

Advancing Innovation and Convergence In Cancer Research

Jerry S.H. Lee, Ph.D.

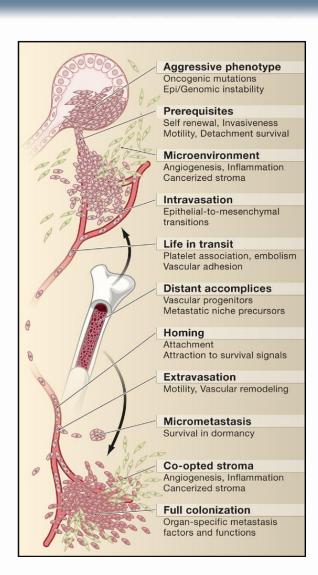
Health Sciences Director

Deputy Director, Center for Strategic Scientific Initiatives (CSSI) Office of the Director, National Cancer Institute (NCI) National Institutes of Health (NIH)

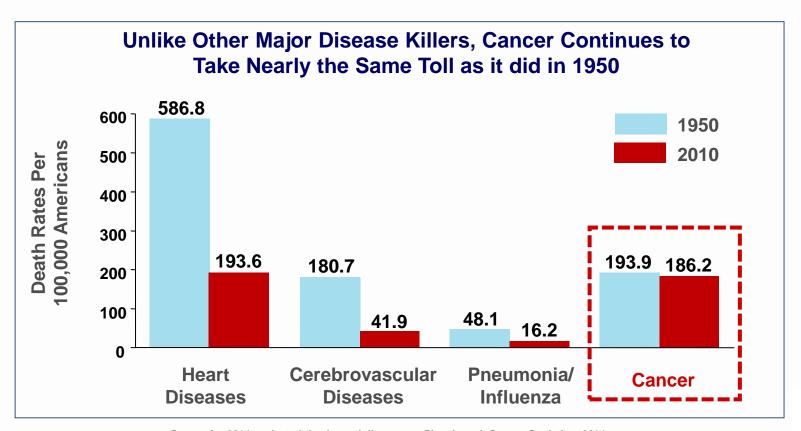
March 18, 2014

BASEE

ENGINEERING EDUCATION

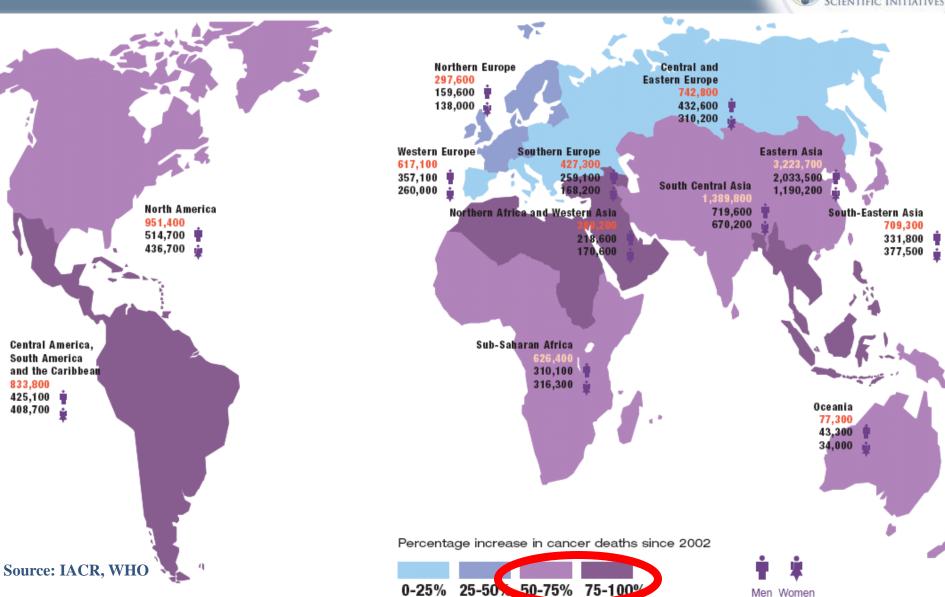


What is It? Tumor, Cancer, and Metastasis


Organ Site	All Stages	Localized	Regional	Distant
Prostate	99	100	100	28
Breast	89	99	84	24
Ovary	44	92	72	27
Uterine Cervix	68	91	57	16
Melanoma	91	98	62	16
Urinary Bladder	78	70	33	5
Kidney	72	92	64	12
Colon and rectum	65	90	70	13
Esophagus	17	39	21	4
Lung and bronchus	17	54	26	4
Liver	16	29	10	3
Pancreas	6	24	9	2

"...>90% of deaths is caused by disseminated disease or metastasis...

In the U.S., Cancer Continues to Represent an Enormous Burden



- 574,743 Americans died of cancer in 2010 (585,720 projected for 2013)
- 1,665,540 Americans will be newly diagnosed with cancer in 2014 (projected)
- \$216.6 billion in 2009 for cancer healthcare costs (\$86.6 billion for direct medical)

Global Burden: By 2020, Cancer Incidence 16 M/yr (Mortality 10 M/yr)

Unprecedented Amount of Scientific Knowledge: Omics(ssss)

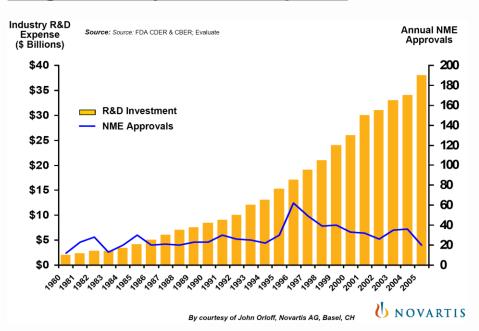
NATURE

38,506 pubs

A map of human genome variation from population-scale sequencing

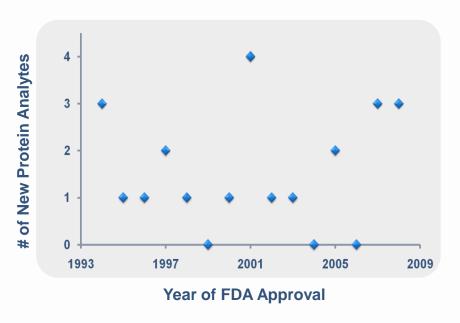
nature 1 NOVEMBER 2012 nature An integrated map of genetic variation from 1,092 human genomes The 1000 Genomes Project Consortium* b Candidate variants and quality metric 2001 2010 2012 1923 2005

87,793 pubs


54,587 pubs

49,024 pubs

Is More Knowledge Yielding More Solutions for Patients?



Drug Discovery and Development

- 10 15 years at ~ \$1.8 billion*
- 2007: 19 NMEs [lowest since 1983]
- 2008: 21 NMEs [29% new-in-class]
- 2009: 24 NMEs [17% new-in-class]

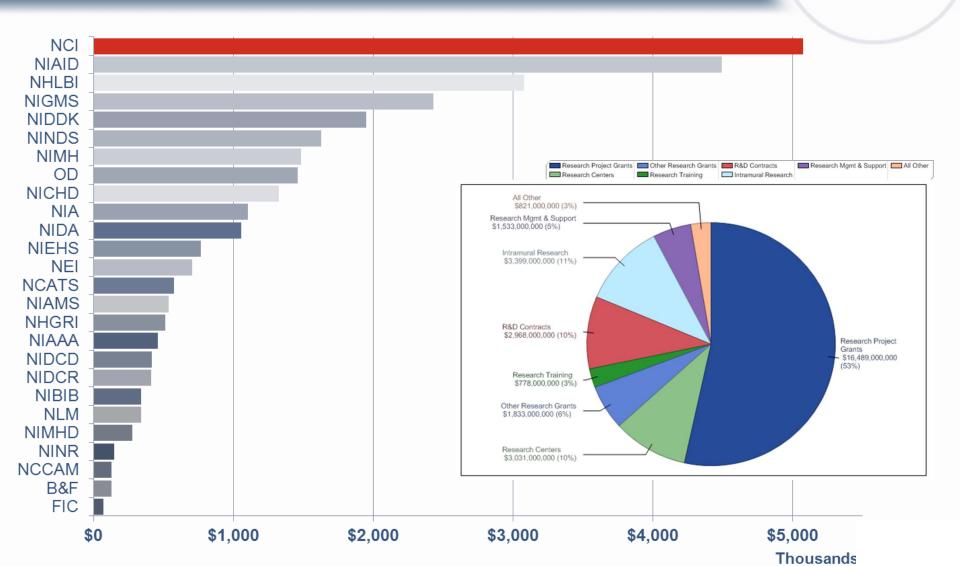
Diagnostic Biomarkers

- Averaging 1.5 FDA approvals per year[†]
- 1000's of samples
- Balancing complexity of biology against heterogeneity of patients

Maybe...but can it be more efficient?

