to the scripts of Whitenesswithin engineering environments. The CAE approach adopts a collaborative stance towardcritical self-reflection and can manifest in diverse forms, such as gathering personal memory data(e.g., through journaling), conducting mutual interviews, fostering deliberate dialogue, orobserving one another (e.g., in educational settings). It's important to note that CAE doesn'tunfold in a linear fashion; rather, it necessitates an ongoing dialogue involving conversations,negotiations, or even disagreements among team members over an extended period, spanningmonths if not years. Leveraging our distinct positionalities and years of collective experience,our discussions were fruitful, allowing us to scrutinize how Whiteness
supporting STEM faculty on STEM education research projects.Dr. Sharon Miller, Purdue University Sharon Miller, PhD, is an Associate Professor of Practice in the Weldon School of Biomedical Engineering at Purdue University. She received a BS degree in Materials Science and Engineering from Purdue University and MS and PhD degrees in Biomedical Engineering from the University of Michigan. Her educational efforts focus on biomedical engineering discipline-based educational research, including design self-efficacy, project-based learning, critical reflection in ethics, and high-impact practices. ©American Society for Engineering Education, 2024Work in Progress: A Multi-level Undergraduate Curricular
a humanistic approach to educating students. This humanistic approachacknowledges the importance of the affective side of teaching and learning. Engineering, whichshares many of the highly technical, decision-making aspects of nursing, could benefit from thisapproach for engineering education.Our ProgramOur team developed a Community of Practice (CoP) informed by a humanistic-educative caringframework, grounded in Caring Science, where the curriculum is about the process and intent tolearn coming from the interactions and transactions between faculty and learners. Thisframework embraces openness, human discovery, and deep reflection [4]. It also includesawareness of how learning works and co-creating meaningful learning experiences that
increase in heat-related death, damage to land, plants, andanimals, a rise in life-threatening infectious diseases “such as dengue, malaria, vibriosis, andWest Nile virus” [1], peril to water security, sanitation, and food production, harm to livelihoodsand economic loss. Preparing the next generation of Environmental Professionals to tacklethese and additional challenges is daunting. This paper shares some preliminary reflections onsix short workshops to humanize care, commitment, skill, and responsibility for the heavy liftinginvolved in facing the effects of climate change. The workshops introduce graduate students tothe concept and practice of transdisciplinarity, weaving together topics from interculturalcompetence, community-engaged practice
increase the hands-on time with the workshop activities and tools. 7. Creating new Seminars on “Introduction to Active Learning” and “Creating a Civil Classroom” (i.e., to integrate DEI in the ETW curriculum) to make both of these inferred topics more transparent during the workshop. 8. Creating new Reflection-based activities in order to encourage participants to envision how their learnings could be adapted and applied in their classroom in the near-term future.CFD established an implementation plan whereby CFD committee members would proceed withthe creation of new “Base Slides” for the forthcoming Summer 2023 ETW. In anticipation ofthese workshop changes, CFD organized in December 2022 a “Town Hall Meeting
conducted in2023 [8] offers a granular perspective on the implementation of these platforms in a traditionally non-digital sector.This work is seminal in discussing the operational efficiencies and innovative prospects afforded by low-codeplatforms, as well as addressing the potential drawbacks that may arise from an over-dependence on said platforms. At the same time, another work [9] that takes a multidisciplinary approach provides a retrospective view of theevolution of low-code platforms, elucidating their strategic integration with ERP systems. It reflects on thehistorical progression from model-driven development to the current state where low-code platforms are essentialin enhancing business processes, fostering agility, and enabling
six individual skillmodules covering skills such as dependability, responsibility, independence, persistence,integrity, and ethics. The main goal is to create multiple opportunities to teach and reinforcesoft skills within the regular technical curriculum in the high schools. This paper discussesthe integration of the soft skills modules into the technical curriculum developed viaexamples, and outlines its potential uses in this engineering department’s curriculumincluding its manufacturing engineering program. The paper concludes with a discussion ofthe implementation of this project and provides some preliminary feedback from theparticipating high schools and reflections of the authors. It also includes future workopportunities such as
impacted theircollaboration skills, and whether their involvement affected their interest in participating inengineering outreach activities. To determine how their perceived impact of the project on theirprofessional preparation has changed from when they took the class to now when they areworking professionals, we compare their recent responses to the responses in reflections theycompleted while taking the course. The information gathered in the survey also provides a meansto evaluate the effectiveness of the project and identify areas for improvement, which hasimplications for how similar projects might be designed and enacted in the future. Introduction The Accrediting Board for Engineering and Technology, commonly known as ABET
