
Advanced Programming in the Mechanical Engineering Curriculum

B.D. Coller
Department of Mechanical Engineering

Northern Illinois University
DeKalb, Illinois 60115

1. Introduction

We are in the process of developing an advanced computing and programming track
within the undergraduate mechanical engineering curriculum at Northern Illinois
University (NIU). We are introducing our mechanical engineering students to concepts
such as object oriented programming, data structures, complexity analysis, and elements
of software design that are normally taught to computer scientists. Rather than ship our
engineering students to the computer science department, we provide an authentic
engineering context, designed to engage students, in which to learn the material.

On its surface, the context, looks like a multi-player video game. A screen shot of the
game is shown in Figure 1. Deep inside, however, it is a sophisticated automobile
simulation that the students must write much of themselves over a sequence of several
courses. Here we aim to leverage the tremendous popularity of video games with this
generation of students, and direct their enthusiasm toward educational purposes.

In this paper, we outline the advanced computing track being developed at NIU,
providing an outline of the courses and topics we will teach, and describing the hardware
and software infrastructure necessary to support the endeavor. First, however, we discuss
our motivation for the project.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

Figure 1 Snapshots of NIU-TORCS, the primary software package.

P
age 10.136.1

2. Motivation

Formal instruction that our undergraduateengineeringstudentsreceive in computer
programmingis similar to thatexperiencedby undergraduatesthroughoutthecountry; it
has changedlittle over the past severaldecades. Whether in Fortran, Pascal,Java,
Matlab,or C/C++,studentslearnin their introductoryprogrammingcoursethe basicsof
how to piece togetherflow control structures,and input/outputcapabilities. Students
becomeproficientat writing computerprogramsthattendto besmall in scaleandnarrow
in scope. While this is a fine placeto start,we aredismayedby the fact that this is also
the place where most engineering curricula stop teaching their students programming.

Engineeringstudentstypically do get at leastone more opportunityto write computer
programs:in their numericalmethodscourse. However,if the top selling text booksare
anyindicationof whathappensin thesecourses,very little energyor effort is devotedto
programdesign,programmingstyle/technique,computationalefficiency or scalability.
Top selling numerical methods textbooks are catalogs of techniques presented
generically(independentof any computationalplatform), followed by a bare-minimum
seriesof commandsor computer code snippetsthat will implement the recipe just
described in a variety of different software packagesor programming languages.
Whether consciously or unconsciously,the text authors and course instructors are
grooming the students to be able to solve the types of problems one finds at the end of the
chapter: small in scope, narrow in focus, again.

The approachmight be well suited for the 1960's and 1970's,when computing and
programmingbecamea core componentof the undergraduateengineeringcurriculum,
and when computingtechnologyseverelylimited the size and scopeof eventhe most
ambitiouscomputationalprojects. The computationallandscapewe seebeforeus now,
though,is dramaticallydifferent. The computationaltools that engineersuseon a daily
basesare typically parts huge softwarepackageswritten by armies of programmers,
computerscientists,artists,and engineers. Unfortunately,the computing/programming
skills that we teachour engineeringstudentsdo not scalewell. Programming“in-the-
large” requiresdifferentsetsof skills thanthosethey learnin their introductorycourses.
The dangeris that asthe gapbetweenthe state-of-the-artcomputationaltechnologyand
whatengineersknow growswider,engineerswill play a smallerrole in thedevelopment
of software that is such a critical component of modern engineering practice.

In developing our computational track for undergraduatemechanical engineering
studentsat NIU, we are NOT attemptingto train our nascentengineersas computer
scients. Instead,our goal is to makethembetterengineers.Our coverageof computing
andprogrammingtopics is not as rigorousasonewould normally find in the computer
sciencecurriculum. Insteadwe hopethat an introduction to the topics will opennew
vistas on how to solve engineering problems – both analysis and design.

Finally, oneof themostimportantfeaturesof thecurriculumtrack,we believe,is thatthe
bulk of it takesplacewithin mechanicalengineeringitself. Our studentspursuetheir

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

P
age 10.136.2

mechanical engineering degrees because they are interested in things mechanical: cars,
robots, spacecraft, airplanes, cranes, trains, et cetera. Nonetheless, our students who take
additional courses, on their own initiative, from the Computer Science typically learn by
working on applications in data bases, information management, accounting, and other
business related areas. Students must make the appropriate connections back to
engineering themselves, a difficult task for the novice. By grounding the computational
topics in mechanical engineering we are better able to motivate our students and better
able to demonstrate the power in these tools. The problem-based learning paradigm has
a proven track record [3,4,5,9].

