequency com-
ponent generated from this solution, being localized
within the medium is then applied as a source term
P 2

1 in the second order wave equation for far-field
observations of the scattered pressureP2. The source
term is weighted by the nonlinear parameterB/A
which determines the influence of the difference fre-
quency component. This nonlinear parameterB/A



characterizes the variation of the sound speed within
the medium.

In Section 2, the governing equations for the first
and second order pressure fields are presented. Sec-
tion 3 describes the computational model. Section 4
presents results for scattering from an inviscid fluid
ellipsoidal shaped scatterer for varying compressibil-
ity contrast parameters.

2 Scattering from Inhomogeneous
Media

Consider a confocal transducer emitting dual-
frequenciesωa and ωb onto a volume Ω sur-
rounding an ellipsoid scattering regionΩs. The
incident field is represented asPi(x, t) =
Re

[

Pia(x)(+)ejωat + Pib(x)(+)ejωbt
]

where P+
ia

andP+
ib represent the incident pressure amplitudes.

When the incident field ensonifies the scattering vol-
ume, the compressibility contrastǫ = (κs − κ)/κ
cause the waves to scatter.

To obtain an expression for the difference-
frequency field, an expansion in pressureP = P0 +
P1+P2+.., densityρ = ρ0+ρ1+ρ2+..., and veloc-
ity u = u0 +u1 +u2 + ... is applied to the governing
equations of motion. By retaining terms to the first-
order, the first-order inhomogeneous wave equation
is expressed as,

∇2P1s(x, t) −
1

c2
0

∂2

∂t2
P1s(x, t)

= ǫγκ(x)
1

c2
0

∂2

∂t2
P1s(x, t) (1)

for s = a, b, wherec0 is the speed of sound and
γκ(x) represents the region whereǫ is nonzero. Con-
verting the first-order wave equation to the frequency
domain, Eqn. (1) can be mapped to the Kirchhoff-
Helmholtz equation,

P1s(x) = Pis(x)

+ ǫk2
1s

∫

Ωs

γκ(x0)P1s(x0)G(x, x0)dx0

(2)

for s = a, b,wherek1s = ωs/c0 is the wavenum-
ber andG(x, x0) is the three-dimensional free-space
Green’s function,

G(x, x0) =
ejk1s|x−x

0
|

4π|x − x0|
(3)

Figure 1: Depiction of problem geometry. Dual-
frequencies focused on ellipsoid scatterer. Major
axis of ellipsoid located along direction of propaga-
tion.

A similar process is applied for the second-order
wave equation [6], retaining terms up to the second-
order gives,

∇2P2(x, t) −
1

c2
0

∂2

∂t2
P2(x, t) = −

(1 − Γ)

ρ0c4
0

∂2

∂t2
P 2

1 (x, t)

(4)

where the termΓ = 1 + B/A contains the non-
linear parameter. The source term∂

2

∂t2
P 2

1 (x, t) de-
scribes the interaction of the two first-order waves
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that gives rise to several frequency components.
ConsideringP1 = Re(P1a + P1b), P 2

1 can be ex-
panded asRe(P 2

1a) + Re(P 2
1b) + Re(P1aP1b) +

Re(P ∗
1aP1b) + 1

2 |P1a| + 1
2 |P1b|, where∗ represents

the complex conjugate. The aforementioned terms
represent the second harmonic forP1a, the sec-
ond harmonic forP1b, the sum frequency term,
the difference frequency term, and DC component
respectively. This analysis deals only with the
difference-frequency component arising from the
term Re(P ∗

1aP1b). Converting to the frequency do-
main and applying Green’s Theorem to Eqn. (4), the
solution to the second-order field is,

P2(x) = k2
2

∫

Ωs

(Γ − 1)

ρ0c
2
0

P ∗
1aP1bG(x, x0)dx0 (5)

wherek2 = kb − ka is the difference frequency.
The second-order pressureP2 is considered to be a
radiated component. Therefore, for observationsx0

within the object, the pressureP2 will be zero.

