AC 2010-1008: AN AGENT-BASED MODEL OF ION EQUILIBRIUM

Anca Stefan, Lawrence Technological University

Dr. Stefan earned a Diploma (1996) and M.S. (1997) in Electrical Engineering from the

"Politehnica" University of Bucharest in Romania. She went on to earn a Ph.D. in Biomedical
Engineering from The Ohio State University in 2005.

© American Society for Engineering Education, 2010

T'GET'ST abed



An agent-based model of ion equilibrium

Abstract

An agent-based model for ion equilibrium was constructed in order to enhance student
understanding of how ions reach equilibrium as they flow through a permeable cell membrane.
The topic is taught in a senior level course in Biomedical Engineering, which is a required course
for the students in the electrical concentration of the program. The course, entitled Bioelectrical
Engineer Physics, is also cross-listed as a Technical Elective in the Electrical and Computer
Engineering curriculum. The purpose of the course is to teach the principles of bioelectricity and
computer modeling of bioelectrical phenomena and is aimed at students with an electrical
engineering background. Therefore, it is assumed that not all students have taken a course in
Physiology. The model was designed to include both diffusion according to a chemical gradient
(concentration) and flow according to an electrical gradient. Students were able to analyze the
diffusion of ions due to the concentration gradient only, and then include the electrical gradient
as well. Since the model allows the user to include interaction among ions, the students were able
to understand that the mechanisms that lie at the origin of cellular excitability are more complex
than the behavior predicted by the Nernst equation. They were also able to suggest
improvements to the model, and point out some of its faults.

Introduction

This paper presents an agent-based model for equilibrium of charged particles (ions) that exist on
either side of the mammalian cell membrane. Since some of the students enrolled in the class are
not part of the Biomedical Engineering program, generally they have not taken more advanced
life science courses, such as Physiology. Consequently, there is an increased need to facilitate
their understanding of biological processes.

The Nernst equation is a mathematical expression of the equilibrium of one species of ions to
which the cell membrane is permeable. The membrane voltage depends on the concentrations of
ions in the intracellular and extracellular media:
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where Vi, is the membrane voltage, defined as the potential difference between the intracellular
and extracellular media, in this order, and [X]e. and [X]; are the extracellular and intracellular
concentrations of ion X, and Z is the valence of ion X.

The ions flow through the membrane according to an electrochemical gradient'. At equilibrium
there is no net flow of ions, because the electrical gradient (created by charge) and the chemical
gradient (created by ion concentration) compensate. It is known that the Nernst equation has a
major limitation in that it can only take one ion species into account, whereas the membrane
voltage at equilibrium is the interplay of several ion species, mainly sodium and potassium in
certain excitable tissues. For this reason, the model in discussion was designed to incorporate at
least one ion species.
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Description of the model

Recently it became evident that the transport of ions across a membrane cannot be described as a
flux of particles individually controlled by their interaction with the electric field, but as a
cooperative process involving the ions, co-migrating water molecules and even atomic
components of the channel (or pore), collectively generating a virtual entity named “permion”.
This ‘quasi-particle’ is the emergent result of a multi-body system, which classical electro-
mechanics cannot account for. As a first step towards a novel modeling approach of these
collective phenomena in ion transport, an agent-based platform was used here, designed for
describing the swarming behavior, such as flocks of birds or schools of fish’.

Agent-based modeling is a class of computational models that simulates the behavior of a system
by modeling the actions and interactions of its individual constituents. The constituents are called
agents, and they operate simultaneously and interact with each other. The simple rules that

govern the behavior of the agents can generate very complex behaviors of the system as a whole.

A computer model was built using an agent-based modeling approach, and assigned as a class
project. The software of choice was Netlogo®, developed by the Center for Connected Learning
and Computer-Based Modeling at Northwestern University (Evanston, IL). Netlogo was elected
for classroom use because it was originally developed for educational purposes, and students find
it accessible. It is also in use at many academic institutions. Moreover, it can be downloaded for
free and installed easily. Thus, for our purpose, Netlogo has several advantages over other
simulation software, such as Matlab (The Mathworks, Inc), for which a license must be
purchased.

