campustransitions. We recruited from dual credit (e.g., “Running Start”) programs, incoming transfer studentsfrom local two-year institutions, and pre-major STEM students. In the course, we includedtransformational experiences and personal artifacts as a way to enhance research identity and buildcommunity. The personal artifacts were used as a tool to allow students to share an aspect of themselveswith the research class.Student worksheets and reflective essays were collected to assess identity related tasks and reflections inthe course. Students completed a survey about the class experience, with 100% of students reportingagreement that the class had a positive sense of community and collaboration.IntroductionThe transition from a two year institution to
Engineering. Her dissertation research broadly focused on global issues related to sustainable waste management and plastic pollution. After earning her PhD 2021 from the University of Georgia, Amy developed skills in qualitative research methods in engineering education at Oregon State University. As part of this training, she used interpretative phenomenological analysis (IPA) to examine engineering faculty well-being and collaborated on the development of a reflective tool for researchers to build skills in semi- and unstructured interviewing. Building on her postdoctoral training, Amy aims to merge her methodological interests to pursue research questions in the nexus of engineering education, sustainable development
a burgeoning recognition of the need for DEI withinengineering [11]-[13]. The current state of DEI in the discipline is one of active evolution andcommitment. Institutions, professional societies, and industry leaders are increasinglyemphasizing the creation of more inclusive environments that attract and support a diverseworkforce. Efforts are being made to dismantle the barriers that have historically led tounderrepresentation in engineering fields. Initiatives ranging from outreach programs aimed atyoung students to institutional reforms in hiring and retention practices reflect this shift towardsa more inclusive engineering community.The relevance of DEI in engineering cannot be overstated, as the field significantly impactsevery aspect
' critical thinking and problem-solving skills.In project-based activities, participants experimented with materials to examine their light-reflective properties. This material testing informed the design of daylighting systems for modelhouses, allowing students to directly apply the EDP. Through this hands-on approach, studentssynthesized their theoretical learning with tangible engineering tasks, and embodied the role ofengineers in solving contemporary challenges.Tools and InstrumentsQuantitative InstrumentsFor the quantitative analysis, we administered structured pre- and post-intervention surveys toevaluate changes in students' self-efficacy, STEM identity, and engineering knowledge. Thesesurveys, which featured a series of items on a 5-point
studies,methodologies, and frameworks for thinking about how to teach engineers about the nature oftheir work1. The American Society for Engineering Education has a separate Engineering EthicsDivision that has also tackled broader topics on how engineers should consider the ethical andsocietal implications of what they do. Our research paper here seeks to build bridges to some ofthat engineering education and ethics research by reflecting on recent efforts that have beenperformed from within a government agency, the National Aeronautics and SpaceAdministration (NASA), to reflect on the implications on the work of engineers. This event wascalled the Artemis and Ethics workshop, and it focused on bringing in social science andhumanities scholars
. The goal of these discussions is togather detailed information about how they use multiple languages and technology in labs, with afocus on how they communicate and understand tasks. Following these discussions, we holdreflection meetings to go over and confirm the details gathered from the interviews. The findingsfrom these interviews will help us think about how to make future classroom experiences bettersuited for graduate student assistants from different language backgrounds. In December 2023,during our reflection meetings, we took a close look at our own experiences. Hector led grouptalks and interviews to study our experiences, especially the cultural parts in our life stories andresearch. We found important topics and patterns. Hector
expectations of any would-be employer across all sectors,including academic employers. While graduate students entered the program with STEMresearch experience, they acknowledge low levels of career knowledge and career readiness.Building a team of supporters is a feature of career design and embedded throughout this project.CAR 551 promotes a design thinking mindset while supporting participants in exploration ofoptions, forming networks according to interests and skills, and constant revision. Yet, careerdesign principles have the potential to disrupt well- established comfort zones in students aboutthe use of STEM skills.Project organizers created an end-of-semester celebration/reflection to normalize career designand encourage participants to
