
Proceedings of the 2011 North Midwest Section Conference

Adapting Digital Design Instruction
to a Programmable Logic Device Setting

Christopher R. Carroll

University of Minnesota Duluth

Introduction

Programmable Logic Devices have revolutionized the way in which digital circuits are built.
Individual Small-Scale- or Medium-Scale-Integration (SSI or MSI) devices are rarely used, and
in fact are becoming hard to find. Instead, FPGAs (Field Programmable Gate Arrays) and
CPLDs (Complex Programmable Logic Devices) have become the standard for implementing
digital systems1. FPGAs and CPLDs offer much higher circuit density, higher reliability, and
system simplification, all of which make them very attractive to the digital designer. However,
with these advantages comes a loss of visibility of the underlying circuiW. The deVigneU can ³lRVe
WRXch´ ZiWh Whe ciUcXiW being deVigned, and Whe UeVXlWing haUdZaUe iV Ueall\ mRUe Rf a cRmSXWeU-
generated black box than it is a carefully crafted, fine-tuned design. Creativity in the design is
less visible when using FPGAs or CPLDV, and ³eleganW´ VRlXWiRnV WR deVign SURblemV aUe nRW
rewarded in the same way as they are with design using SSI and MSI parts.

FPGAs and CPLDs are intended to implement solutions to digital design problems as quickly
and efficiently as possible, both qualities that are important in an industrial setting. However, in
an educational setting, the solution is not as important as understanding how the solution is
reached, and these programmable devices automate and hide that process, making them less
attractive as educational tools. Using FPGAs and CPLDs as vehicles for teaching digital circuit
design requires that the instructor consciously emphasize what is being done behind the scenes
by the synthesis software that configures the programmable device. Otherwise, digital design
degenerates into just another programming exercise, albeit using a hardware description
language rather than traditional software languages.

Furthermore, using the fixed structures of FPGA or CPLD implementations restricts design
VWUaWegieV and limiWV SRVVible VRlXWiRnV. HaYing VWXdenWV deVign cRmbinaWiRnal ciUcXiWV XVing ³all
NAND gaWeV´ RU ³all NOR gaWeV´ becRmeV SRinWleVV, becaXVe Whe V\nWheViV VRfWZaUe WhaW
configures the programmable device translates whatever implementation is specified into the
standard structure implemented in the device. Combinational circuits that must avoid logic
ha]aUdV (mRmenWaU\ ³gliWcheV´ dXUing WUanViWiRnV) cannRW be imSlemenWed SURSeUl\ in cXUUenW
FPGA structures, and are clumsy to implement in CPLDs. Thus, some digital circuit designs
cannot be mapped cleanly to programmable devices. Such designs might continue to need
discrete logic gates to demonstrate to students the importance of some techniques.

Programmable Logic Devices, though attractive to the experienced designer, can be awkward
and even impossible to use in certain educational settings. Digital design instructors must be
aware of these limitations. They must find creative ways around the limitations, and must
restrain themselves from being brainwashed by the glitz of FPGAs and CPLDs. This paper
identifies techniques for maintaining the excitement and rewards of creative digital design even
within the confined restrictions imposed by Programmable Logic Devices.

Proceedings of the 2011 North Midwest Section Conference

What is an FPGA?

A Field Programmable Gate Array (FPGA) is a component focused around a large matrix of
configurable logic blocks. Each logic block implements a combinational function which is
optionally captured in a latch or flip-flop register to allow sequential circuit implementation.
Other structures often are present in FPGAs such as RAM memory, special-purpose logic (e.g.
multipliers), and input/output circuitry, but the core logic blocks are the topic of interest here.
Large digital systems are assembled by connecting logic block inputs and outputs via a
programmable interconnection network within the FPGA.

Figure 1 shows a very simplified logic block in a typical FPGA. The logic block receives ³n´
inputs from the interconnection network in the FPGA and supplies its output to that network for
use elsewhere. At the heart of the logic block is a RAM-based look-up table that generates the
combinational function to be implemented in that logic block. The look-up table simply stores
the truth table for the function to be implemented, and is programmed when the FPGA is
configured for the target application.

Figure 1. Simplified configurable logic block, the heart of an FPGA

By reading a circuit description defined in a hardware description language such as VHDL2,3,
synthesis software can determine the truth tables for required combinational functions, load the
look-up tables with these truth tables, and configure the registered storage in each logic block as
needed for the particular application.

What is a CPLD?

A Complex Programmable Logic Device (CPLD) is a component focused around a large number
of macrocells. Each macrocell implements a combinational function Rf ³n´ YaUiableV which is
optionally captured in a latch or flip-flop register to allow sequential circuit implementation.
The difference between FPGAs and CPLDs is the structure used to implement the combinational
function in the macrocell. Whereas the FPGA uses a RAM-based look-up table to store the truth
table for the required function, the CPLD implements the function by ORing together implicants
for the function generated by a programmable array of AND gates. The AND gates combine
selected inputs (or their complements) to produce terms for the function in a typical sum-of-
products structure. The result of ORing the implicants is optionally inverted and then optionally
captured in a latch or flip-flop to implement a sequential circuit. As in the FPGA case, large
digital systems are assembled by interconnecting the macrocells via a programmable
interconnection network within the CPLD.