First, the students were presented with a simpler version of the model, consisting of only one
species of ions. The model was further adapted to include two species, namely sodium and
potassium. The cell was modeled as two compartments, the intracellular medium and the
extracellular medium. The two compartments were separated by a membrane which allows ions
to flow only through ion channels. The number of ion channels can be adjusted.

In search for emerging, collective properties of particle transport, the interaction amongst ions
was modeled using an approach similar to that of the Flocking model from the Netlogo Model
Library®. The Flocking model is an attempt to simulate the flocking of birds. It describes the
interaction among the agents that form a system, based on several parameters: the minimum and
maximum distance from the nearest neighbor, the amount of rotation for a certain agent to move
towards or away from a neighbor, and the maximum distance at which an agent can “sense” its
neighbors. The members of the system (the agents) interact by moving towards each other or
away, if they come too close. Flocking is a behavior that can be extended to other dynamic
systems, and the ability to manipulate the interaction parameters allows for flexibility in
modeling. Therefore, this model was considered as an appropriate starting point to model the
dynamics of the constituents of the cell.

The electrical gradient was implemented mathematically in the model as the electrostatic field
created between a positive and negative charge. A similar approach can be found in OBS model
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available from the Netlogo Community Models, which uses the potential field approach to avoid
obstacles and find targets®. In the model described here, for each species of ions a corresponding
electrostatic field was defined, its polarity depending on the Nernst equilibrium potentials:
positive for sodium and negative for potassium. As an example, to describe the flow of
potassium ions according to the electrical gradient, the field was created between a negative
target situated in the intracellular medium and a positive target situated in the extracellular
region. The ions move according to the direction of the electrostatic force. The other component
of ion flow, the diffusion according to the chemical gradient, was simulated by setting the
interaction parameters such that the tendency of the agents to aggregate did not overcome the
random motion of the agents. Specifically, the minimum separation and the vision parameters
were adjusted.

Results and Discussion

First, the students were allowed to become familiar with the model by experimenting with the
version that included only one species of ions. The students worked in teams of two or four,
with at least one biomedical engineering student in each group. The class size of this course is
generally small, between 4 and 6 students, given that it is a senior level course in a new program.
This year the mixture of students was interesting, two biomedical engineering students, one
computer engineering student and one electrical and computer engineering student. They worked
best in the four-people format. They were allowed 45 minutes to run an experiment and were
asked to present their conclusions as a one or two-page report. Before running simulations, the
students set up the model, by choosing the intracellular and extracellular concentrations, the
electrical potential of the intracellular and extracellular region, the size and number of ion
channels. In this model, concentrations are obtained simply by counting the number of ions.
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Figure 1. The relationship between the time steps needed for the system to reach equilibrium
and the value of potential difference between the intracellular and extracellular medium.

The students observed that, as the potential difference between the intracellular region and
extracellular region was increased, the time needed for the ions to flow from one chamber to the
other decreased (Figure 1) and they correctly attributed it to the fact that the electrical force
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dominated over the diffusion process. They also observed that running the simulation with two
ion channels in the membrane did not significantly alter the time needed to reach equilibrium
(when flow of ions stops) and they attributed that to the random nature of the model. The values
ranged between 442 and 678 time steps for one channel, and between 410 and 586 for two
channels.

Specific student suggestions included: the interaction among ions must be modeled as a weak
interaction that does not force them to aggregate within a small region; the potential difference
between the intracellular region must be changed depending on the concentration of ions,
because the amount of charge in either of the regions depends on the number of ions present.
Their comments showed that they indeed understood the relationship between the equilibrium
potential and ion concentration, according to Nernst equation (1).