different groups (such as race or gender) and the resulting psychological re-sponses. ICT identifies key conditions that enable positive contact between members of differentraces and genders in a group. For this exploratory analysis, we included all participants in the larger study who identifiedas African American and female; all were full-time undergraduate students enrolled in an engi-neering course with a team project. The nine participants represent a range of years in school andengineering majors. Data collection followed a three-interview sequence and included questionsabout participants’ background, their team project, and their reflections on the teaming experi-ence, respectively. In this paper, we present our initial exploration of
, constructing one’s sense of self throughconstant development and self-reflection [5]. It includes the traits and characteristics, socialrelations, roles, and social group memberships that define who a person is within a particularsetting. Engineering identity, especially for students, reflects their acceptance of and recognitionas part of the engineering field, influencing their decision to enter and persist in the field [6].When students possess a strong engineering identity, they tend to perceive themselves as futureengineers, fostering their commitment to their pursuit of an engineering career [7]. This identitycontinues to impact their learning, serving as a guiding force throughout their studies [8]. Morelock synthesized the disperse
maps and reflections will be used to assess student’sgrowth in EM connectedness. A description of each institution’s partnership development andimplementation is presented in this paper. We anticipate key results will include: 1) students’positive perception through engaged learning, 2) student growth in EM connectedness, 3)students’ increased appreciation of multiculturalism, 4) all modalities support growth in student’sEM and multiculturalism competencies, and 5) in-person international travel componentsdemonstrate a larger increase in multiculturalism competencies due to cultural immersion. Theteam is finalizing plans for these experiences in fall 2023 and will implement the experiencesand collect data in spring 2024
outcomes. Scholarssuch as Felder and Brent have emphasized the importance of disciplined inquiry into teachingmethodologies to improve the learning experiences of engineering students especially related toactive learning [6], [7]. SoTL allows educators to systematically investigate effectiveinstructional strategies and assess their impact on student learning. Previous research hasunderscored the transformative potential of SoTL emphasizing its role in shaping curriculardesign and facilitating evidence-based teaching approaches [8]. Reflective practice and practicedissemination, two key components of SoTL, holds the potential to accelerate growth not only atthe micro (classroom) level but also at the meso (institutional) and macro (national
further detail below. The data exploredwithin this case study included observations of the classroom teacher while teaching the e4usacurriculum, instructional materials, and reflections following instruction. Engaging in this case studyenriches the understanding of engineering pedagogy and supports the practices of other educatorsaiming to remove barriers and support SWDs in engineering education.Teacher Selection and School Site and The case study took place at a school that provides extensive educational and support servicesto children and adolescents who have autism, trauma disorder, and multiple disabilities. It is also one ofthe e4usa partner high schools that offer a pre-college engineering program to SWDs. Mr. Sagunoversees the
are the teachers’ and their students’ perspectives on the efficacy of the Research–Practice Partnership (RPPs) professional development model for computer scienceeducation in Indigenous-serving schools?1.2 Literature reviewResearch–practice partnerships or RPPs offer a useful strategy for education and closing the gapbetween research and practice (Datnow et al., 2023). Research partnership is a non-traditionalapproach to help joint reflection and reciprocal learning between professionals (Eisen, 2001).Partnership with teachers for professional development has been found beneficial as it can allowcollaborative work in the classroom to be relevant to practice (Jung & Brady, 2016). This couldbe particularly useful for teaching in rural areas
promoting pedagogicalchange and improving student writing. Here, we report on faculty participation and presence orabsence of pedagogical changes as basic metrics of program effectiveness. We also reflect onwhat types of changes are being made and which writing studies concepts have appeared to bemore difficult to take up and/or incorporate into STEM classes. In keeping with the iterative andintertwined TDAR approach, these results continually feed into our on-going interventions.Data collection and analysisCollected data include video- and audio-recording of mentoring sessions, course materials overthe course of mentoring, texts from workshops (e.g., field notes of discussions, free writingexercises, chalkboard writing), observations of classes