Paper ID #44299Board 32: Designing a Graduate Course in Sustainable Transportation andHuman Rights with a Student-Centered ApproachLeana Santos, University of Connecticut Leana Santos, is a fourth-year Ph.D. Candidate in structural engineering at the University of Connecticut. She is a Harriott and GAANN Fellow. Alongside her current program courses, Leana is pursuing the Graduate Certificate in College Instruction offered by UConn’s Neag School of Education. Her current research is centered on the impact of pyrrhotite oxidation on concrete deterioration, reflecting her dedication to understanding and mitigating
learning, and changes in the module’s design over thethree semesters, with rationales behind those decisions. Prominent among the instructionalstrategies was the use of various formative assessment approaches to adjust instruction whileproviding evidence of student progress in using design practices and engineering concepts in aninformed way. Tasks included: Triad Sorting, proposing and applying Design Rules-of-Thumb,Small Group Discussions, Interviews, using Contrasting Cases and reflecting on design practiceusing an Informed Design Rubric. These approaches were used in a context where human-centered designing and “design with us, not for us” was emphasized. Design thinking was introduced and elaborated upon in a variety of ways
Exams as growth opportunity X critically. When they're getting information Extend examples to new problems X X from the teacher, they don't have to think Having students take roles X critically about it because the teacher said Learning from peers X X it. It must be right, you know. More problems are better X XTo operationalize this resource, Avery More time on topic = more learning X Negotiate confusion Xprovided class time for students “to set up the Reflective thinking of
decision was made by this group that the incorporation ofdialogue was critical to students reflecting on their own identity and learning to communicateacross different identities effectively. Therefore, dialogue experts were hired and help co-facilitatethese courses, which are known as Race, Justice and Dialogue courses (RJDC).The aim of the RJDC is to expand and deepen students’ critical consciousness of power anddifference using an antiracist lens, and to promote student antiracist action in the service of socialjustice. Put differently, this course aims to expand students’ antiracist literacy and advocacy inhopes of making Villanova, and beyond, more inclusive, equitable, and just for all.The College of Engineering decided that this antiracist
, completion,and placement rates [9]. Study PurposeIn response, the Scholarship of Teaching and Learning (SoTL) Accelerator program (a newengineering faculty professional development program) was created, implemented, and assessed;funding was provided by the Kern Family Foundation and Arizona State University Mentorship360 Program. The SoTL Accelerator program had two core parts (Figure 1): (1) New CurriculumDevelopment, Implementation, and Assessment, and (2) Reflection and Dissemination ofFindings. The SoTL Accelerator program was delivered in a virtual, structured, cohort manner topromote accessibility, accountability, and a sense of belonging. The purpose of this paper is toprovide an overview, results, and lessons learned from 30
) recruitment and incentives for engagement in TA training. Bysharing these models, readers will be able to intentionally reflect on their own training programs,consider components of our practices that could be incorporated into their own contexts, andultimately serve future faculty in other institutions.1. Institutional ContextTraining teaching assistants is a relatively new practice in higher education, and the catalyst forprograms differs in the US and UK. In the US, there are no standardized guidelines at the federallevel for teacher preparedness in higher education whereas the training that Imperial CollegeLondon conducts in the UK is largely informed by national government mandate. The DearingReport of 1997 [5] provided a formal blueprint for
within and across school districts. PD sessions includedtime for teachers to develop lesson plans, explore resources, and reflect on their learning.We used a mixed methods research design to investigate the impact of the PD program onteacher self-efficacy and classroom pedagogy with a focus on cultural relevance and engineeringdesign. Quantitative pre/post data was collected using three survey instruments: TeachingEngineering Self-Efficacy Scale (TESS), Culturally Responsive Teaching Self-Efficacy Scale(CRTSE), and Culturally Congruent Instruction Survey (CCIS). Qualitative data includedvideotaped classroom observations, individual teacher interviews after each design task, andteacher focus groups and written reflections during the summer and
, SaP can also support STEM students’ engagement in DEI efforts. For example, in2015, Bunnell et al. [26] developed a course titled “Being Human in STEM (HSTEM)” atAmherst College, which engages students in action research projects on topics related todiversity and inclusion in STEM. In personal reflections, HSTEM course alumni noted that theirparticipation in the course supported them in making sense of their own and other students’experiences of marginalization, combatting feelings of isolation, and feeling empowered aschange agents within the Amherst STEM community [26].3. FrameworksThe design of the JEDI was guided by notions of liberative pedagogy [27]-[28]. From a Freireanperspective, liberative education facilitates conscientização, or
