Paper ID #39685Evaluating Student Project Ranking in an Industry-SponsoredMultidisciplinary Capstone Program to Improve Student Placement andProject ProposalsEdward Latorre, University of Florida Dr. Edward Latorre-Navarro is the Director of the Integrated Product and Process Design (IPPD) program within the Department of Engineering Education at the University of Florida. He joined UF from his pre- vious role as Associate Professor of Computer Science at the University of Puerto Rico at Arecibo. As an educator, he is interested in improving the academic experience based on student engagement with educa- tional goals
tospend millions of dollars for on-job training and rotational development program on their newlyhires. At the university level, there is always a challenge to implement the engineeringknowledge into industry practice and the real-life product and process applications.Traditionally, higher education institution in engineering introduced the experiential learningcurriculum via Senior Design Capstone Project with the local corporate partnership and theindustrial alumni network [1,2,3,4]. Industries value higher education institutions as the idealpartners to outsource their research and development activities and increase theircompetitiveness via the exchange of knowledge and technology. Meanwhile, their industrypartnerships represent a value-added
., 2023; Yeter et al., 2023). Such partnershipssimulate issues in the real world and expose learners to the environment in the industry(Waryoba et al., 2009; Pembridge & Paretti, 2010). An appropriate avenue for fosteringindustrial-university partnerships is through engineering capstone courses, where students areexpected to apply their theoretical knowledge in real-world contexts. By engaging with theindustries, students experience first-hand how products are developed, work with designconstraints, and learn communication and project management skill sets crucial for transitioninginto the workplace after graduation (Goldberg et al., 2014; Holt et al., 2004; Taraban et al.,2017).To adequately prepare engineering students to apply their skills
of Educational Research, 102, 101586. DOI:10.1016/j.ijer.2020.101586.[11] Chen, J., Kolmos, A., & Du, X. (2020). Forms of implementation and challenges of pbl in engineering education: a review of literature. European Journal of Engineering Education, 4, 1-26. DOI: 10.1080/03043797.2020.1718615.[12] Stoicoiu, C., & Cain, K. (2015). Industrial Projects in a Project-Based Learning Environment. Proceedings of the Canadian Engineering Education Association (CEEA). https://doi.org/10.24908/pceea.v0i0.5903.[13] Kline, A., & Aller, B. (2002, June). Involving Industry in Capstone Design Courses: Enhancing Projects, Addressing Abet Issues, and Supporting Undergraduate Engineering Practice. Paper presented at
in various ways.However, these methods may not be as important for modern students entering industry orresearch, where the ability to be clear and succinct may be vital.As part of the capstone sequence at the Milwaukee School of Engineering (MSOE), students inthe Computer Science and Software Engineering Programs are required to prepare and deliver anelevator pitch related to their project during the first term once the initial requirements have beenestablished. This pitch helps to solidify the project scope and is used as part of the continuousimprovement process for the programs.To help improve the capstone experience, a subset of elevator pitches for the programs wereevaluated by external, industrial advisory board members to provide
research question, “What are the industry perspectiveson assessed strengths and challenges related to professional and engineering design skills ofbioengineering seniors?”Building on prior coursework, the senior design capstone experience provides students with theopportunity to apply concepts and develop important skills necessary for transition to theirprofessional careers. In the bioengineering undergraduate programs at the University ofCalifornia San Diego, the senior design experience culminates with an event calledBioengineering Day (BE-Day), in which senior students present posters on their design project.Students have the unique opportunity to interact one-on-one with industrial professionals todiscuss their projects. After visiting with
critical role in sustaining thenation’s economic prosperity, security, and social well-being, engineering practice will bechallenged to shift from traditional problem solving and design skills toward more innovativesolutions imbedded in a complex array of social, environmental, cultural, and ethical issues”[29].Unfortunately, there has been a lack of attention to innovation in engineering education [7].Except for capstone projects in their senior year, engineering students are basically trained thatthere is one answer to each problem. Homework and exam problems all have a single correctsolution. Besides the fact that many real-world problems do not have a single answer, many real-world problems are not as well-defined as they are in the classroom
. Erik has spearheaded the Clarkson Civil & Environmental Engineering (CEE) Capstone design experience since 2015, using project teams as direct consultants with internal and external clients across the State and region. He has presented on one such project at the ASEE St. Lawrence Section conference on one such CEE capstone effort in the past. He also teaches courses in a variety of areas connected to both building and infrastruc- ture construction. Previous to his time at Clarkson, he was an Assistant Professor of Military Science at George Mason University in Fairfax, VA and an Instructor/Writer for the US Army Engineer School USAES) at the Maneuver Support Center (MANSCEN), Fort Leonard Wood, MO. He was
and energy is spent training new hires. Potential student hires are often a “neglectedpopulation,” but are an important group that can increase the efficiency and productivity of acompany [7].Industry-based projects, or capstone projects, are a common example of how IABs can directlyimplement their experiences in the industry to make students familiar with their day-to-day work.[3] researched the role of IABs in the two-semester capstone design project in the ElectricalEngineering Department at the University of San Diego. The advisory board was highly involvedin the project: attending the presentations, changing the structure of and brainstorming ideas forthe project, and aiding lectures on professional topics. The result for students was
Education, 2023 Closing the Gap between Industry and Academia via Student Teams SupportAbstractA well-known challenge in engineering education is the attempt to balance the demands of industryrecruitment with the core needs of an already packed engineering curriculum. Due to timeconstraints, real-world examples and other learning opportunities that aim to develop andconsolidate the industry-desirable skills can be difficult to include in the curriculum. One way toaddress this challenge is to collaborate with industry (for example, on capstone projects, studentteam challenges, etc.) while the students are still studying. A place for these collaborations, whichcan provide benefit for both parties, is through student competitions. Student