3. The Advanced Computing Track

As indicated in the introduction, there is a single project that serves as an anchor for the
advanced computing track. It is a vehicle simulation that looks and acts like a modern
video game. At it its heart, though, is a sophisticated simulation of a complex
engineering system. The project defines the skills we want our students to learn, and it
provides the context that gives extra meaning to the learning experience.

The advanced computing curriculum track at NIU
consists of five courses as illistrated to the right, for
a total of 15 credit hours. The first is a standard
introduction to programming course offered by the
Computer Science Department that all engineering
students must take. Beyond that is a series of
mechanical engineering courses, each of which takes
on a self-contained portion of the video
game/simulation master project.

3.1 CSCI 240. Introduction to Computer Programming in C++ (4 credits)

As just stated, this is the standard introductory computer programming course that all
engineering students are required to take. Although the title lists C++ as the
programming language, the first 14 out of 15 weeks focus on the traditional (C-like)
procedural programming aspects of the language. In the final week, students begin
learning what a class is.

3.2 MEE 381. Numerical Methods and Programming in Engineering Design (3 credits)

For students participating in the advanced computing track, this course replaces, MEE
380, the traditional numerical methods course. It is being offered for the first time in
Spring of 2005. The course is organized around a single large project: write a computer
code for the car to drive itself around the track as fast as possible. The code that the
students write will be integrated into the larger game/simulation software. At the end of
the semester, all students compete in a friendly head to head race.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

MEE 481/482

MEE 484

MEE 381

CSCI 240

P
age 10.136.3

Through the application programming interface (API), students have direct access to
relatively few dynamic variables and parameters of the car. These include distance of the
car from the center of the track, distance from the start line, and orientation of the car
relative to the track among others. From these, their programs must calculate the optimal
times to shift gears, how fast one may drive around a given corner and still maintain
control, when to accelerate when coming out of a turn, when to begin braking prior to
entering a turn, and much more. These tasks require students to perform curve fitting,
root finding, solutions of simultaneous algebraic equations, numerical differentiation,
numerical integration.

Much more than a data
extrapolation exercise, the project
offers ample room for creativity
and inventiveness. Students must
devise strategies for passing their
opponents' cars, and for making it
more difficult for their opponents
to pass them. They must choose a
path on the track that best suits the
characteristics of their car

In addition to the numerical
methods, the project provides a
natural context for learning
object-based programming in
C++. Students create classes for
the driver of their own car, classes for their opponents' cars, classes for speedometers,
accelerometers, anti-lock braking system, traction control system, and track. Through
direct experience, they appreciate the benefits of encapsulation. Additionally, they
employ other features of the C++ language beneficial to scientific computing such as
inline functions and function overloading. Furthermore students are introduced to
profiling, complexity analysis, and using XML for specifying simulation parameters.

To make room for the programming topics, we do not cover numerical methods in MEE
381 to the same breadth as is done in a more traditional course. For example, in
discussing solutions to linear algebraic equations, we do not cover the broad spectrum of
algorithms for structured and unstructured matrices. Instead, we discuss two that work
for our problems, one which is significantly faster than the other. We discuss their
features, and then briefly mention that there are other more appropriate recipes for
different situations.

3.3 MEE 484. Advanced Computing in Mechanical Engineering (3 credits)

The next course in the sequence, MEE 484, is a technical elective to be offered for the
first time in Fall 2005. In it, students form teams to write the bulk of the code for

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

Figure 2

P
age 10.136.4

simulating the car itself. The car is an ideal setting to learn object oriented programming.
It is straightforward to define the software objects: they correspond to the physical
components of the car: its engine, transmission, differential, tires, steer mechanism,
suspension, and more. Students learn about inheritance and polymorphism in C++. They
are introduced to elementary data structures: linked lists, trees. We discover the Standard
Template Library. To facilitate their team software development, the students use
version control, and learn elements of the Unified Modeling Language (UML).

Meanwhile, all but the greasiest of
gear-heads learn a significant
amount about the engineering of
automotive systems as well. All
teams of students will be given
the same task that they must
complete over the duration of the
semester: to develop a
computational model for the
radio-controlled car shown in
Figure 3. The radio-controlled car
shown in the picture is a toy, but it
is a elaborate toy. It has a full
independent wishbone suspension
for which it is possible to change
linkage geometry, spring
stiffnesses, and damping characteristics. Mass properties are easily adjusted. By
choosing the radio-controlled car as our target system to model, we can perform one of
the most important steps in computational modeling: validation. Here, we are mostly
concerned that the simulation correctly predicts the qualitative effects: for example, how
mass distribution affects over-steer or under-steer of the vehicle. Both the physical
system and the simulation should show the same behavior.