understanding of power, privilege, andoppression, and equip them with the tools to employ their knowledge as engineers throughdiscussions of inclusive design. Co-created and co-facilitated by faculty, teaching assistants, anddiversity, equity, and inclusion experts at the institution, the workshops feature short lectures bythe facilitators, individual reflection activities, and small group discussions, culminating in acommunity-wide discussion on lessons learned and actionable items to build an inclusivecommunity within our program. We seek to build our teaching assistants’ sense of agency in theclassroom by cultivating a positive self-concept, developing their understanding of sociopoliticalenvironments, and providing resources for action.To
be done through incorporating collaborative autoethnographic and Indigenousresearch methods to share the story of the program through the experiences of all those involved. Thesemethods position the participants as both coauthors and coresearchers in this work as we co-create thisnew program and new knowledge together. Participants will be asked to regularly reflect on theirexperiences within the program, their growth, and any conflicts or feelings that arise. These reflectionswill then be analyzed by the coauthors and coresearchers both for emerging themes and narrativestructures to inform the story-building process. Stories will be created for both the individual participantsand the program. One goal of this work is to develop the current
between steps,essentially learning in “leaps.” Comics in relation are inherently tailored to sequential learners aseach panel within a comic follows a very specific order for the reader to follow along. Whilst it ispossible to grasp the big picture of a comic, much of the understanding and storytelling aspectsare done through the connections between panels.Sensing learners prefer learning facts and concepts as opposed to intuitive learners who preferabstract relationships and concepts. Finally, active learners prefer application of concepts learnedwhereas reflective learners ponder questions surrounding issues at hand. Essentially, activelearners like very hands-on work whilst reflective learners prefer thinking alone about the problemfirst
Boomer is a graduate student completing his master’s degree in aerospace engineering at the University of Michigan. His focus in engineering education research has been towards bridging the gap between the undergraduate engineering curriculum and engineering industry practice.Cindy Wheaton, University of MichiganDr. Aaron W. Johnson, University of Michigan Aaron W. Johnson (he/him) is an Assistant Professor in the Aerospace Engineering Department and a Core Faculty member of the Engineering Education Research Program at the University of Michigan. His lab’s design-based research focuses on how to re-contextualize engineering science engineering courses to better reflect and prepare students for the reality of ill-defined
conclusions or recommendations expressedin this material are those of the authors and do not necessarily reflect the views of the National Science Foundation orother funding sources.clinician with expert knowledge. But, what is the benefit received by the need-knower for sharingtheir expertise? While some students may produce a usable artifact and deliver it to theneed-knower, others may not. In some assistive device design classes, there may be noinstructional requirement for producing a working artifact delivered to the need-knower at the endof term at all – we call this an education-first approach. While some need-knowers may be awareof this potential outcome, others may be disappointed by the lack of follow-through.Unfortunately, in talking with
Paper ID #42409Exploring Variance in Undergraduate Research Participation: A Quantitativeand Qualitative Investigation among Students with Differing Levels of InvolvementDr. Andrew Olewnik, University at Buffalo, The State University of New York Andrew Olewnik is an Assistant Professor in the Department of Engineering Education at the University at Buffalo. His research includes undergraduate engineering education with focus on engineering design, problem-based learning, co-curricular involvement and its impact on professional formation, and the role of reflection practices in supporting engineering undergraduates as they
that these events are deeply embedded in the intersectionalidentities of the authors and these accounts may not necessarily translate to other individualsundergoing similar situations. Also, because these challenges are layered, complex, and situatedin the authors’ intersectional identities, the findings may include multiple systemic barriers thatare intertwined in the interpretation of the findings. The authors opted to maintain the complexityof the narration as it was deemed more authentic to their lived working and personal realities.Further, the multilayered complexity in the narrative demonstrates the levels of cognitive loadand role strain associated with each presented challenge, subsequent reflection/decision, andperceived outcome. The
, the stretching of the hands through awindow on a cold morning is used to gauge the weather condition. African educators who wantto enact CSP should consider observations of their students of paramount importance. Thisemphasis is rooted in cultural (i.e., African) perspectives and aligns with the paradigmaticapproach of CSP, promoting observation as a way of knowing. 11. Reflects on Teaching Practices The ability of teachers to self-reflect on teaching practices is an essential component of the CSPframework [13]. By reflecting on their instructional practices, teachers examine their actionswithin the classroom and the underlying philosophies and beliefs that power their decisions andactions. This critical reflection can then improve