National Institutes of Health (NIH): 27 Institutes and Centers

NIH Budget ~ \$30.8 Billion (FY12)


- ~82% for extramural support
- ~63,000 grants and contracts

NCI Budget ~ \$5.07 Billion (FY12)

- ~ 76% for extramural support
- ~7,800 grants and contracts

National Institutes of Health (NIH): 27 Institutes and Centers

NIH: Types of Funding Announcements (FOAs)

http://grants.nih.gov/grants/planning_application.htm

Types of Funding Opportunity
Announcements (FOA)

~575 in FY12

Parent Announcements

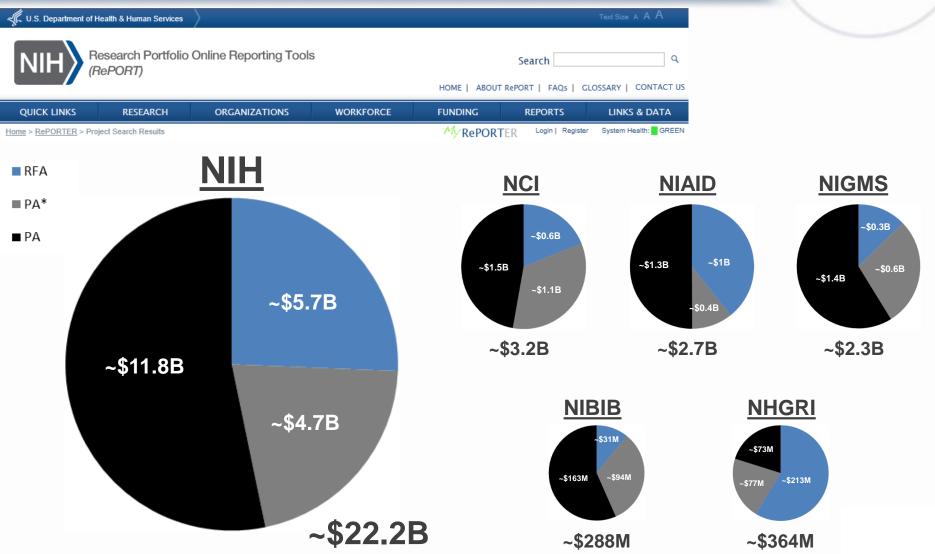
- Non-specific, investigatorinitiated "unsolicited" research
- May submit any topic within the breadth of the NIH mission.
- No money set-aside
- Competition tied mainly to an IC's overall payline

IC-Specific Program
Announcements (PA)

- Often broadly defined or a reminder of a scientific need
- Investigator-initiated "unsolicited" research
- No money set asides (unless PAS)
- Competition tied mainly to the IC's overall payline
- High-priority applications may be funded beyond the payline

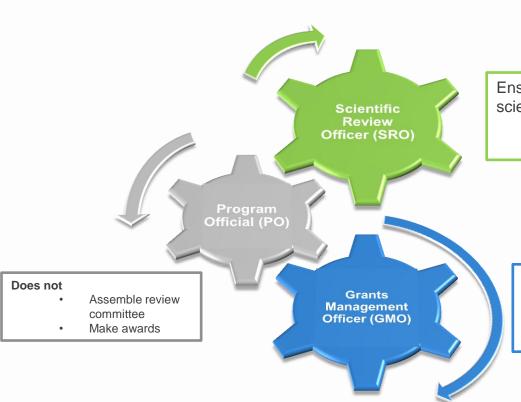
Requests for Applications
(RFA)

- NIH-Requested Research; Welldefined scientific area
- Specifies funds and targets number of awards
- Competition depends on number of applicants and dollars set aside


~53% NIH-wide ~47% NCI-only

~21% NIH-wide ~34% NCI-only

~26% NIH-wide ~19% NCI-only


NIH Research Portfolio Online Reporting Tools (RePORT)

The NIH Extramural Team: Checks & Balances

Ensure **fair** and **unbiased** evaluation of the scientific and technical merit of proposed research

- Manages study sections
- Prepares/issues summary statements

Ensure all required business management actions are performed by the grantee and federal government

- Participates in budget negotiations
- Prepares/issues Notice of Awards (NoA)

National Cancer Program: Stakeholders

National Cancer Institute Organization

Director Harold Varmus, MD

National Cancer Institute

\$5.07B

Office of the Director

CSSI

~\$132 M (~4%)

Deputy Director Douglas Lowy, MD

Center for Cancer
Research

Division of Cancer Epidemiology and Genetics

~\$858M (~17%)

Division of Cancer
Treatment
and
Diagnosis

~\$919M (~29%)

Division of Cancer Biology

~\$779M (~25%)

Division of Cancer Control and Population Sciences

~\$441M (~14%)

Division of Cancer Prevention

~\$264M (~8%)

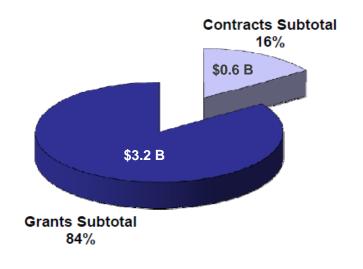
Division of Extramural Activities

~\$21M (~0.4%)

Conducting – Intramural

Funding – Extramural

NCI 2012 Fact Book: FY12 Budget Breakdown



Fiscal Year 2012 Budget

(Dollars in Thousands)

Mechanism	Amount	Percent
Contracts:		-
R&D Contracts	589,715	15.4%
Buildings and Facilities	7,920	0.2%
Construction Contracts	0	0.0%
Subtotal Contracts	597,635	15.6%
Grants:		
Research Project Grants	2,075,295	54.1%
Cancer Centers/Specialized Centers/SPORES	612,789	16.0%
NRSA	65,992	1.7%
Other Research Grants	482,871	12.6%
Construction Grants	0	0.0%
Subtotal Grants	3,236,947	84.4%
Total Extramural Funds	3,834,582	100.0%
Total Intramural/RMS	1,232,760	
*Total NCI	\$5,067,342	

NCI's Federally Funded Research and Development Center (FFRDC)

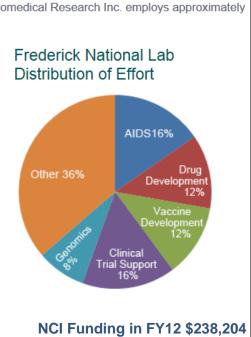
operated by Leidos Biomedical Research, Inc.

Frederick National Laboratory for Cancer Research

Established in 1972 as one of the nation's 39 FFRDC's and the only one devoted exclusively to biomedical research and development

Facts

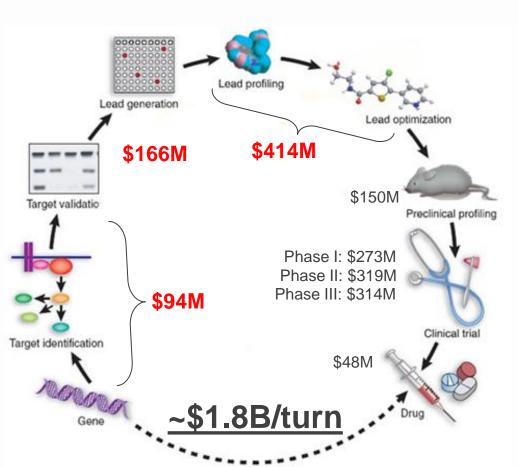
As one of Frederick County's major employers, the contractor Leidos Biomedical Research Inc. employs approximately 1,800 employees.


Economic Impact

In addition to payroll, Leidos Biomedical Research contributes:

- Dollars spent via Leidos Biomedical Research (formerly SAIC-Frederick) purchase orders, Contract Year 2011
 - Frederick County...\$16,820,351
 - Maryland.....\$183,086,783
- Dollars spent via Leidos Biomedical Research (formerly SAIC-Frederick) purchase orders, 9/26/08–8/10/11
 - Frederick County...\$35,695,585
 - · Maryland.....\$286,944,880

Physical


- 68 acres deeded to the Department of Health and Human Services (HHS)
- · 991,217 net square feet
- 1,654,035 gross square feet
- · 113 buildings on site

Translation Pace: How To Break Out of Current Paradigm?

Key Needs (from community '02)

- Standards and protocols
- Real-time, public release of data
- Large, multi-disciplinary teams
- Pilot-friendly team environment to share failures and successes
- Team members with trans-disciplinary training

Turning the Crank...

The potential to transform cancer drug discovery and diagnostics

NCI Center for Strategic Scientific Initiatives (CSSI): Concept Shop

~\$190M (FY12)

Deputy Director Jerry S.H. Lee, PhD

<u>Mission</u>

"...to create and uniquely implement exploratory programs focused on the development and integration of advanced technologies, <u>trans-disciplinary approaches, infrastructures, and standards</u>, to accelerate the <u>creation and broad deployment</u> of <u>data, knowledge, and tools</u> to empower the <u>entire cancer research continuum</u> in better understanding and leveraging knowledge of the cancer biology space <u>for patient benefit</u>..."