Figure 2 shows a very simplified macrocell in a typical CPLD. The AND gates receive their
inputs from the interconnection network in the CPLD, and the macrocell output is supplied to the
network for use elsewhere within the CPLD. The combinational function is produced by ORing
implicants of the function in traditional sum-of-products form.

Look-up
table

RAM (2n x 1)

Function
output to rest

of system ³n´

Optional
flip-flop
or latch

³n´ inpXWV from
elsewhere in
the system

Proceedings of the 2011 North Midwest Section Conference

Figure 2. Simplified Macrocell, the heart of a CPLD.

Using the circuit design supplied in a hardware description language such as VHDL, synthesis
software analyzes the required combinational logic to determine a minimal sum-of-products
form (or product-of-sums form, if the inverting option is used) for each combinational function
to be produced, and configures the AND gate connections to produce the required terms for
function implementation.

Pedagogy Troubles

Regardless of whether FPGAs or CPLDs are used, the synthesis software that configures the
programmable device hides all the details and challenge involved in designing a digital system.
Once the system design is defined in a hardware description language, the synthesis software
performs all of the optimization and minimization to configure the programmable device to
implement the required system. No additional effort is required on the part of the designer. The
quality of the design depends upon the quality of the synthesis software, not upon the skill of the
designer who wrote the hardware description language design of the system. Clumsy, unrefined
V\VWem deVignV aUe ³cleaned XS´ b\ Whe VRfWZaUe and SURdXce Whe Vame final UeVXlW aV caUefXll\
crafted designs. If the only measure of design quality is just how many resources are used in the
programmable device, poor designs and high-quality designs will score identically.

This pedagogical problem is evident even in the simplest case of implementing a single
combinational function. In the FPGA case, no matter how clumsy or non-minimal the deVigneU¶V
function specification is, the software simply evaluates the truth table for the function, and stores
it in the look-up table memory in a logic block. In the CPLD case, specification of non-
minimized, redundant functions is immaterial, as the software reduces the function to minimal
form. The software even determines whether sum-of-products or product-of-sums form leads to
Whe mRVW ecRnRmical imSlemenWaWiRn, VR Whe deVigneU¶V inSXW WR Whe final imSlemenWaWiRn iV nRn-
existent. In the ultimate insult to a digital designer, it is even possible to simply input the truth
table of the desired function(s) and the software will determine the optimal implementation.
Where is the design effort to be assessed?

In current CPLD implementations, the flip-flop in each macrocell can be implemented as either a
D- or a T-type flip-flop. The configuration software decides which flip-flop type yields the best
result, not the circuit designer. If the designer specifies the less-optimal type, the software will

Programmable
connections

Optional
flip-flop
or latch

Optional
logic

inversion

Function
output to rest

of system
yyy

y
y
y

y
y
y

y
y
y

³n´ inpXWV from
elsewhere in
the system

Proceedings of the 2011 North Midwest Section Conference

change the design, eliminating Whe deVigneU¶V inSXW WR Whe final imSlemenWaWiRn. Again, the
design effort expended by the circuit designer is not assessable in the final implementation.

FURm an inVWUXcWRU¶V SRinW Rf YieZ, WU\ing WR aVVeVV Whe TXaliW\ Rf digiWal deVignV cannRW Uel\ Rn
the result of configuring an FPGA or CPLD for the particular application. Every designer,
regardless of ability, will get the same result! Instead, assessment of design quality must be
based on the system description provided by the hardware description language input to the
configuration software by the designer, before the synthesis software has a chance to modify it.

A possible approach that may work in assessing the quality of digital designs relies on counting
the number and types of component library elements used in a design. All configuration
software allows description of digital circuits using libraries of combinational and sequential
components. One technique for distinguishing the quality of one design from another is simply
to count the number of library elements used. Simple gates and flip-flops count as one point
each. More complex, traditionally MSI, components such as counters, shift registers, four-bit
adders, etc. would count as perhaps ten points each. A working design with fewer WRWal ³SRinWV´
than another is clearly the better design.

Implementation Troubles

Some characteristics of FPGA and CPLD design structures complicate certain design situations.
One such situation is the occasional need to implement combinational logic in non-minimal
form. The synthesis software for configuring programmable devices always minimizes functions
to simplest form. This sometimes prevents desired implementations from being possible.