correctly while only two managedto determine the weight of the plate correctly. Several students referred to using tabulated data orsimpler shapes in other courses to find the centroid and this lack of practice with equations beinga barrier to success in solving the problem used in this study which does not use a simple shape;“So you have areas which you can find by, by just like simple shapes. And then those have likeknown centroids. And then you can just do sum of centroid times area divided by sum of area forthis because your thing is modeled by an equation, you can't do that. So my dilemma now isremembering the formula.”(5) Solution Evaluation; the only student to obviously display reflective and evaluative practicewas the individual who
brainstorm and research extensively, allowing for a freeflow of creative ideas without immediate constraints. The Explain phase then guides students tosynthesize and articulate their findings, akin to defining a clear problem statement in design thinking. Theprocess continues with the Elaborate phase, where students develop tangible solutions or prototypes,reflecting the prototyping stage in design thinking. This hands-on approach encourages the practicalapplication of their ideas, emphasizing testing and refinement. Finally, the Evaluate phase mirrors thetesting phase in design thinking, where students assess the effectiveness of their solutions and gatherfeedback. This not only allows for reflection but also encourages iterative improvement, a
the center since its launch and our progress after twoyears of operation with the help of tutors. We also present the formation of a tutor network,which is designed to be diverse in terms of academic background and culture. An evaluation ofthe impact of our approach on makerspace diversity, inclusion, and equity is presented throughthe analysis of statistics and reflections from the tutors involved in the initiative. The studyshows that our proposed tutor network can effectively serve as a role model for fosteringdiversity, equity, and inclusion in academic makerspaces for undergraduate students.BackgroundThe University of Hong Kong's Faculty of Engineering has established the Tam Wing FanInnovation Wing [1], also known as the HKU Inno Wing
engineering reviewed the survey andprovided feedback on survey questions regarding their relevance, wording, and inclusion. Inaddition, we piloted the survey, and over 50 students from the researched university respondedand provided feedback on the pilot version. The final survey was administered in February andMarch 2023. It was distributed to all students at the Faculty of Engineering through theUndergraduate and Graduate Dean's offices, students' affinity groups, the CommunicationOffice, the Faculty social media and newsletter, and informal students' social media channels.For this study, we only worked with independent variables reflecting students’ demographicfactors, examining how these factors could have influenced their decision-making
engineering course, were asked tocomplete two poems throughout the semester-long course. The students were asked to constructpoems around a concept, model, or topic covered in the course: the first poem was focused ondeterministic inventory modeling and the second poem was focused on stochastic inventorymodeling. After each technical poem writing assignment, students were asked to respond toseveral open-ended questions detailing their experience and attitude towards these creativewriting assignments. Data was collected during the semesters Fall 2022 and Spring 2023 and ofthe 84 total students over the two semesters, 64 consented to participate in the study. Theparticipant responses to reflection prompts were analyzed qualitatively using open and
course viaZoom, called “ACTIVA tu Speaking (AtuS).” The USGA students spoke Spanish whileMexicanUG students spoke English. The students jointly chose two projects, performednecessary research, and designed prototypes to meet the design needs of their respectivecommunities. This course was not originally conducted as an engineering educationresearch project; thus, this is a retrospective summary. Using a promotional video thatthe USGA students produced about the course and the course reflection paragraph thateach USGA student wrote, we performed a word frequency analysis. Based on the wordfrequency analysis, we conclude that the students’ identification as engineers increased,students connected their academic engineering to real-world problems
people working at such high levels of Iron Range Engineering gave me the chance to prove what I can do and feel like I am capable of being an engineer (Student 6, para. 2)Student 3Student 3 was a participant who only made connections between four of the framework elements(no mention of Knowledge) and showed limited connections between those that were mentioned.Their co-occurrences happened less frequently than those in Students 6 and 10’s reflections. As areminder from Table 2, student 3 mentioned Skills, Values, and Epistemology in 40% ofparagraphs and Identity in 100%. This correlates with the size of the nodes in Figure 4.Four out of the five paragraphs in Student 3’s