2005, 2010

2008, 2013*

2011

2004, 2008, 2014

2005, 2008

2010

CSSI Programs (FY99-FY14): Diverse Mechanisms

	Gra	nts	Cooperative		FF		Interagency Collaborations	
Program	Research	Training	Agreements	Contracts	Resource R&D Subs		(Co-funds/joint programs)	
Unconventional Innovations Program				✓				
INNOVATIVE MOLECULAR ANALYSIS TECHNOLOGIES	√	√						
NCI Alliance for Nanotechnology in Cancer	✓	✓	✓		√	√	✓ FDA W NIST	
THE CANCER GENOME ATLAS		✓	✓	✓		\checkmark		
CLINICAL PROTEOMIC TUMOR ANALYSIS CONSORTIUM	✓	✓	✓	✓	√	√	√ PANST	
BIOSPECIMEN RESEARCH NETWORK						✓		
CTD ² Caroor Target Discovery and Development	✓		✓		√			
PHYSICAL SCIENCES— in ONCOLOGY	✓	✓	✓	✓		✓	✓	
CaHUB The Cancer Human Biobank					√	√		
Provocative Questions Initiative	√							

Support Convergence and Innovation At Many Scales

Phase II

Early settlers

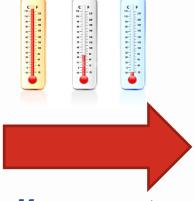
Phase II

Phase II

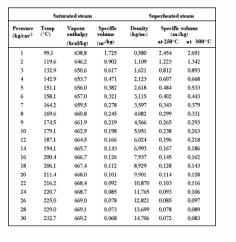
Team Explorers

Cancer Target Discovery
& Development (CTD2)

Discoverers/ Pioneers


Basic Applied Translational Clinical Industry

Center Framework: "What is Water?"- Measurements → Insights



Color (clear, yellow, brown)
Taste (none, metallic, awful)

Measurements Taken

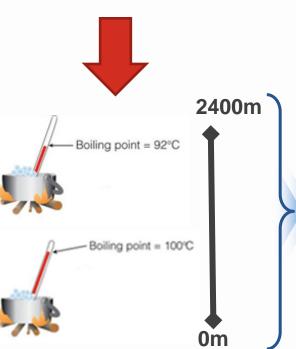
LOTS of Quantitative "Data"

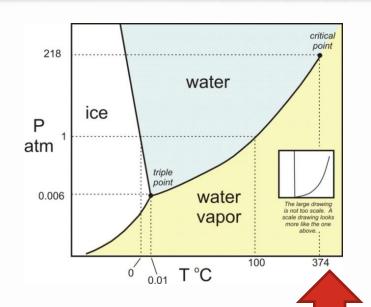
Phase (liquid, gas, solid)
Phase change (boil, melt, freeze)

But also LOTS of disagreements...

Boiling point = 100°C

Qualitative Descriptions


Standards and Sharing of Data -> New Insights and Understanding



- Define samples & protocols
- Share collected data

New Understanding

- Phase boundaries
 - V/L equilibrium
- Triple Point

(Phase Diagram)

New Parameter

"Pressure"

	Sat	urated steam	Superheated steam			
Pressure (kg/cm ²⁾	Temp (°C)	Vapour enthalpy	Specific volume	Density (kg/mi)	Specific v (m/l	cg)
_		(kcal/kg)	(m ³ /kg)		at 250°C	at 300°C
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232,7	669.2	0,068	14,706	0.072	0.083

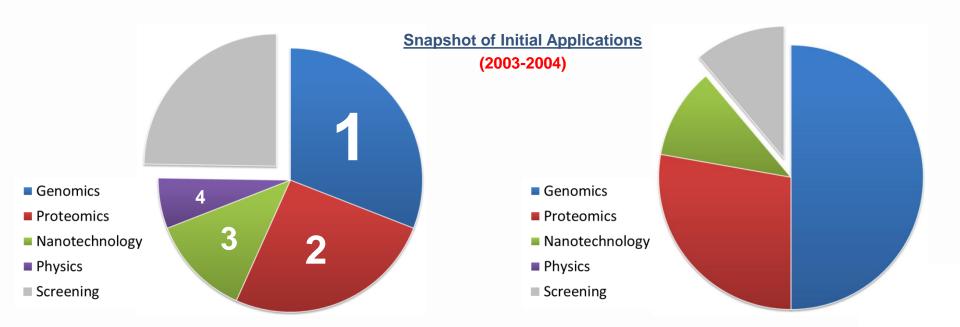
LOTS of
Quantitative
and
Reproducible
Data

(Steam Table)

2003 Launch of the Technology Dashboard of CSSI: IMAT

INNOVATIVE MOLECULAR

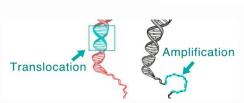
To support the **development**, **maturation**, and dissemination ANALYSIS TECHNOLOGIES of innovative and/or potentially transformative next-generation technologies


Innovative Technologies for Molecular Analysis of Cancer

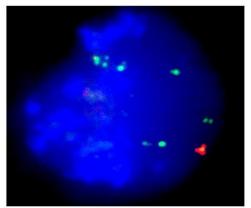
- Proof-of-concept technologies/projects encouraged
- Milestone and technology development driven (no biology)

Application of Emerging Technologies for Cancer Research

- Validation and dissemination of platforms
- Demonstration of impact on basic and clinical research



First Step(back)- Cancer Genomics: Taking a Page from Engineers


Disease of Genomic Alterations

- Copy number
- Expression (regulation of)
- Regulation of translation
- Mutations
- Epigenome

- Systematic identification of all genomic changes
- Repeat (a lot) for individual cancer
- Repeat for many cancers
- Make it publically available

	Sat	urated steam	Superheated steam			
Pressure (kg/cm ¹⁾	Temp (°C)	Vapour enthalpy (keal/kg)	Specific volume (m ³ /kg)	Density (kg/m _i)	Specific v (ms/l at 250°C	
1	99,1	638,8	1,725	0,580	2,454	2,691
2	119,6	646,2	0,902	1,109	1,223	1,342
3	132,9	650,6	0,617	1,621	0,812	0,893
4	142,9	653,7	0,471	2,123	0,607	0,668
5	151,1	656,0	0,382	2,618	0,484	0,533
6	158,1	657,0	0,321	3,115	0,402	0,443
7	164,2	659,5	0,278	3,597	0,343	0,379
8	169,6	660,8	0,245	4,082	0,299	0,331
9	174,5	661,9	0,219	4,566	0,265	0,293
10	179,1	662,9	0,198	5,051	0,238	0,263
12	187,1	664,5	0,166	6,024	0,196	0,218
14	194,1	665,7	0,143	6,993	0,167	0,186
16	200,4	666,7	0,126	7,937	0,145	0,162
18	206,1	667,4	0,112	8,929	0,128	0,143
20	211,4	668,0	0,101	9,901	0,114	0,128
22	216,2	668,4	0,092	10,870	0,103	0,116
24	220,7	668,7	0,085	11,765	0,093	0,106
26	225,0	669,0	0,078	12,821	0,085	0,097
28	229,0	669,1	0,073	13,699	0,078	0,089
30	232,7	669,2	0.068	14,706	0.072	0.083

Steam table (Reference)

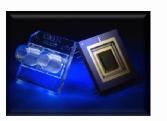
Many "Thermometers": **Heterogeneity of Platforms**

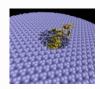
454

Illumina

SOLID

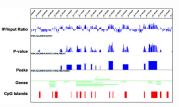
Complete Genomics


Helicos

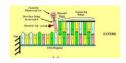

Visigen

PacBio

Ion-Torrent


Oxford Molecular

NABsys


Nimblegen

febit **Febit**

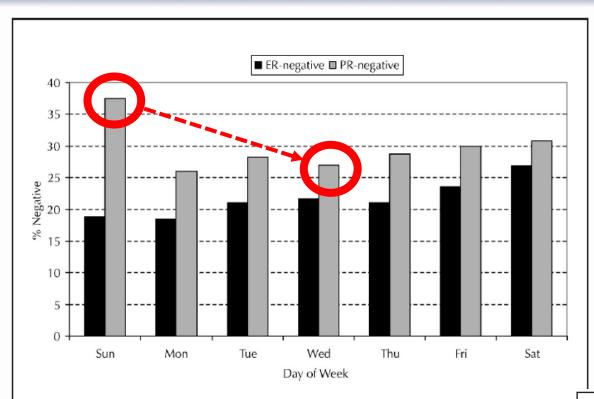
LaserGen, Inc.

LaserGen

Intelligent Biosystems

ZSGenetics

Halycon



Agilent

Getting "Water" Right: Samples <u>AND</u> Handling Matter!

"Garbage In...Garbage Out"

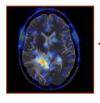
"...We found that specimens obtained late in the week (prolonged specimen handling) are more likely to be ER/PR negative than specimens obtained on other weekdays (regular specimen handling)..."

Table 1.	Frequency of Sp the	oecimen Remova Week	l by Day of
Day	Cases	ER-Negative	PR-Negativ

Day	Cases	ER-Negative	PR-Negative
Sunday	16	3	6
Monday	1252	230	325
Tuesday	1176	248	332
Wednesday	784	170	212
Thursday	904	191	259
Friday	919	216	276
Saturday	26	7	8
System	5077	1065	1418

Abbreviations: ER, estrogen receptor; PR, progesterone receptor.