Avoiding logic hazards is a particular case where minimizing logic is not the right thing to do.
Figure 3 shows the Karnaugh map and minimal sum-of-products implementation for a function
of three variables, f(a,b,c) = ab + a¶c. As implemented in Figure 3, this function has a static-1
logic hazard, meaning that in at least one case, changing one input variable between values that
start and end with the function value being logic 1, might generate a brief logic 0 glitch on the
output during the transition. The hazard can be seen in this case by starting with a=b=c=1 and
then changing a to 0. The possibility exists that the top AND gate output might become 0 before
the bottom AND gate output becomes 1, which could lead to a brief 0 on the OR gate output
during that transition, which is a logic hazard. In clocked systems where it is important only that
function values achieve their new post-transition value before the next clock transition, hazards
do not pose a problem. However, in asynchronous circuits where there is no clock to identify
when to look at signals, functions must be valid at all times, including during transitions, so
hazards must be avoided in such systems.

Figure 3. Simple combinational circuit that displays a static-1 logic hazard

0

1

0

1

1

1

0

0

00 01 11 10

0

1

ab
c

b

a

c

ab + a¶c

Proceedings of the 2011 North Midwest Section Conference

Logic hazard problems can always be solved, but sometimes the solution requires adding
redundant logic which makes the resulting circuit non-minimal. With sum-of-product
implementations, Whe WechniTXe iV WR be VXUe WhaW eYeU\ SaiU Rf adjacenW 1¶V in Whe KaUnaXgh maS
is included together in some implicant of the function. In this case, that means that the implicant
³bc´ mXVW be added WR Whe fXncWiRn imSlemenWaWiRn, UeVXlWing in f(a,b,c) = ab + a¶c + bc, as shown
in Figure 4. This is a non-minimal implementation of the function f(a,b,c), but it is hazard-free,
and in situations that must avoid hazards, it solves the hazard problem.

Figure 4. Non-minimal, but hazard-fUee LPSOePeQWaWLRQ Rf FLgXUe 3¶V fXQcWLRQ.

Unfortunately, programmable device synthesis software will not allow non-minimal expressions
to survive. In the CPLD case, the redundant term in the expression of Figure 4 will be removed,
and Whe CPLD imSlemenWaWiRn Rf Whe fXncWiRn Zill UeWXUn WR FigXUe 3¶V ciUcXit, restoring the
hazard. In the FPGA case, the truth table for the function f(a,b,c) will be determined and stored
in the look-up table. This implementation essentially makes each minterm of the function a
separate implicant, thus forming the function f(a,b,c) = a¶b¶c + a¶bc + abc¶ + abc, which is loaded
with logic hazards. Neither of these implementations is acceptable if hazards must be avoided.

So what can be done to avoid logic hazards? In the FPGA case, nothing can be done. The
technique of storing the function truth table in a look-up table forces each minterm to be treated
as a separate implicant of the function, which eliminates the chance to solve logic hazard
problems. If logic hazards must be avoided, FPGAs cannot be used.

In the CPLD case, the synthesis software will remove redundant terms in functions. However, it
is possible to separately generate each needed implicant, including redundant ones, and then
separately combine them. This is spectacularly wasteful of CPLD resources, as each implicant
must be generated in its own macrocell, and then an addition macrocell is required to combine
the implicants to produce the hazard-free function. However, a solution is possible with the
CPLD to avoid logic hazards, though very clumsy. Conceivably one could edit the netlist files
produced during the configuration software execution to force redundant implicants to survive
and thus eliminate logic hazards in CPLD implementations more efficiently. However, editing
the netlist files (EDIC format, e.g.) is not a common skill among student digital designers, and
should not be a part of the required curriculum in a digital design class. After all, the class is
about designing digital circuits, not about how to coerce software tools into performing as
desired.

0

1

0

1

1

1

0

0

00 01 11 10

0

1

ab
c

b

a

c

ab + a¶c + bc

b

c

Proceedings of the 2011 North Midwest Section Conference

Summary

Programmable devices such as FPGAs and CPLDs are here to stay, and have revolutionized
digital design. However, using such devices as the basis for digital circuit education has some
serious shortcomings. Assessing the quality of designs implemented on programmable devices
requires some creativity on the part of the instructor, since the final implementation reflects more
the quality of the configuration software used than it does the quality of the original design.
Even worse, some designs cannot be implemented properly at all on FPGAs, and can be
implemented only clumsily on CPLDs. When those designs are required in a system,
programmable devices may not be the best implementation choice.

References

1. Xilinx, CoolRunner-II CPLD Family, Product Specification, Xilinx Comporation (2008).

2. Bhasker, J., VHDL Primer, Prentice Hall, New Jersey (1999).

3. Yalamanchili, S., VHDL SWaUWeU¶V GXLde, Prentice Hall, New Jersey (1998).

Biography

CHRISTOPHER R. CARROLL received a Bachelor degree from Georgia Tech, and M.S. and Ph.D. degrees from
Caltech. After teaching at Duke University, he is now Associate Professor of Electrical and Computer Engineering
at UMD, with interests in special-purpose digital system design, VLSI, and microprocessor applications.