reflected on their engagement in research oracademic activities during the semester, shared plans for the upcoming semester, and reported anysupport needed from the department. Additionally, surveys assessing various factors such asparticipants’ STEM identity, sense of belonging, and intention to complete CS were administeredto gather comprehensive insights into the program’s impact.ResultsThe results indicate that the scholars benefited from continuous support and a diverse range oflearning, teaching, and research opportunities. Activities provided enhanced scholars’ overallcollege experiences, contributing to their pursuit of studying CS. In this section, we demonstratedthe program’s impact using three key criteria: retention rate, survey
duringchange processes, these differences are often implicit and unexamined. Our project willmake these differences a visible component of critical reflection and generative dialogue,in service to both educational research and practice, and aligned with capacity building forcritical awareness and action.As our project is only in its first of five years and focuses on individual capacity building anddepartment culture transformation, we currently have limited qualitative and quantitativeresults to report. Therefore, this paper focuses primarily on our project’s motivation,proposed scope of work, and early research steps. This paper also discusses our model forchange, Critical Collaborative Educational Change, which is an iterative reinforcing
Table 1 (the full codebook can be found in Appendix A). We also generated acount of each code based on the full data set, shown in Figure 2.Table 1: Codes for survey responses with short definitions. The definitions represent the stancetaken by the student in their response. The full codebook including further clarification on thedefinition and representative examples for each code can be found in Appendix A. Code Short Definition (tool) AI is a useful tool for students. (crutch) AI has the potential to replace learning. (tutor) AI can be used to learn a specific concept. (reflect) AI can help or hinder learning depending on who uses it and how. (speed) AI can
received her doctorate in Social and Personality Psychology from the University of Washington, with a minor in quantitative methods and emphases in cognitiveDr. Jennifer A Turns, University of Washington Dr. Jennifer Turns is a full professor in the Human Centered Design & Engineering Department in the College of Engineering at the University of Washington. Engineering education is her primary area of scholarship, and has been throughout her career. In her work, she currently focuses on the role of reflection in engineering student learning and the relationship of research and practice in engineering education. In recent years, she has been the co-director of the Consortium to Promote Reflection in Engineering
porous media and leads the graduate track in Hydrologic, Environmental, and Sustainability Engineering (HESE). ©American Society for Engineering Education, 2024 Building Community for Inclusive Teaching: Can We Bridge the Valley of Neglect?AbstractThis work describes an effort to nudge engineering faculty toward adopting known best practicesfor inclusive teaching through a program called Engineering is Not Neutral: TransformingInstruction via Collaboration and Engagement Faculty (ENNTICE). This monthly facultylearning community (FLC) followed the three-year structure of the Colorado Equity Toolkit:Year 1 (reported in 2022) focused on self-inquiry including reflection
developed programs to help high school students transition into engineering disciplines. Her experience extends to the classroom, where she has served as an Adjunct Faculty member and Technology Education Instructor, mentoring young computer scientists and engineers. These roles have allowed her to directly influence the next generation of engineers, where she emphasized the importance of inclusivity in education. Nicole aspires to influence engineering education policy and establish a consortium that prepares researchers to tackle the challenges of equity in engineering education. Her goal is to help create an academic environment where diversity is not just accepted but celebrated, reflecting the true demographic
aligns with the targeted age range, 11-18, i.e., middle and high school age, of our broadening education intervention. It is highly likely that these students either play or played Minecraft games. They may either be interested in Minecraft or have fond memories of it. Their positive experience with Minecraft could serve as a foundation for developing an interest in computer programming. 2) Minecraft allows us to create a virtual world that reflects reality: the identity of the players and the socio-cultural context. We want these students' identities to be represented to encourage engagement, particularly from underrepresented students. Minecraft allows us to create characters of different races, genders
autoethnography isto challenge the subject-object distinction by putting the researcher's perspective on thephenomenon being researched. The auto-ethnographic framework also allows for analysis of thevaried interactions between factors that have influenced her interest in engineering. Additionally,a qualitative technique with an auto-ethnographic framework allows the researcher to lookdeeply into the participant's experiences, motives, and reflections. Auto-ethnography is a suitableapproach to self-reflect, bringing valuable personal views into her experience. In support of thisapproach, she relates her experience actively engaging in hands-on experiments, problem-solving, and collaborative projects. These experiences contributed significantly to her