TCGA: Connecting Multiple Standardized Sources, Experiments, and Data Types



Three Cancers- Pilot

Multiple data types

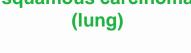
glioblastoma multiforme (brain)

Resource with more than 13 Tissue **Source Sites**

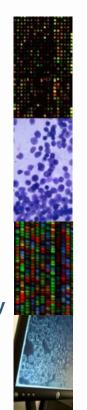
7 Cancer Genomic Characterization Centers

> 3 Genome Sequencing Centers

Center

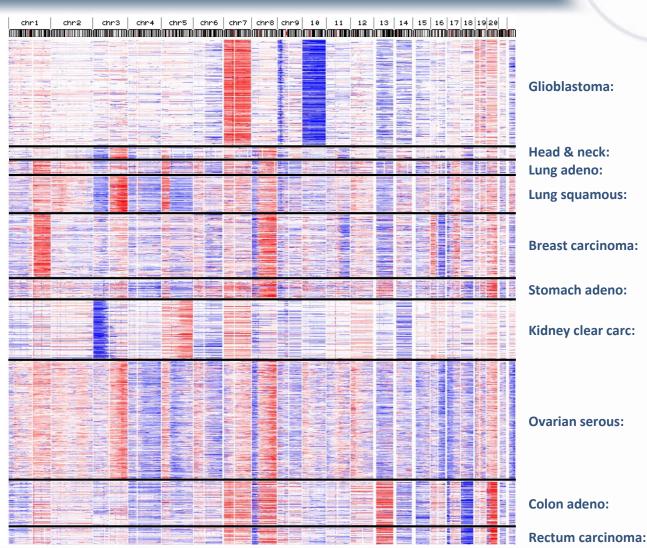

Biospecimen Core

Data Coordinating


Clinical diagnosis

- **Treatment history**
- Histologic diagnosis
- **Pathologic status**
- Tissue anatomic site
- **Surgical history**
- **Gene expression**
- **Chromosomal** copy number
- Loss of heterozygosity
- **Methylation patterns**
- miRNA expression
- **DNA** sequence

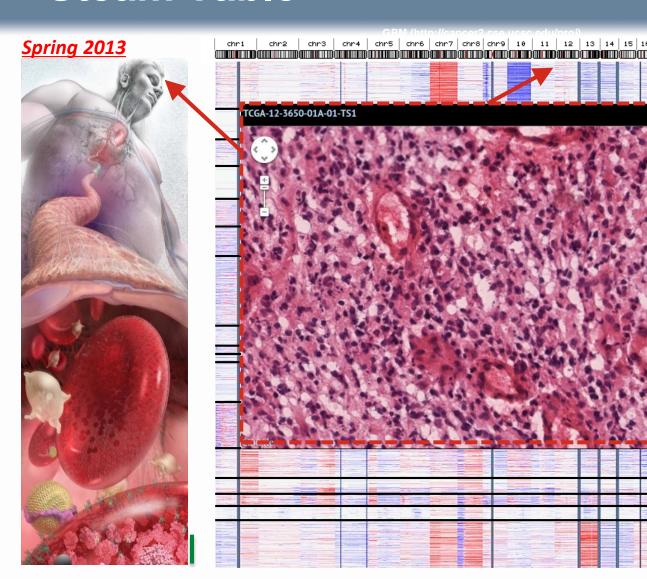
serous cystadenocarcinoma (ovarian)


Genomic "Steam Table"

Summer 2011

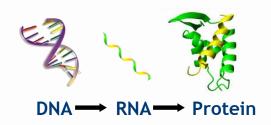
mana m	
	Glioblastoma:
	Head & neck:
	Lung adeno:
	Lung squamous:
	Breast carcinoma:
	Stomach adeno:
	Kidney clear carc:
PARTICULAR PROPERTION OF THE CORPORATION OF THE COR	Ovarian serous:
	Colon adeno:

470


51

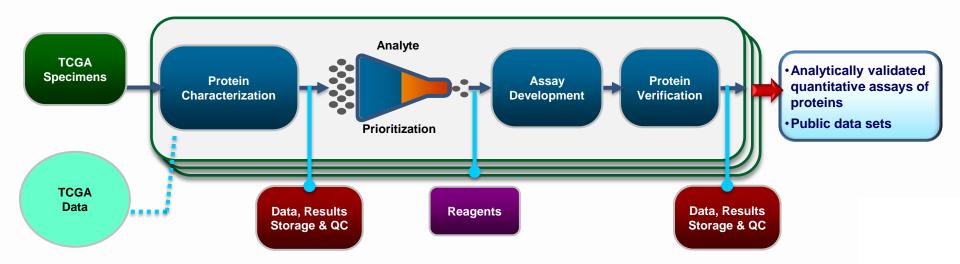
57

Genomic "Steam Table"

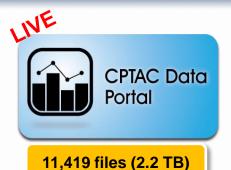


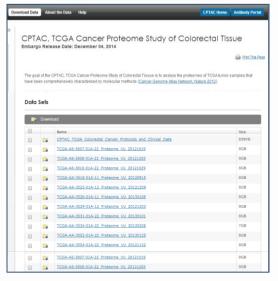
16 17 18 19 20		
	Glioblastoma:	563
E 200 C 20	Brain lower grade glioma:	180
7.0	Head & neck:	306
	Thyroid carc:	401
	Lung adeno:	356
	Lung squamous:	343
	Breast carc:	866
1 1 100	Stomach adeno:	237
130	Liver hep. carc:	97
0.0	Kidney pap. cell carc:	103
15 80	Kidney clear cell carc:	493
	Ovarian serous:	559
	Uterine corpus end. carc:	492
	Cervical carc: Bladder carc: Prostate adeno:	102 135 171
	Colon/rectum adeno:	575

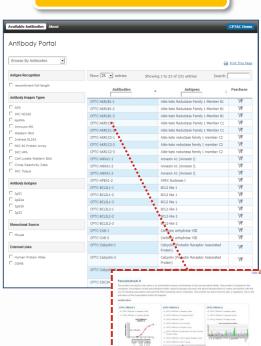
Clinical Proteomic Tumor Analysis Consortium (CPTAC)

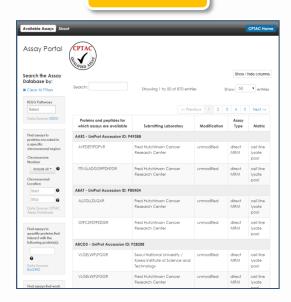

Phase II Launched Sept 2011

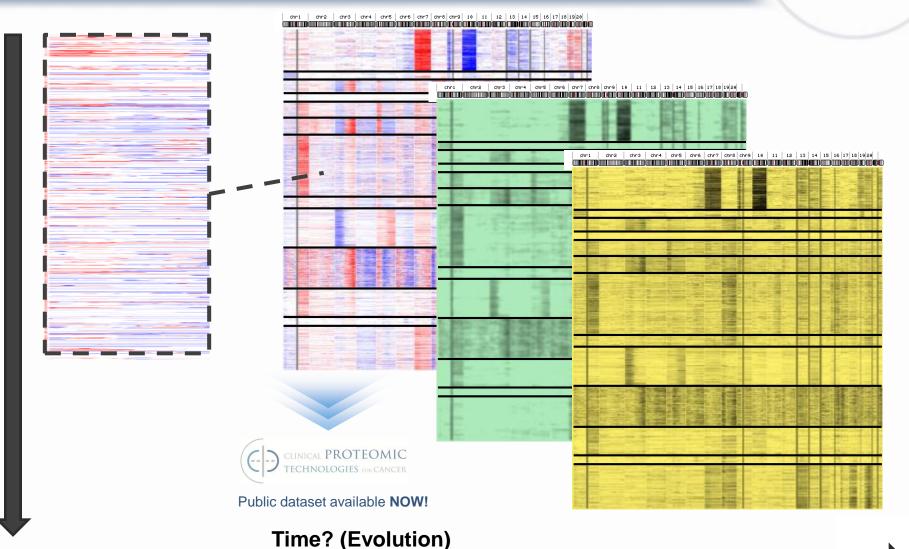
- Analyze matched TCGA samples using two approaches
 - Targeting genome to proteome
 - Mapping proteome to genome
- Develop validated and quantitative assays and reagents
 - Lessons from Phase I (mock 510K submission)
 - Antibody Characterization Lab

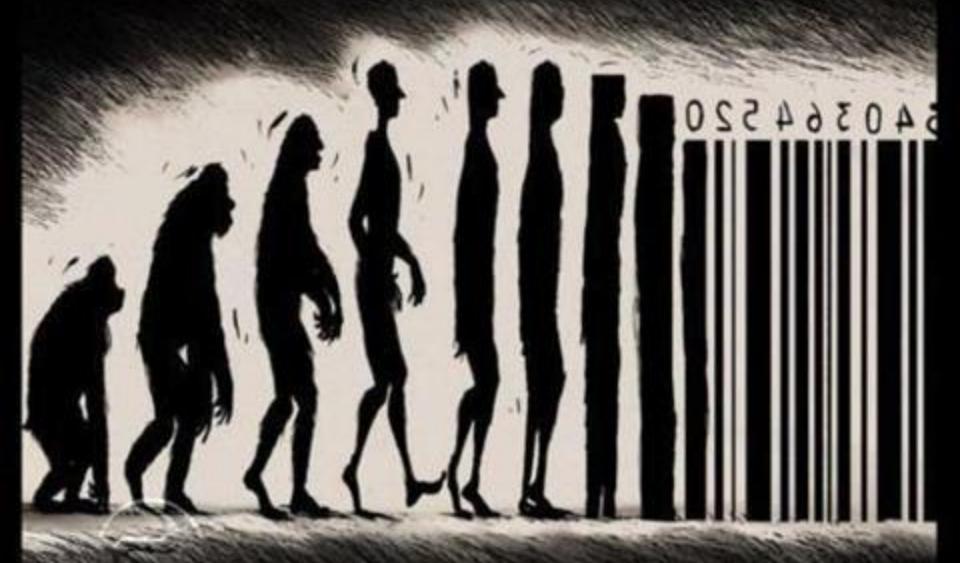



Distribute raw and analyzed data via public data portal

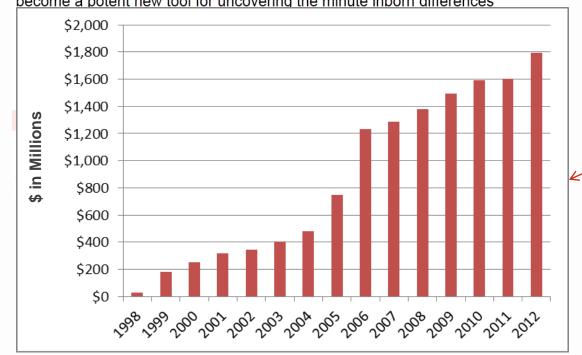

CPTAC Public Resources: http://proteomics.cancer.gov

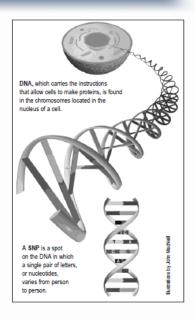



542 assays



Where Do We Go From Here? Is it <u>JUST</u> More Data?

