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An Alternative Form of Euler’s Equation for the Rotational 
Dynamics of a Rigid Body Confined to Planar (2-D) Motion 

Introduction 

Instructors of engineering mechanics who have previously taught statics and dynamics courses 

over a sustained period of time are likely familiar with the practices listed below, which address 

the conventional evaluation of the appropriate moments-of-forces/couples equation that governs 

the rotational behavior of a rigid body: 

  Statics:  Moments may be evaluated about axes through any selected point in space, which 
is typically on, in, or nearby the rigid body of interest. 

  Dynamics:  Moments should be evaluated about either (a) axes through the mass center of 
the body, or (b) a fixed axis about which the body is constrained to rotate (if applicable). 

This article presents another option for evaluation of the moments-of-forces/couples equation for 

the targeted case of dynamics.  The scope of application of the method proposed herein will be 

restricted to planar (2-D) motion of rigid bodies, though it is possible to extend this method to 

spatial (3-D) motion as well.  However, it is generally more involved in this context, and it might 

be less suited for (and of less interest to) engineering students at the undergraduate level. 

In this method, the moments-of-forces/couples equation may be evaluated at any point on or in 

the rigid body, but it must be an embedded point at which the kinematics of the body motion is 

either already provided or readily assessed.  However, as will be discussed and demonstrated in 

this article, the equation associated with this method lends itself especially well to problems that 

involve a composite rigid body (i.e., a set of rigid elements which are rigidly joined together). 

Two illustrative examples are considered in this article to both introduce and apply the method 

advocated.  These examples will reveal the advantage of moment evaluation about a point that is 



different from the mass center of the body.  When the method is properly applied, the associated 

effort is typically less involved than is experienced in the traditional practices because locating 

the position and assessing the motion of the mass center is often challenging in many problems. 

Some alternative forms of the moments-of-forces/couples equation for the rotational dynamics of 

a rigid body, which is frequently called Euler’s equation in the literature, may be found in [1–3].  

The author has examined standard textbooks and other technical references, and it appears that 

the specific form of the equation presented in this article is novel and useful. 

Simple/Single Rigid-Body Case 

From the analysis of a general system of particles subjected to both external and mutual-internal 

forces (for which a modest particle-interaction restriction is assumed), the equations that govern 

the translational and rotational dynamics of the system are most commonly expressed [4–6] as 

 GmF a  (1) 

 G GM H  (2) 

where the subscript G  identifies a quantity associated with the mass center of the system, while 

F , GM , and GH  respectively denote the total external force acting on the system, total moment 

about G  of the external forces acting on the system, and total angular momentum of the system 

about G  at any instant t  in time.  As customarily adopted in engineering and physics, each dot 

above a quantity denotes a derivative operation with respect to t  applied to that quantity.  Also, 

m  denotes the total mass of the system, which is presumed to be fixed since (in most situations 

of practical interest) the system consists of a well-defined aggregate of particles whose collective 

behavior will be assessed as the system state dynamically evolves over time. 



Consider a general point P .  From basic principles of mechanics, it can be easily shown that 

 P G G/P  M M r F  (3) 

where PM  denotes the total moment about P  of the external forces acting on the system, while 

G/Pr  denotes the relative position vector of G  with respect to P , for which G/P G P r r r .  Then, 

after performing substitutions with Eqs. (1) and (2), Eq. (3) becomes 

 P G G/P G

G G/P G

( )

( )

m

m

  

  

M H r a

H r a


  (4) 

Next, suppose that the system of particles corresponds to a rigid body confined to planar (2-D) 

motion, and that point P  is embedded on/in this body.  When such a body is also geometrically 

symmetric about the reference plane in which the motion occurs, it is well established [7] that 

 G GIH α  (5) 

Furthermore, general rigid-body kinematics [8] enables Ga  to be alternatively expressed as 
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( )
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a a α r ω ω r

a α r ω r ω ω ω r

a α r r
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since 2 ω ω  and G/P 0 ω r  because ω k  and G/P G/P G/Px y r i j  in the case of planar 

motion.  Of course, α  and ω  denote the angular acceleration and angular velocity of the body; 

GI  denotes the mass-moment of inertia of the body about G .  The useful vector identity [9] 

 ( ) ( ) ( )     a b c a c b a b c  (7) 



has been utilized to simplify the triple vector product G/P( ) ω ω r  in Eq. (6).  With the result of 

