

671

Adapting the Tracing Method to Java

TOM M. WARMS
Pennsylvania State University Abington College

KAVON FARVARDIN

Pennsylvania State University

TOM M. WARMS

Tom M. Warms is a faculty member in the department of computer science and engineering at
Penn State Abington. He received S.B. and M.S. degrees, both in mathematics, from MIT and NYU,
respectively. He received his Ph.D. in formal linguistics and mathematical logic from the University
of Pennsylvania in 1988. He has published papers in pattern recognition, psycholinguistics and
computer science pedagogy. Dr. Warms may be reached at t1w@psu.edu.

KAVON FARVARDIN

Kavon Farvardin is an undergraduate student majoring in computer science at the Pennsylvania
State University. He may be reached at kff5027@psu.edu

mailto:t1w@psu.edu
mailto:kff5027@psu.edu

672

Adapting the Tracing Method to Java
Tom M. Warms

Pennsylvania State University Abington College
Kavon Farvardin

Pennsylvania State University
Abstract - The tracing method and its software implementation RandomLinearizer are proving to
be effective tools in the teaching of C++. This paper discusses the issues involved in adapting the
method to the Java programming language, and presents several typical Java programs that are
presented to beginning students, and the corresponding traces. It then speculates on the
usefulness of tracing to students of Java.
Introduction
The tracing method provides a set of notations in which to represent the execution of programs in
a limited subset of a programming language. It is a method1 by which an instructor can
demonstrate some of the features and algorithms of a programming language, and students can
demonstrate their understanding. It is a useful tool for beginning students because it helps them
learn elementary techniques such as decision structures and looping; it is also useful to more
advanced students because of its capability for helping students learn more advanced techniques
such as pointers and linked lists. It supplements the kind of verbal and pictorial descriptions of the
execution of elementary programs that one finds in textbooks.
The method has been shown2 to clarify the execution of some programs and explain why certain
techniques that may seem to work will not. A software program named RandomLinearizer3 was
created in support of the tracing method; an experiment showed4 that students enjoyed using the
method and software and found it useful. The method and software were written for C++; the
current paper is a preliminary evaluation of the method's suitability for use with the Java language;
it speculates on the utility of tracing to students who are learning Java as their first programming
language, and to students for whom the first language was C++ and who learn Java in subsequent
courses.
Tracing
In the method, names of identifiers are placed on the left side of a vertical line and the identifiers'
values on the right. The name of the function being executed appears above the vertical line. Boxes
indicate output, underlines indicate input, and  represents the RETURN character. Values
returned by functions are enclosed in circles. Figure 1 shows a simple C++ program and its trace,
assuming an input value of 23. When tracing a statement in a program, the student has available
the result of tracing the previous statements in the program.

673

Figure 1

Elements of the trace of a program—the underlined material, material in boxes, and return
characters—can be used to predict the contents of the console screen. The trace in Figure 1
suggests the following contents:
 Enter an integer ->23

 The number = 23

 Twice the number = 46

A C++ program that uses a user-defined function to do the same calculation, and its trace, are
shown in Figure 2. When control is transferred to the function calculateAnswer, the trace moves to
the right, and the values of the formal parameters are indicated. Then the trace shows the
execution of statements of the function block, the value returned by the function is encircled. The
trace then moves back to the left.

674

Figure 2

675

Java is similar in many ways to C++. An excellent exposition of similarities and differences is
provided by Eckels5. Elementary C++ programs such as those of Figures 1 and 2 carry over without
major change. In Java, however, a class must be created even to accomplish simple tasks. Figure 3
contains a Java program that is equivalent to the C++ program of Figure 2, along with its trace.
The header of the main program in Figure 3
 public static void main(String [] args){

is traced by
 main

 args null

The identifier args is a String array, initially null. Although console output is convenient to use in
Java, as in the statement in Figure 3
 System.out.println("The number = " + number);

console input is not. System.in on its own only allows for fetching bytes from the standard input;
Scanner provides a wrapper for this object to make it usable by beginners. The statement
 Scanner console = new Scanner(System.in);

contains a call to a constructor of the Scanner class, and thus creates an object of this class.
Memory is allocated by new, and its machine address is returned as a reference and assigned to
console. A complete trace sequence would indicate that System.in is the parameter and would
provide details of the constructor's execution, but perhaps be confusing in its complexity. The
solution arrived at is to abbreviate the sequence to
 console null

 console ADDR0

to indicate that console's initial value is null, and then it is assigned the object reference. The
student can consider this to be an idiomatic trace sequence. The statement
 String inString = console.next();

assigns to inString the next string that is entered at the console. It is then converted to int and the
result is assigned to number:
 number = Integer.parseInt(inString);

The sequence

traces this segment. The quote marks indicate that the value of inString is indeed a String value,
while the underline indicates that 23 is visible on the console.

676

Figure 3

Java's graphic user interface provides methods of the JOptionPane class to prompt for input and
report output--for example, JOptionPane.showInputDialog provides a value for inString in the same
way as a call to a Scanner method, and JoptionPane.showMessageDialog prints output.
Pass by value and pass by reference

In C++, a user-defined function that returns more than one value does so by reference. That is, the
function's parameters, called reference parameters, are placeholders for the actual parameters in

677

the calling program. The program in Figure 4a uses reference parameters in a function that
calculates the sum and product of two input values. In the trace of Figure 4b, the arrows between
actual parameter sum and formal parameter total, and between actual parameter product and
formal parameter indicate the connection.