3.4 MEE 481/482: Senior Design (5 credits total)

The final step in the advanced computing curriculum track is the integration of the
vehicle simulation project into the capstone senior design project. At NIU, this is a two
semester sequence of courses. The first, MEE 481, is a design seminar in which students
form teams, and formulate a design project. Typically students participating in the
curriculum track will take MEE 481 and MEE 484 concurrently, so they learn about the
design issues as they are learning about the car and capabilities and limitations of the
computational model of the car.

In the second semester, MEE 482, the students design. They perform a systems-level
design of the car with the goal of creating the fastest, most agile car possible within the
constraints imposed upon them. There are dozens of design parameters that the students
must choose, including car geometry (wheel base, track, center of mass location),

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

Figure 3 Radio controlled car used for validation.

P
age 10.136.5

suspension geometry, suspension stiffnesses, damping, steering geometry, brake disk and
caliper sizes, differential characteristics, and transmission gear ratios among others.
Students must choose among a selection of engines and tires. Students will have the
freedom to explore more advanced strategies which distribute braking/tractive effort over
the four wheels independently, depending on the dynamic state of the car. In the race at
the end of the final semester, students drive their own cars for at least one of the events.
Therefore, they need to design a graphical user interface which brings all the necessary
information to the driver without distracting his/her attention from driving.

Because of the expense of building prototypes, companies would like to shift as much of
the engineering design process to the computational domain as possible. While it is
commonplace to design an individual part with finite element software, complex
interconnected systems such as the automobile are orders of magnitude more difficult.
After constructing a reasonable computational model of the physical system, one must
properly interpret and make physical sense of the torrent of numbers that come gushing
out of the simulations. One must be able to use the data to then navigate large design
spaces, and finally arrive at a good result. We give our senior-level engineering students
precisely this type of design experience, an experience that is normally very difficult to
incorporate in the curriculum.

4. Infrastructure for the Curriculum Track

Below, we list the software and and computer hardware that one needs to implement the
advanced computing track. As you shall see, it requires a minimal investment since we
use common commodity off-the-shelf equipment, and most of our software is free.

4.1 Primary Software

The primary software package we use for the course sequence is NIU-Torcs. It is based
on a program called TORCS (The Open Racing Cars Simulator, www.torcs.org), written
by Eric Espie, Christophe Guionneau, Bernhard Wymann, Christos Dimitrakakis, and
others. The original TORCS program was designed as a video game. It is available
under the GNU General Public License (GPL), which means that its source code is
available with the distribution. We borrow heavily from it, particularly the 3-D graphics
components. Other portions, including the race engine components, the simulation
module, and interfaces have been extensively modified or rewritten to suit our
educational purposes.

TORCS is available free of charge. Likewise, our derived program NIU-TORCS will be
made available free of charge, along with the source code, once we have had ample
opportunity to work the majority bugs out.

4.2 Computing Platform

TORCS runs on PCs with the Linux operating system and on Microsoft Windows. It is

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

P
age 10.136.6

developed primarily on the Linux platform; Windows compatibility (tied to the Visual
C++ compiler) gets added later. We follow the same pattern in our development of NIU-
TORCS. As we write this, NIU-TORCS only runs in Linux. If funding persists, or if
someone volunteers to do much of the work, we would we would consider porting the
project to Windows sooner rather than later.

Nonetheless, we would argue that Linux is the ideal computing platform for the
educational project. We'll spare the reader a diatribe on how Linux is more stable, more
secure, and more efficient than Windows. We will simply mention that the operating
system is free, and all the programming/software development tools we use in the Linux
environment are of extremely high quality and free as well.

The only cost is that of the computers themselves. We are using common Pentium 4, 3.2
GHz computers with 512 Mb of RAM, each of which cost less than $900 (without
monitor) in December of 2004. However, our computers are much more powerful than
necessary. As a general rule of thumb, if the computer has sufficient power to run
Windows XP, it has ample power to run Linux and NIU-TORCS as well. The only
caveat is that the computer needs a 3D graphics card with OpenGL support. One can
purchase a sufficient graphics card for less than $70.

4.3 Ancillary Software and Equipment

In order for students to evaluate the performance of their code, they need a means of
plotting data that their simulations generate. We use Matlab; we already have a license
for the student computer labs. A free alternative would be to use Octave and/or Gnuplot.