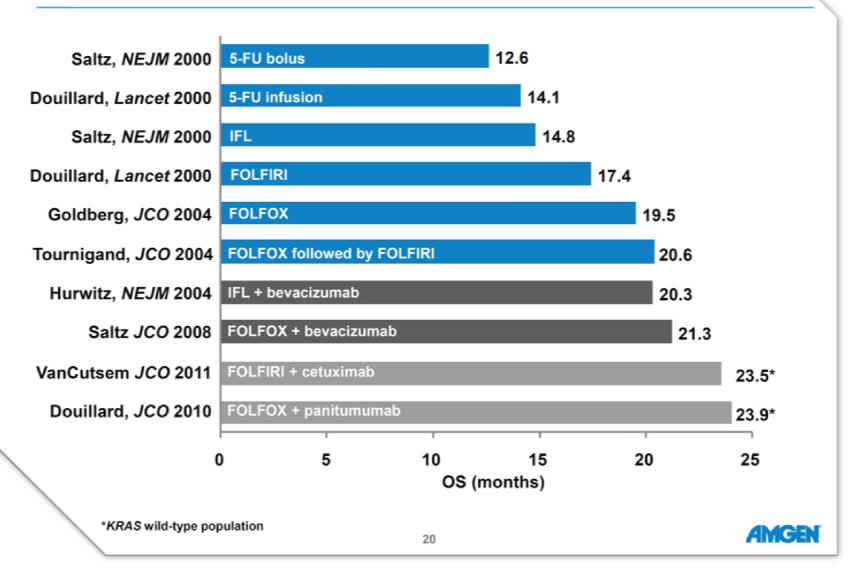

Personalized Medicine



THE WALL STREET JOURNAL. Friday, April 16, 1999

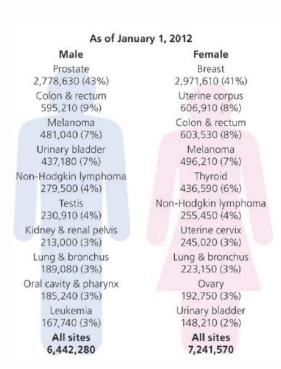
The pharmaceutical industry makes billions of dollars a year selling onesize-fits-all medicines. But now the race is on to come up with tailor-made drugs that will treat people based on their individual genetic makeup.

Drug companies hope to create a map of genetic landmarks that will become a potent new tool for uncovering the minute inborn differences

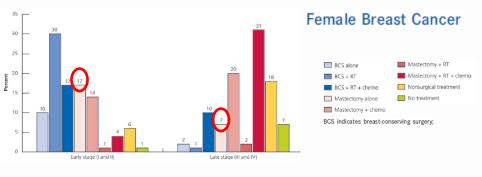


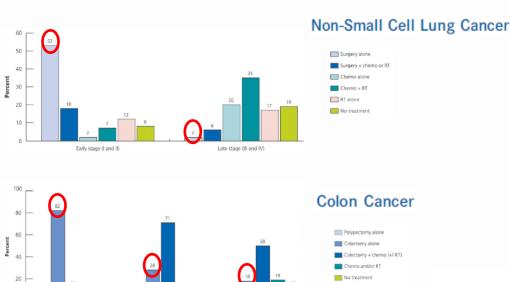
How Fine-Tuning By Drug Makers Will Work

- Herceptin from Genentech Inc.
 - Breast-cancer drug developed specifically to treat a minority of patients whose tumors have elevated levels of a protein, her-2.
- Xeloda from Roche Holding Ltd.
 Some patients may respond better to this breast-cancer drug than others because of differences in enzymes that process it.
- Clozaril from Novartis AG Old schizophrenia drug that causes rare blood disorder in a small number of patients; researchers hope to use gene-map data to develop test to predict who will get the disorder.
- Orzel from Bristol-Myers Squibb Co. Colorectal cancer drug currently under FDA review; company is performing studies to identify which patients are more likely to develop diarrhea and other side-effects from the drug.


Incremental Improvements Have Doubled Overall Survival in the Last Decade

2012: Cancer Treatment and Survivorship Statistics




An estimated 13.7 million Americans with a history of cancer were alive on January 1, 2012.

Estimated Numbers of US Cancer Survivors by Site.

Cancer Treatment Patterns by Stage, 2008.

Stage III

Stage | & ||

Provocative Question (PQ) Project: Seeding Innovations for the Future

Nature Jan 26, 2012

Science funding: Provocative questions in cancer research

Goal:

 Challenge the scientific community to creatively think about and answer <u>important</u>, <u>but non-obvious or understudied</u>, provocative questions (PQs) in cancer research

Implementation:

- PQs solicited through website and workshops
- Phase 1: requested R01/R21 applications on 24 final PQs (55 awards)
- Phase 2: new set of 24 PQs for R01/R21 apps (93 awards)
- Phase 3: new set of 20 PQs

PQA4: For tumors that arise from a pre-malignant field, what properties of cells in this field can be used to design strategies to inhibit the development of future tumors?

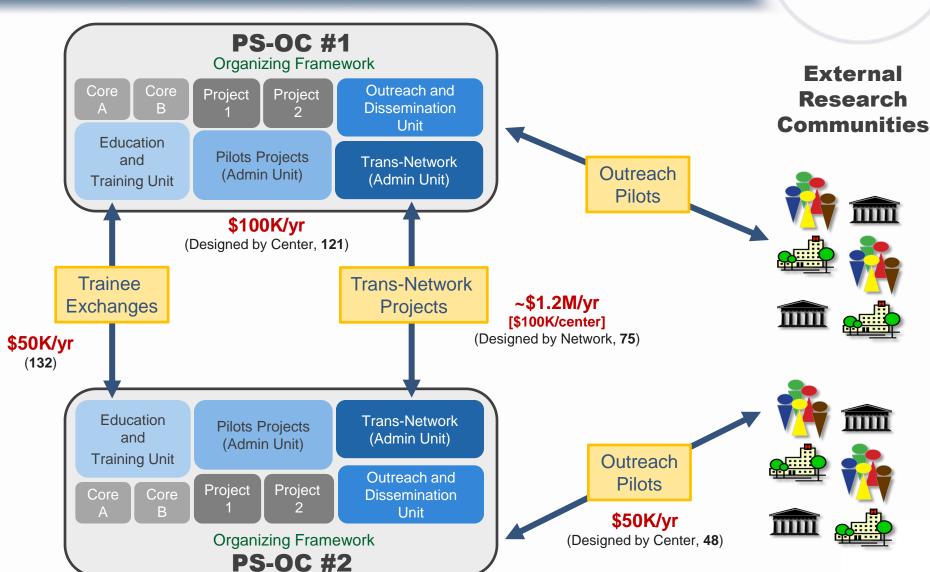
PQC4: What in vivo imaging methods can be developed to portray the "cytotype" of a tumor?

PQD1: What molecular properties make some cancers curable with conventional chemotherapy?

PQB1: Why do second, independent cancers occur at higher rates in patients who have survived a primary cancer than in a cancer-naïve population?

PQD4: What are the mechanistic bases for differences in cancer drug metabolism and toxicity at various stages of life?

Bringing In New Perspectives



- To generate <u>new knowledge</u> and catalyze <u>new fields of study</u> in cancer research by utilizing physical sciences/engineering principles to enable a better understanding of cancer and its behavior at all scales.
- Not looking for new tools to do "better" science, but new perspectives and approaches to do <u>paradigm-shifting</u> science that will lead to exponential progress against cancer.
- Build <u>trans-disciplinary teams</u> and infrastructure to better understand and control cancer through the convergence of physical sciences and cancer biology.

PS-OC Model: Pl Driven Interactions Inside/Outside of Network/Center

Then...(2002)

Now...(2014): Moore's Law of Analysts?