conclusions or recommendations expressed in this material are those of the author(s) and donot necessarily reflect the views of the National Science Foundation. 1Fisher identified significant gender differences in major selection for male- and female-identifiedstudents in computing based on individuals’ attention to “computing with a purpose” [9].However, it is important that we recall Slaton’s cautions against the operation of essentialismwithin this approach to diversity and inclusion and not predicate calls for change on a “naturaldifference” in approaches to engineering, rather we call for a change in values for liberation [10].Our department is at the beginning of a multi-year journey of
promote youth’s understanding andengagement in environmental sustainability, social justice, and decision-making in an AI-enabledfuture. However, the traditional approach to defining engineering that has guided engineeringpractices is insufficient because it fails to embrace these realities. Therefore, the need for a newframework that reflects these realities is overwhelming. This paper introduces a new theoreticalframework called socially transformative engineering that not only captures these missingelements but also values and incorporates the diverse perspectives and experiences of students. Inparticular, this framework draws upon the legitimation code theory and justice-centeredpedagogies and builds on three tenets (reasoning fluency
engineering students through community building (Evaluation) AbstractOver the past twelve years, the ESTEEM program, funded by the NSF S-STEM, at University ofCalifornia Santa Barbara (UCSB) has supported 161 low-income undergraduate students inengineering. This paper emphasizes the students’ changing needs and what they foundsupportive over time with a special focus on the shifting needs for community building before,during, and after COVID-19 pandemic remote learning. Without additional support, low-incomeengineering students, who often reflect additional intersecting minoritized identities and are morelikely to be the first in their family to attend college, leave the field at
their needs.BackgroundThere is a long history of engagement of academics with communities [1-4]. Historically someof this work was termed service-learning (SL) where the goal was for students to reapeducational benefits from credit-bearing activities through a process of reflecting on their work,while community partners also benefited from the collaboration. SL work often faced challengeswith equitable benefits and power sharing. SL in engineering is now often being framed underthe larger umbrella of community engagement (CE). CE is a broader idea that encompassescommunity partnerships in co-curricular activities (such as Engineers Without Borders studentchapters). CE work can also be focused on scholarship and research, termed CommunityEngaged
emphasized in the traditionalcurriculum. Student reflection and exit survey data examined student learning experiences alongwith the challenges of implementing skills they have learned. Students described the benefits oflearning an effective socially engaged design process to plan their projects, engaging withstakeholders to gather important information regarding their needs, learning recommendedpractices in idea generation, and creating prototypes before coding. On the other hand, studentsdescribed perceived challenges including lacking experience in socially engaged design skillsthat may impact their ability to implement skills from the workshops effectively, identifying andconnecting with stakeholders who could provide meaningful information, and
unaware of the discipline of engineering education.As an effort to raise more awareness on the impact of engineering education research andpractice, the authors’ positionality stemmed from their reflections of their entry points into thefield of engineering education. This introspection prompted the authors to explore and share asmuch information about the discipline as was available at the time of this work.Research Approach & DesignThis exploratory study thoroughly investigated the current state of engineering education as adiscipline in the U.S. via an online content analysis of institutional or departmental websites tofind information about the faculty members working in the respective institutions. The sectionsand pages of ‘Faculty
process, and the inherent value derived from the study’s outcomes. Themes thatemerged and were defined from discussion exercises with participants are the following: ’lost andfound,’ signifying moments of uncertainty and discovery; ’lack of community,’ highlightingfeelings of isolation; ’not surface level,’ underscoring the depth and complexity of the issuesdiscussed; and ’community,’ reflecting participants’ desire for, or efforts toward, building a senseof belonging within the research program. These themes serve as integral components of ourinvestigation into the impact of photovoice on understanding the perspectives of underrepresentedgroups in computing.Keywords: Photovoice, computer science, underrepresentation, student perception1