Figure 4a

678

Figure 4b

Returning values from a function in Java to a calling program can be accomplished using accessor
methods of a class. For example, the Java program shown in Figure 5 prompts the user for the
length and width of a rectangle, and calculates and prints the area and perimeter.

The student must learn to frame problems in terms of classes in order to succeed in Java. Although
C++ programs may also be constructed using multiple files, it is hardly possible to write a
substantial program in Java without multiple files, as each public class must be contained in a
separate file. Any tracing implementation for Java should emphasize the shifting from one file to
another during execution of a multi-file program.

679

680

Figure 5

The importance of object references in Java makes it worth examining whether or not a Java
program using an array of objects can be traced without adding complexity. The program of Figure
6 creates an array of elements of the Student class, and prompts for a name and grade for each of
the elements. It calculates and prints an average and then a list of those students whose grades are
above that average.
The array of Students is declared in the statement
 Student [] sts = new Student[numStudents];

The trace of this statement shows that
sts is initially null:

681

 sts null

space is allocated for an array of 3 elements of type Student, or more accurately, an array of 3
object references, whose initial values are listed sequentially in the trace:
 ADDR1 null null null

and finally a reference to that array is assigned to sts:
 sts ADDR1

Each time the statement
 sts[i] = new Student();
is executed, a new Student object is created and a reference to it is assigned to one of the elements
of the array sts. Figure 6 shows that after creation of the first Student object, the elements of the
array referenced by sts are ADDR2, null, and null.

Figure 6

It is interesting that Figure 6 is representative of the kind of figure often found in elementary Java
texts. The student can follow the trace of Figure 7 and draw a similar figure.

682

683

684

685

Figure 7

Exceptions and interrupts

The graphical user interface of Java requires that the student be able to handle exceptions and
interrupts effectively. When a Java program reads input that is formatted incorrectly, for example,
it must handle the resulting exception in a way that allows the user to re-enter the input. The
program of Figure 8a prompts the user for two integers and adds them; in Figure 8b, the first input
value, 251, is entered correctly, but the user first mistakenly enters *37 for the second input value
and then enters 37 when the program detects the error.

686

Figure 8a

687

688

Figure 8b

Copying objects
A topic that is of particular interest in Java programming is the various ways of copying objects. At
issue is the question of whether the tracing method can help the student understand the
differences among the various techniques.
The program of Figure 9 illustrates some of the methods. In the sequence
 Triangle t1 = new Triangle(10.0, 15.0, 9.0);

 Triangle t2 = t1;

a triangle object, t1, is created and a new object, t2, is set to reference it. In the further sequence
 Triangle t3 = new Triangle();

 t3.copyTriangle(t1);

t3 is created with the default sides of 0.0, 0.0, and 0.0, and then by means of the Triangle method
copyTriangle takes on the values of the sides of t1. Finally, t4 is created, and the function
copyTriangle (not the method) is invoked with actual parameters t4 and t1, ostensibly to copy t1
into t4. However, the formal parameters of copyTriangle are copies of the actual parameters and
there is no effect on t4.

689

690

691

Figure 9

Conclusions
Tracing accounts for many of the features of Java that would be taught to beginning programmers
or to students who have had a background in C++. The analysis has touched only lightly on the
graphical user interface that is a major part of Java courses; a more detailed analysis might indicate
that tracing operations in that environment would resemble those of the exception handling
example in Figure 8.
Tracing focuses the student's attention on one step of a program at a time. It can be useful to an
instructor who is explaining the execution of some programs, and it can be useful to students who
are following the execution of programs that are known to execute correctly. It is not clear
whether or how tracing helps students write their own programs. In fact, studies are contradictory
whether it is even necessary that students be able to trace programs others have written in order
to write their own programs (see Warms3 for references).
While understanding the techniques covered by the tracing examples might be a necessary step
toward having a good knowledge of a language, it is certainly not a sufficient condition. The hope
is that using tracing helps a student master basic material and become better able to learn
additional material. It may assist students in learning how to understand the use of classes and in
dealing with many other features of that language. It is likely that programs that incorporate these
features may be traced using the same principles that were used in tracing C++ programs, without
introducing complex new notations.

Bibliography
[1] T. M. Warms and R. Drobish, "Tracing the execution of computer programs – report on a

classroom method," in Proceedings of the Spring 2007, ASEE Mid-Atlantic Section Conference,

Newark, NJ. (CD-ROM proceedings).

[2] T. M. Warms, "The Semantics of Tracing: Transitivity of Reference," Proceedings of FECS'07 —

The 2007 International Conference on Frontiers in Education: Computer Science and Computer

Engineering, Las Vegas, June 2007, pp. 302 – 307

692

[3] T. M. Warms, "Using the tracing method and RandomLinearizer for Teaching C++," in

Proceedings of the FECS'10 — The 2010 International Conference on Frontiers in Education:

Computer Science and Computer Engineering, Las Vegas, NV. pp. 16-22.

[4] T. M. Warms, Qiang Duan, and Kavon Farvardin, "Can Using a Formal System For

Tracing Computer Programs Help Students Learn Introductory Computer Science?”

[5] B. Eckels, “Thinking in Java”. Prentice Hall, Englewood Cliffs, NJ, fourth ed. (2006).