For their final project, the students were asked to experiment with a version of the model that
included two ions, sodium and potassium. At this point, they were familiar enough with the
model that they could attempt experiments on their own. In the first part of the project they
removed the electrical gradient by setting the potential difference between the intracellular and
extracellular chamber to zero. The diffusion process was analyzed. The students noticed that
equilibrium of both species of ions was attained after approximately 500 time steps, when most
ion flow stopped and intracellular and extracellular concentrations for both species were
approximately equal. Fluctuations in the number of ions of either side of the membrane were
observed, but considered small enough to be reasonable.

Time Steps | ntracelular Extracdlular Intraceliular Extracdlular
Pomssum Potasdum Sodium Sodium
73 200 47 15 111
184 168 70 31 95
456 131 116 T2 54
895 131 116 57 ag
1400 142 105 64 a2
2190 128 119 61 65
8380 145 102 57 69

Figure 2. The above table was compiled by one of the students. It shows values of the
intracellular and extracellular concentrations of the two ions at different time steps. In this
experiment, the ion flow was according to the chemical gradient only. The findings were
consistent among all students that the values stabilize around 500 time steps.

In the second part of the project, the flow of ions due to both the electrical and chemical
gradients was analyzed. The students were asked to vary the concentrations of sodium and
potassium in both the extracellular and intracellular region and characterize the behavior of the
system as a result of these variations. The first observation was that equilibrium was reached
faster when both gradients (electrical and concentration) were active. Most students defined the
time to reach equilibrium as the time when concentrations stabilize. This time was used as the
output variable for each of their tests. It was interesting to note that they understood that
concentrations of ions in both chambers do not have to be equal, because of the interplay
between the two types of forces, chemical and electrical.
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Figure 3. Shown is of the dynamic system in steady state. Both gradients were turned on. The
green agents represent sodium ions, and the pink agents represent potassium ions. The left
chamber represents the intracellular medium, and the right chamber represents the extracellular
medium. The membrane is shown in blue, with one adjustable opening (ion channel selective to

both sodium and potassium). The gray-filled rectangles represent the locations of the source and
sink of the electric field.
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Figure 4. A student showed her results from one simulation experiment where the potassium
extracellular concentration was increased. The student found that the system reached steady state
after approximatively 400 steps. Na-i and Na-e denote the intracellular and extracellular sodium
concentrations, and K-i and K-e denote the intracellular and extracellular potassium
concentrations. The top two traces represent K-i and K-e, and the bottom two are Na-e and Na-i.

To analyze long term stability the students ran simulations for a long time. Some even chose to
run for 24 hours. The common findings were that once stability is reached, it is maintained if no
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other factors interfere. One student observed deterministic behavior in potassium ions and not
sodium, and attributed it to additional factors involved with the potassium travel, and possibly
the larger number of potassium ions. Another interesting issue that was raised was the fact that
the model is spatially bounded, and changing the concentrations of ions should be done while
keeping the total number of ions constant.

Suggestions for improvement of the model included: some indications regarding a better control
of ion flow through the pore(s) in the membrane, and a suggestion to investigate certain
repetitive patterns noticed after long simulation times.

The following learning outcomes were envisioned:

(1) help students understand a process that occurs at cellular level and is therefore difficult to
observe. This is especially important for students without a biomedical engineering background.
(2) help students understand that in many dynamic systems, the behavior is a result of the
interaction among components, and randomness is a fact of life.

(3) build teamwork skills by allowing students to work in teams and submit a common report.
(4) encourage creative thinking by allowing them define the parameters to be measured in their
simulation experiments and by prompting them to submit suggestions for improvement of the
software.

Based on the above mentioned observations, these outcomes were met. The students were able to
obtain a better understanding of the topic, even though some of them had never taken a course in
Physiology. They also obtained an insight of how dynamic systems work. The agent-based
model stimulated creative thinking in that students were allowed some flexibility in how to
change the parameters of the model and how to analyze the way a system reaches steady state.
Moreover, the positive feedback received by the instructor confirmed that this was also an
enjoyable experience for the students. Future improvements envision the inclusion of ion
selective channels, which will make the model more realistic. With this modification, membrane
permeability to various ions, as in the Goldman-Hodgkin-Katz equation, could be modeled.
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