Cancer genome characterization centres: Broad Institute/Dana-Farber Cancer Institute Gad Gett²¹¹, Wendy Winckler^{20,222}, Role G. W. Verthaak^{21,2223}, Michael S. Lawrence²¹⁸, Michael O'Relly²¹⁸, Jim Robinson¹¹⁸, Gaptriel Aloxe²¹⁸, Rameen Beroukhim^{20,223}, Scott Carter²¹⁸, Derek Chiang²¹⁸, Josh Gould¹¹⁸, Supriya Gupta²¹⁸, Josh Kom²¹⁸, Grig Mermel²¹⁸, 211 Mestor²¹⁸, Testano Montil²¹⁸, Huy Supriya Gupta²¹⁸, Daris Kanin²¹⁸, Grig Mermel²¹⁸, 212, Javi Garrawy, ^{112,223}, Todd Golub ²¹⁸, Sandy Arosono²¹⁸, Barbara A. Weir^{21,223}, Levi Garrawy, ^{112,223}, Todd Golub ²²³, Sandy Arosono²¹⁸, Narayana Sathiamoorthy²¹⁸, Georgia Ren²¹⁸, Jun Yao²¹⁸, W. Ruprecht Wiedemeyer²¹, Hyusoo Kim²¹⁸, Sen Kwon Kong²¹⁸, Yonghong Xiao²¹⁸, Sandy Arosono²¹⁸, Narayana Sathiamoorthy²¹⁸, Georgia Ren²¹⁸, Jun Yao²¹⁸, W. Ruprecht Wiedemeyer²¹⁸, Hyusoo Kim²¹⁸, Sen Kong²¹⁸, Jun Yao²¹⁸, W. Ruprecht Wiedemeyer²¹⁸, Hyusoo Kim²¹⁸, Sen Kong²¹⁸, Jun Yao²¹⁸, Johas Hopkins/University of Southern California Peter V. Liafd²¹⁸, Leslic Cope²¹⁸, James G. Herman²¹⁸, Daniel J. Weisenberge²¹⁸, Felp Pan²¹⁸, David Van Den Berg²¹⁸, Leander Naneste²¹⁸, Joo Mi Yi²¹⁸, Korne E. Schuebel²¹⁸, Stephen B. Sayin²¹⁸, Hudsondhyla Institute/Standrof University Devin M. Absher²¹⁸, Jun Z. Li²¹⁸, Audrey Southwick²¹⁸, Shannon Brady²¹⁸, Amita Aggarwa²¹⁸, Tisha Chung²¹⁸, Gawin Shenotch²¹⁸, Yelen Yabar²¹⁸, Shannon Dotron²¹⁸, Nicholas J. Wang²¹⁸, John S. Conboy²¹⁸, Barry S. Taylor²¹⁸, Alex Lash²¹⁸, Nicolaus Schultz²¹⁸, Bors Kewa²¹⁸, Yelen J. Hanna²¹⁸, Park J. Landron²¹⁸, John S. Conboy²¹⁸, Barry S. Taylor²¹⁸, Alex Lash²¹⁸, Nicolaus Schultz²¹⁸, Bors Kewa²¹⁸, Yelen J. Hanna²¹⁸, Alex Lash²¹⁸, Nicolaus Schultz²¹⁸, Bors Kewa²¹⁸, Yelen J. Alary²¹⁸, Alex Lash²¹⁸, Nicolaus Schultz²¹⁸, Bors Kewa²¹⁸, Yelen J. Alary²¹⁸, Jahas D. Tajlerim Garonia, Chapel Hill Charles M. Perolos²¹⁸, Chirch Sandor²¹⁸, Alex Lash²¹⁸, William Gend²¹⁸, Ch

~100

Comprehensive genomic characterization defines human glioblastoma genes and core pathways

The Cancer Genome Atlas Research Network*

~150

Cancer genome characterization centres: Broad Institute/Dana-Farber Cancer Institute M. Meyerson^{28,47,88} W. Windstelf ²⁷ G. Gebz ²⁷, R. G. W. Verhaal ^{28,47}, S. L. Cartier ^{28,47}, C. H. Mermel ^{28,47}, G. Saissen ²⁷; H. Nguyen ²⁸ R. C. Cnotrio ²⁸, M. S. Lawrence ²⁸, D. Hubbard ^{28,47,88}, S. Gupta ²⁸, A. Ceresham ²⁸, A. H. Ramos ^{28,47,88}, K. Ardile ²⁸; Harend Medical School Loin ^{28,52}, P. Propopovo ²⁹, Jurihua P. Parang ⁴⁷, T. M. Kim ⁵¹, I. Perns ⁴⁹, Y. Xiao ⁴⁹, H. Zhang ⁴⁹, G. Ren ⁴⁹, N. Sathiamoorthy ²⁹, R. W. Park ⁵¹, E. Lee ¹⁹, P. J. Park ^{51,48}, E. M. Cherlapath ⁵⁸; Husbanahpha Institute/Stanford University D. Maches ⁵¹; University G. Sherlock ⁵¹, D. Brooke ⁵¹, Z. Le ³⁸, J. Lize ⁵⁸, P. Lizer ⁵⁹, U. Cape ⁵⁰, J. G. H. Harnd ⁵¹, H. Shen ⁵³, D. J. Wang ⁵¹, S. B. Baylin ⁵¹, Lawrence Berkeley National Laboratory P. T. Spellman ⁵², E. Purlom ⁵³, P. Newra ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Durnoké ⁶³, H. Bengtsson ⁶³, L. R. Salwalge ⁶³, S. Baylin ⁶³, C. Sandes ⁶³, M. Harnd ⁶³, University of North Carolina at Chapel Hill K. A. Hoadley ^{71,72,72}, S. Mengri ⁷³, V. J. Y. J. Turman ⁷³, D. Zang ⁷³, E. B. Hellms ⁷³, S. Balur ⁷³, X. Zhou ⁷³, J. N. Hayse ⁷³, N. D. Targe ⁷³, D. N. Hayse ⁷³, A. C. M. Perour. ⁷³, S. Balur ⁷³, X. Zhou ⁷³, J. D. Targe ⁷³, D. N. Hayse ⁷³, A. C. M. Perour. ⁷³, P. Salwalge ⁷³, D. N. Hayse ⁷³, A. C. M. Perour. ⁷³, P. Salwalge ⁷³, D. N. Hayse ⁷³, A. C. M. Perour. ⁷³, P. Hayse ⁷³, A. C. M. Perour. ⁷³, P. Hayse ⁷³, P. Hayse ⁷³, A. C. M. Perour. ⁷³, P. Hayse

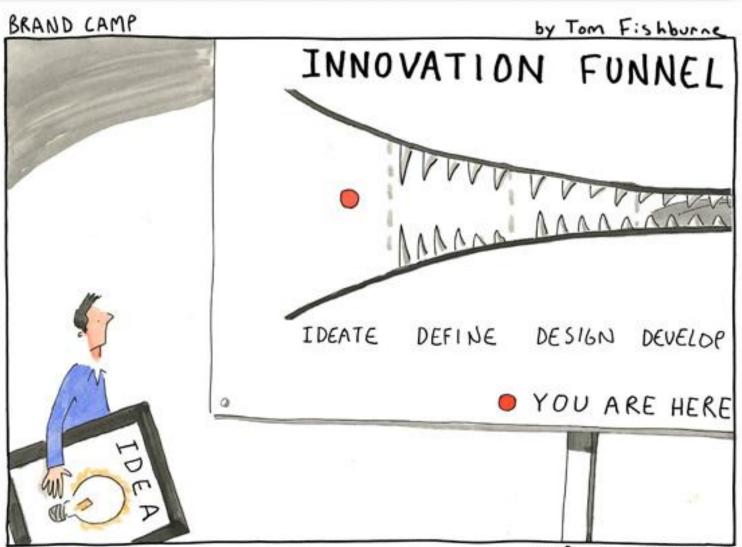
Genome data analysis centres: Broad Institute G. Getz²⁶, D. Voe²⁶, G. Saksena²⁵, Junihua Zhang⁶⁷, H. Zhang⁶⁹, C. J. Wu⁶⁹, S. Shukla⁶⁹, K. Olbuskis^{25,366} M. S. Lawrence²⁸, A. Swochenko³⁸, R. Jing³⁸, R. P. Park^{35,356}, M. Noble³⁹, L. Chin^{35,49,50}, Johns Hopkins University H. Canter²⁶, D. Kim^{7,5}, R. Karchin⁵², L. Lawrence Berkeley National Laboratory P. T. Spellman⁶⁸, E. Purdom⁵⁹, P. Neuvia⁶⁷, B. Bengtsson⁵⁹, S. Durinok⁶⁸, J. Han⁹⁷, E. Kotkole⁶⁷, M. Heiser⁶⁷, R. D. Mirleiser⁶⁸, R. Che⁶⁷, T. P. Spell⁶⁸, T. P. Speed^{62,66}, J. W. Gray⁶⁰, Memorial Sloan-Kettering Cancer Center N. Schult⁶⁷, E. S. Spen⁶⁸, T. P. Speed^{62,66}, J. W. Gray⁶⁰, M. K. Chang⁶⁷, J. A. Bernahe⁶⁷, B. Bostys⁶⁸, D. A. Levine⁸, M. Ladany⁶⁸, G. Sande⁶⁹, University of California Santa Cruz/Buck. Institute D. Haussler^{79,30}, C. Sende⁶⁹, University of California Santa Cruz/Buck. Institute D. Haussler^{79,30}, C. C. Benz⁵³, J.M. Stuart⁷⁹, S. C. Benz⁶⁷, J. Z. Sanborn⁶⁷, C. J. Visker⁶⁸, S. J. J. Sinch⁷⁹, C. S. Benz⁷⁹, J. Z. Sanborn⁷⁹, C. J. Visker^{79,80}, S. Salur⁷⁹, S. Selur⁷⁹, S. Balur⁷⁹, D. Hayes^{75,74}, C. M. Perou^{71,727}, M. D. Wilkerson⁷⁷, The University of Teas MD Anderson Cancer Center N. Zhang⁸³, R. Albann⁸³, A. Rabaern⁸³, M. R. Wilkerson⁷⁷, The University of Teas MD Anderson Cancer Center N. Zhang⁸³, R. Albann⁸³, A. Rabaern⁸³, M. R. Wilkerson⁷⁷, The University of Teas MD Anderson Cancer Center N. Zhang⁸³, R. Albann⁸³, A. Naborn⁸³, A. Rabaern⁸³, M. R. Wilkerson⁷⁸, The University of Teas MD Anderson Cancer Center N. Zhang⁸³, R. Albann⁸³, A. Nabaern⁸³, A. N