3 Computational Method

The first-order scattered fields inside the scatter-
ing object are evaluated using Neumann series, an
asymptotic series around the gauge parameterǫ. The
procedure is demonstrated forP1a. The solution
form is,

P1a(x) =
N

∑

n=0

ǫnφn(x) (6)

The coefficientsφn are obtained by substituting
the series (6) into Eqn. (2). Equating like terms of
ǫ finds the zeroth-order coefficientφ0 to be the inci-
dent pressure and all subsequent terms to be deter-
mined recursively from Eqn. (7),

φn(x) = k2
a

∫

Ωs

γκ(x0)φn−1(x0)G(x, x0)dV0 (7)

The Neumann Series approximation is valid for
weak scattering whereǫ is small. Asǫ increases,
the series diverges due to singularities that can be
introduced in the complexǫ plane. This has been ad-
dressed by recasting the Neumann series to a ratio-
nal function of two polynomials inǫ. The Neumann
series approximation is recast using Padé Approxi-
mants [1][2],

φ0(x)+
N

∑

n=1

ǫnφn(x) = φ0(x)+

M
∑

l=1

Alǫ
l

1 +
M
∑

m=1
Bm(x)ǫm

(8)
whereN = 2M + 1. Equating like terms ofǫ in

Eqn. (8), the coefficientsAl andBm can be found.
Once the first-order pressure fieldsP1a andP1b are
determined, the far field second-order fieldP2 can be
computed from the integral given in Eqn. (5).

4 Results

The results for the difference-frequency are pre-
sented for an ellipsoidl shaped scatterer with an as-
pect ratio of 2. The major-axis of the ellipsoid has a
nondimensional length ofa = 1 and is along the di-
rection of the incident beam. The computation grid
of cubic length2×a was discretized using a uniform
distribution ofNs = 128 points. The compressibility
spatial functionγκ(x) is 1 inside the volumeΩs and
0 otherwise. A FFT based quadrature method was
applied to Eqn. (7) to determine the Neumann Se-
ries coefficients usingN = 15. An order ofM = 7
was utilized to ensure convergent Padé Approximant
terms.
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Figure 2: The first-order pressure fields are plotted at
a distance of10 × a. A kaa = 3.14 andkba = 3.17
were considered with a gauge parameterǫ = 1.

The angular distribution of the scattered pressure
produced from the aforementioned method is pre-
sented for an observation radius of10× a. The first-
order pressuresP1a andP1b are shown in Fig. 2 for
an ǫ = 1 with a kaa = 3.14 andkba = 3.17. The
scattered energy appears predominantly in the for-
ward and backward direction as a result of the orien-
tation of the scattering object. The fieldP1b radiates
stronger in comparison toP1a.

The second-order pessure field due to the differ-
ence frequency component is evaluated for a nonlin-
ear parameter ofB/A = 6.5. An analysis was per-
formed comparing the sensitivity of the field due to
a varying contrast parameterǫ = 0.25, 0.5, 1.0, 2.0
shown in Fig. 3. The observable far-field scat-
tering for the difference-frequency appears omni-
directional and of much lower amplitude. Increas-
ing ǫ from 0.25 to 0.5 and1.0 saw modest increases
of about3 dB respectively. Increasing to a larger
contastǫ = 2.0 saw an increment of about10 dB.
Varying the contrast did not show any changes in di-
rectivity pattern in the difference-frequency field.
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Figure 3: Difference frequency pressure from an el-
lipsoid at obersvation of10× a. Comparison of var-
iousǫ shown.

5 Conclusions

The scattered field produced from the difference-
frequency due to the interaction of two incident
beams was observed. The first-order pressure fields
inside an ellipsoid was calculated using the Neu-
mann Series Approximation. To consider high con-
trast, the series was recast using Padé Approximants.
The field due to the difference frequency increases
with compressibility contrast, however has a magni-
tude that is still quite small.
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