In race events that students (rather than computer algorithms) drive the virtual cars, we
need appropriate input devices. It is possible to drive a car using the keyboard or mouse.
However, these are clumsy. Instead, we use steering wheels with pedals, that one can
purchase for roughly $40 almost anywhere PC video games are sold. The steering
wheels plug into the computer's USB port. In the Fedora Core 2 Linux distribution, there
is built-in support for steering wheels and other types of joysticks that are human

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

Figure 4 Matlab plotting tool for analyzing performance.

P
age 10.136.7

interface device (hid) compliant. There is no support for force feedback steering wheels
yet. TORCS provides a built in tool for calibrating joysticks/steering wheels.

5. Closing

In a recent article on the role of computing in education, G.V. Wilson writes [8]:

Good computing practice is just as important to physical scientists and
engineers today as good laboratory practice and sound mathematics. My
experience has been that it takes a few months to teach a physicist,
geologist, or biochemist enough to make a big difference in her
productivity. Sadly, physical scientists who want to learn such things
usually have to teach themselves.

The project described here provides an authentic context in which our undergraduate
mechanical engineers gain such computing expertise and more. Programming, design,
simulation, and analysis are all intertwined in a project-based setting designed to be
engaging for engineering students. We have patterned our approach after what cognitive
psychologists call a macro-context [7], connecting lessons and assignments to a
meaningful overall goal that gives learning purpose. Research has shown that such
contextualized learning is significantly more effective than traditional classroom learning
[1,2,6].

In addition to enriching the educational experiences of students at NIU, we wish to make
a broader impact. We plan to make the core software and course materials available to
educators everywhere. These items will be made available after we have had the chance
to go through the course cycle at least once and make refinements.

In addition, we hope to integrate the computing and simulation framework into other
parts of the mechanical engineering curriculum. The most natural places to focus on are
the undergraduate and graduate control classes we teach.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

P
age 10.136.8

Acknowledgment

Theauthorgratefullyacknowledgessupportfrom theNationalScienceFoundationunder
grant0354557. Any opinions,findings,andconclusionsarethoseof the authoranddo
not necessarily reflect those of the National Science Foundation.

References

[1] J. Bransford,T. Hasselbring,B. Barron, S. Kulewicz, J. Littlefield, and L. Goin. Usesof macro-
contextsto facilitate mathematicalthinking. In The teaching and Assessing of Mathematical Problem
Solving, pages 125—147. Lawrence Erlbaum Associates, 1988.

[2] J.Bransford,N. Vye, C. Kinzer,andV. Risko. Teachingthinking andcontentknowledge:Towardan
integratedapproach.In B. JonesandL. Idol, editors,Dimensions of thinking and cognitive instruction,
pages 381—413. Lawrence Erbaum Associates, 1990.

[3] D. Johnson,R. Johnson,and K. Smith. Active Learning: Cooperation in the College Classroom.
Interactive Book Company.

[4] S.D. Sheppardand R. Jenison. Freshmenengineeringdesign experiences:an organizational
framework. International Journal of Engineering Education, 13, 1997.

[5] S.D. Sheppard,R. Jenison,A. Agogino,M. Brereton,L. Bucciarelli,J. Dally, J. Demel,C. Dym, D.
Evans,R. Faste,M. Henderson,P.Minderman,J. Mitchell, A. Oladipupo,M. Piket-May,R. Quinn,T.
Regan,andJ. Wujek. Examplesof freshmandesigneducation. International Journal of Engineering
Education, 13, 1997.

[6] R. Sherwood,C. Kinzer, T. Hasselbring,and J. Bransford. Macro-contextsfor learning: Initial
findings and issues. Journal of Applied Cognition, 1:93—108, 1987.

[7] J. Van Haneghan,L. Barron,M. Young, S. Williams, N. Vye, andJ. Bransford. The JasperSeries:
An experimentwith newwaysto enhancemathematicalthinking. In Enhancing Thinking Skills in the
Sciences and Mathematics, pages 15—38. Lawrence Erlbaum Associates, 1992.

[8] G.V. Wilson. Teachinghorsesto wistle: An apostate'sview of parallel computing and the
undergraduate computational science curriculum. In Forum on Parallel Computing Curricula, 1995.

[9] D. Woods. Problem-BasedLearning: How to Gain the Most from PBL. McMasterUniversity.
Order from (905) 525-9140.

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright 2005, American Society for Engineering Education

P
age 10.136.9