Integrated genomic analyses of ovarian carcinoma

The Cancer Genome Atlas Network*

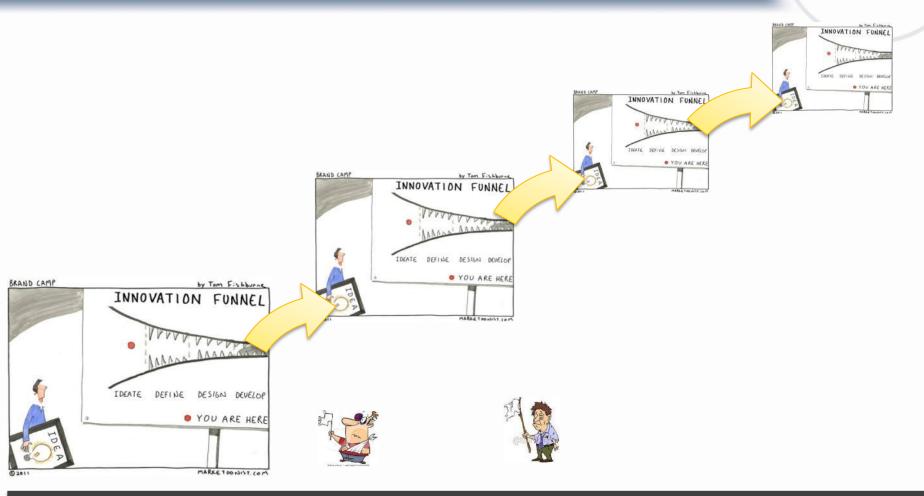
200+

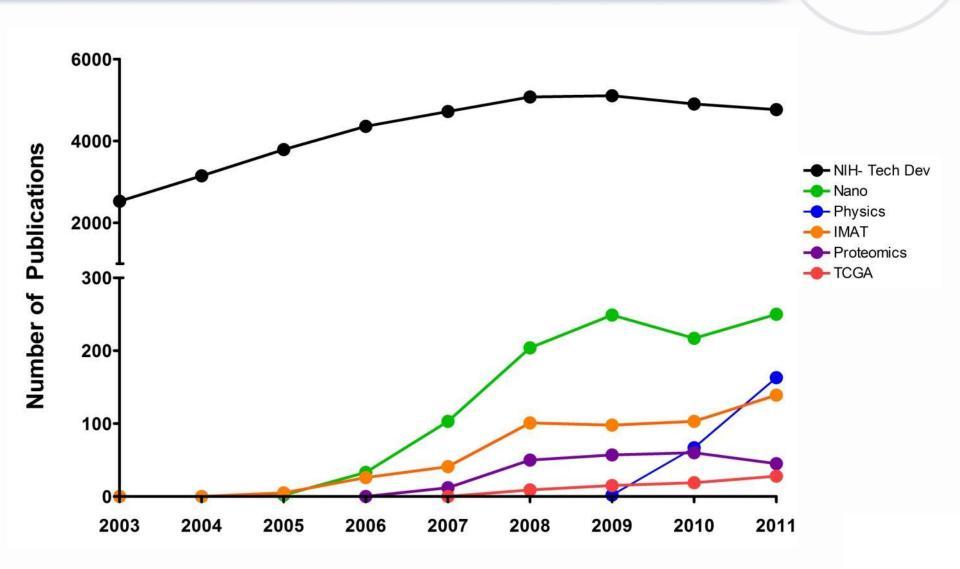
Disease working group Matthew Meyerson 1-26, Stephen B, Beylin²⁹, Romaswemy Gonindan²⁰, Reham Akban²³, Bieman Asoba²⁰, David Bere²⁸, Ron Bosse²⁹, Lauren A, Byers²⁹, David Carbone²⁰, Li-Wei Chang²², Derk Chlang^{2,125}, Andy Chu, Elizabeth Chun', Etic Colisson²⁰, Lesle Cope²⁰, Chad J, Creighton⁴¹, Ludmilla Danilova²⁹, Li Ding²⁰, Gad Gett^{1,20}, Peter S, Hammerman^{1,2}, D. Neil Hayes^{23,20}, Bryan Hernandez², Li Ding²⁰, Gad Gett^{1,20}, Peter S, Hammerman^{1,2}, D. Neil Hayes^{23,20}, Bryan Hernandez², James G, Herman²⁵, John Heymanh²⁰, Oristina Gla²¹, Marcin Imielinski^{1,8}, Bruce Johnson¹, Igor Jurisica²⁷, Jacob Kaufman¹⁰, Farhad Kosan²⁹, Riju Kucheripagil¹, Li David Kweisboyse¹, Man Ladonyi ^{1,10}, Michael S, Lawrenge², Christopher A, Maher², Robertson³, Valeire Racch²⁰, Chris Sander¹⁰, Nikolaus Schultz¹⁰, Rongal Shen³¹, Jill Siegfried²⁰, Hillem Sihan^{1,9}, Ardrox Sivachenko, Carrie Sougnez, Dominik Stül, Joshus Stuart¹⁰, Roman K, Thomas^{2,80,80}, Sandra Tomaszek^{3,8}, Mins-Sound Tsaco³, David Wheeler¹¹, Denina K, Willem D, Tavig^{2,80}, Charles Vaske^{8,90}, John N, Weitssien^{3,90}, Oristin Weisenberg^{2,90}, David Wheeler¹¹, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christopher Willis⁸⁰, Ping Yang^{2,90}, John N, Weissenson^{3,90}, Christin Shader⁵, Deninis Ktüll, Weisenberg^{5,90}, Charles Suske^{8,90}, John N, Weissenson^{3,90}, Christin Shader^{5,90}, David Wheeler¹¹, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christin Shader^{5,90}, David Wheeler¹⁰, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christin Shader^{5,90}, Linker St, Charles Sander^{5,90}, David Wheeler¹⁰, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christin Shader^{5,90}, David Wheeler¹⁰, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christin Shader^{5,90}, David Wheeler¹⁰, Denina A, Wigle^{3,90}, Matthew D, Wilkerson^{3,90}, Christin Shader^{5,90}, David Wheeler¹⁰, Denina A, Willer B, William D, Tavig⁹, Lander Sander^{5,90}, David Wheel


Genome characterization centres: BC Cancer Agency Andy Chu'. Hye-Jung E. Chun', Andrew J. Mungali, F.En Piesanson', A. Gordon Robertson', Payal Sipahimajan', Dominik Stolf', Miruna Balasundaram', Inanc Birof', Yanon S, N. Butterfield', Eric Chuah', Robin J. N. Coope', Richard Corbett', Noreen Dhalla', Ranabir Guin', An He', Carrie Hirst', Martin Hirst', Robert A. Holt', Darfene Lee', Haiyani, Li', Michael Mayo', Richard A. Moore', Karen Mungali, Ya Migri Riyl', Adam Olsheri, Jacqueline E. Schein', Jamed R. Sibobodan', Angela Tann', Nina Thiessen', Richard Vand', Thomas Sakesna', Andrew D. Chemiadd', Staphen E. Schwanz, Fischard Vand', Thomas Sakesna', Andrew D. Chemiadd', Staphen E. Schwanzeher-B Barbara Tabak' Scott L. Carter', Nam H. Pho', Huy Nguyen', Robert C. Onotrio', Andrew Crenshaw', Kristin Ardiel's Pamene Beroukhim', Sanhuz Danag', Janeba Hadjipanayis', Li', Sendi Ardiel's Pamene Beroukhim', Sanhuz Danag', Janeba Hadjipanayis', Li', Sendi School Alexe Frotopopova'i, Sanhuz Danag', Janeba Hadjipanayis', Li', Sendini, Peng-Chiel Chull.', Psall Haseley, Janeba Hadjipanayis', Li', Sendini, Peng-Chiel Chull.', Psall Haseley, Janeba Hadjipanayis', Li', Sendini, Peng-Chiel Chuller, Janeba Haseley, Janeba Hadjipanayis', Li', Sendini, Peng-Chiel Chull.', Psall Haseley, Janeba Hadjisan-Kettering Carte Centre Rossia (La Labe) Agne Malaseley, Janeba Hadjisan-Kettering Carte Centre Rossia', Janeba Hadjisan, Janeba

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Network*


2008 2010 2012 2014



Basic Applied Translational Clinical Commercial/Industry

Need to Look Beyond Publications

CSSI Programs and Evaluations (2004-2014)

CaNano Plan 1

Published

- Phase I Launched
- U54
- R01
- F32/F33

2005

Program Eval

2007

NCI Alliance for Nanotechnology

> Program Renewed

CaNano Plan 2 **Published**

NCI Alliance for Nanotechnology

Phase II Launched

- U54
- U01
- K99/R00 • R25

Program Eval

RFA Program Launched

2004

3 R21/R33

INNOVATIVE MOLECULAR ANALYSIS TECHNOLOGIES

- **Program Renewed** • 3 R21 (3 year)
- 3 R33

• 2 R21 (3 year) • 2 R33

Program Renewed

INNOVATIVE MOLECULAR ANALYSIS TECHNOLOGIES

· 2 R21 (3 year) · 2 R33

Program Eval

3 R21 3 R33

Program Eval

2008

2009

2010

2011

2012

2013

2014

CLINICAL PROTEOMIC

Phase I Launched

• U24

2006

• R01 R21/R33

Program Eval

Program Renewed

Phase II Launched

- · Linked with TCGA

Prospective Electronic Program Eval

Phase I Launched • U54

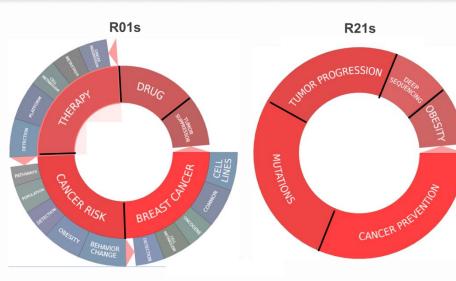
TRAGE **Prospective Electronic Program Eval**

PHYSICAL SCIENCES in ONCOLOGY

Program Renewed*

Phase I Launched

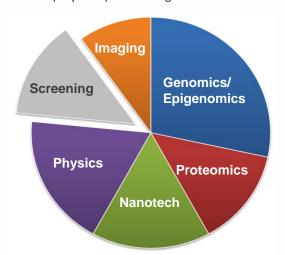
• R01 • R21



Applicant Eval

Ongoing Eval

Join the Team! Upcoming Funding Opportunities



Provocative Questions (\$30M)

Due Date 06/20/14

PQ Program Director emily.greenspan@nih.gov

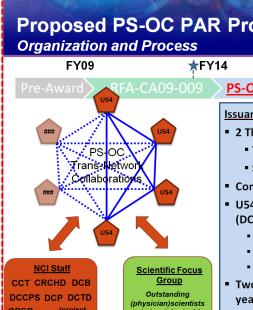
Data from projectreporter.nih.gov

Innovative Molecular Analysis Technologies (\$10.5M)

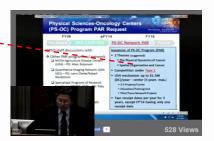
Due Dates 05/20 and 9/18/14

IMAT Program Director anthony.dickherber@nih.gov

Join the Team! **Upcoming Network Funding Opps**


PS-OC Program*

Sean Hanlon, PhD sean.hanlon@nih.gov


Larry Nagahara, PhD larry.nagahara@nih.gov

Proposed PS-OC PAR Program FY'14-I **FY16 PS-OC Network PAR** Issuances of PS-OC Program (PAR)

- 2 Themes (suggested):
 - The Physical Dynamics of Cancer
 - Spatial Organization and Cancer
- Competition under Type 1
- U54 mechanism up to \$1.5M (DC)/year – center (5 years max.)
 - 2-3 Projects/Center
 - Education/Training Unit
 - Pilot/Trans-Network Projects
- Two receipt dates per year for 3 years, except FY'14 having only one receipt date

Discussion from NCI Board of Scientific Advisors (Nov 2013)

http://videocast.nih.gov/launch.asp?18159

http://grants.nih.gov/grants/guide/notice-files/NOT-CA-14-028.html

NCI Alliance for Nano Program (Approved 3/2014)

AR

Cancer Research

Future Opportunities in Cancer Nanotechnology - NCI Strategic Meeting Report

Piotr Grodzinski and Dorothy Farrell Cancer Res Published OnlineFirst January 10, 2014.

> NCI **Alliance** for **Nanotechnology**

Piotr Grodzinski, PhD piotr.grodzinski@nih.gov

Stephanie Morris, PhD stephanie.morris@nih.gov

Summary of Responses to RFI on Directions and Needs for Cancer Nanotechnology Research and Development

The National Cancer Institute Office of Cancer Nanotechnology Research published a summary of its request for information on the Directions and Needs for Cancer Nanotechnology Research and Development. The purpose of the RFI was to gain feedback comments and ideas from the extramural community, as well as NCI Alliance leaders, investigators, trainees and related spinoffs, on the status and future of the field and the role NCI funding has played and should continue to play in the future.

Relevant CSSI Funding Opportunities

- Research Answers to NCIs Provocative Questions- Group A-E (R01)
 - o Due Date: 06/20/2014 RFA-CA-13-016, 018, 020, 022,024 (\$2-3M each RFA, \$10-\$15M total)
- Research Answers to NCIs Provocative Questions- Group A-E (R21)
 - Due Date: 06/20/2014 RFA-CA-13-017, 019, 021, 023, 025 (\$0.5-1M each RFA, \$2.5M \$5M total)
- Early-Stage Innovative Molecular Analysis Technology Development (R21)
 - Due Date: 05/20/2014 and 09/18/2014 RFA-CA-14-003 (\$5M)
- Validation and Advanced Development of Emerging Molecular Analysis Technologies (R33)
 - Due Date: 05/20/2014 and 09/18/2014 RFA-CA-14-004 (\$4M)
- Early-Stage Development of Innovative Technologies for Biospecimen Science (R21)
 - Due Date: 05/20/2014 and 09/18/2014 RFA-CA-14-005 (\$0.8M)
- Validation and Advanced Development of Emerging Technologies for Biospecimen Science (R33)
 - Due Date: 05/20/2014 and 09/18/2014 RFA-CA-14-006 (\$0.7M)

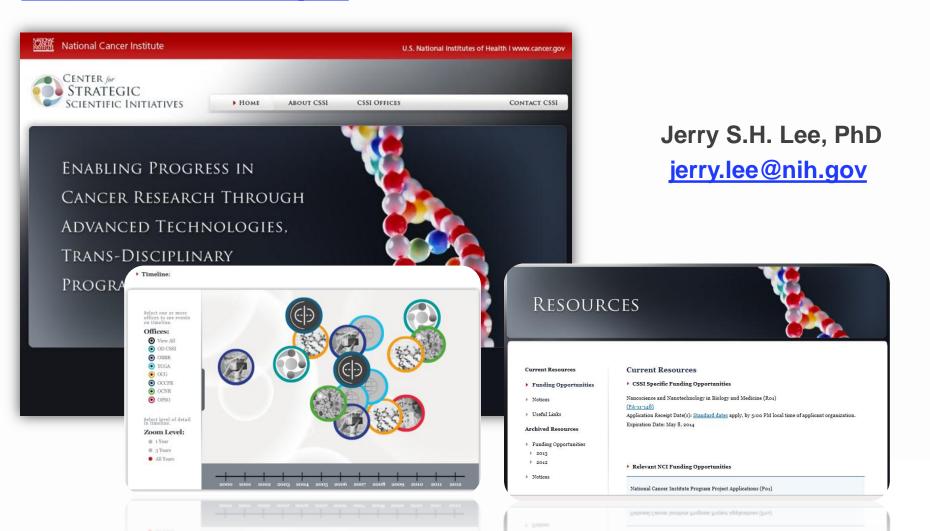
Relevant NCI Funding Opportunities

- Innovative Molecular Analysis Technology Development for Cancer Research and Clinical Care (R43/R44)
 - Due Date: 5/28/2014 and 11/4/2014 PAR-13-327
- Early-Stage Development of Informatics Technology (U01)
 - Due Date: 6/18/2014 and 11/18/2014 PAR-12-288
- Advanced Development of Informatics Technology (U24)
 - Due Date: 6/18/2014 and 11/18/2014 PAR-13-294
- Imaging and Biomarkers for Early Cancer Detection (R01)
 - Due Date: 7/10/2014 and 12/11/2014 PAR-13-189
- Image-guided Drug Delivery in Cancer (R01)
 - Due Date: 6/19/2014 and 11/19/14 PAR-13-185
- Biomarkers for Early Detection of Hematopoietic Malignancies (R21/R01)
 - Due Date: 6/16/2014 (R21) & 7/5/2014 (R01) [Standard] PA-12-220 (R21) & PA-12-221 (R01)

Acknowledgements/Thanks to the "Secret Ingredients"

Clinical Sciences

Physical Sciences


Life Sciences

Learn More About Us...

http://cssi.cancer.gov

IIIIII NIH Early Career Reviewer Program

PURPOSE

- Train and educate qualified scientists
- Help emerging researchers advance their careers by exposing them to review experience
- Enrich the existing pool of NIH reviewers

REQUIREMENTS

- ≤ 1 mail-in review
- Faculty appointment or equivalent
- Active independent research program
- Recent publications

Interested in serving as an NIH reviewer?
Send your CV to petersonjt@csr.nih.gov

Hope to meet you at the conference. Thomas Peterson

(Chief of Bioengineering Sciences and Technologies)