Eq. (6) and the identity in Eq. (7), it is observed that 
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 (8) 

since G/P G/P r r 0 , 2
G/P G/P G/Pr r r , and G/P 0 r α  because α k  and G/P G/P G/Px y r i j  in 

the case of planar motion.  Consequently, based upon Eqs. (5) and (8), Eq. (4) becomes 

 P P G/P P( )I m  M α r a  (9) 

since 2
P G G/PI I mr   via the parallel-axis theorem [10], where G/P G/Pr  r .  It is beneficial to 

recast Eq. (9) into a slightly different form, which has an intriguing interpretation: 

 P G/P P P( )m I  M r a α  (10) 

This result suggests that it is possible to evaluate the moments-of-forces/couples equation about 

an arbitrary (but embedded) point P  if an extra term ‘produced’ by an inertial force P( )m a  is 

included.  This apparent force is ‘applied’ at the mass center G  of the body (as indicated by the 

relative position vector G/Pr ), and it may be interpreted as a reactive (i.e., virtual) contribution to 

the moment about P  already produced by the external (i.e., actual) forces acting on the body.  It 

is vital to understand that this apparent force is not included in the evaluation of Eq. (1), which 

only accounts for forces that are actually exerted on the body. 

Finally, a closer inspection of Eq. (10) reveals that it reduces to the familiar forms expected for 

the moments-of-forces/couples equation when P  is (a) the mass center of the body ( G/P r 0 ), or 

(b) a fixed point ( P a 0 ).  Hence, Eq. (10) may be regarded as a generalization of the equation 



that governs the rotational dynamics of a rigid body confined to planar motion.  Of course, this 

equation must be supplemented with Eq. (1) in order to completely characterize the dynamics of 

the rigid body of interest. 

Composite Rigid-Body Case 

Consider a rigid body composed of n  rigid elements which are rigidly joined together.  Suppose 

that an arbitrary point P  is embedded on/in one of the elements of this body.  Then the rotational 

dynamics of this composite rigid body can be described by a modified form of Eq. (10) which is 

adapted for this kind of body.  Based upon the development of Eq. (10), it can be concluded that 

an equation governing the rotational motion of the entire set of elements is given by 

 P P P P

1 1

( ) ( )
n n

k k k

k k

m I
 

   
      
      
 M r r a α  (11) 

since Eq. (10) may be separately applied to each rigid element, and then the equations obtained 

are summed together to yield Eq. (11).  kr  identifies the position of the mass center of the -thk  

rigid element with mass km  (see Figure 1), which is typically located by inspection, whereas kI  

denotes the mass-moment of inertia of the -thk  element about this same location, from which 

 2
P P,( )k k k k k kI I m d d   r r  (12) 

The selection of point P  is based upon convenience, as guided by insight and experience, but the 

particular point selected should provide a definite advantage (for the analysis) over other points 

which could have been chosen.  As in the former case considered, the composite rigid body must 

be confined to planar motion, and it must be symmetric with respect to the reference plane if the 

external forces that contribute to PM  act only parallel to this plane [11]. 



For this kind of body, it is typically easier to apply Eq. (11) than Eq. (4) since the need to locate 

the mass center for the overall body is obviated, and it is presumed that the evaluation of Pa  is 

much simpler (or much more convenient) than the evaluation of Ga .  Furthermore, based upon 

the definition of the mass center for the overall body, two successive time-differentiations yield 

 G G

1 1

n n

k k k k

k k

m m m m
 

   r r a a  (13) 

in which case Eq. (1) becomes 

 
1

n

k k

k

m


F a  (14) 

In some situations, the ka  can be directly assessed due to constraints on the motion of the body.  

In others, it is easier to evaluate the ka  for Eq. (14) in terms of Pa  via the kinematic relation 

 2
P P P( ) ( )k k k     a a α r r r r  (15) 

In summary, Eqs. (11) through (15) are generally preferred for the analysis of a composite rigid 

body, and it is essential to acknowledge that F  and PM  respectively denote the total (resultant) 

force and total moment about P  produced by the external forces acting on any of the elements of 

this kind of body. 

Some objects are fabricated from a single piece of homogeneous stock material but actually can 

be viewed/treated as a composite rigid body due to their complicated shape.  In these situations, 

it is natural to virtually partition such an object into a set of continuous rigid elements, which are 

geometrically evident and rigidly joined together, for the purposes of design and/or analysis.  In 



this scenario, the presence of composite rigid bodies might be expected in many applications. 

Examples of the Method Proposed 

Each of the examples considered below involve rigid bodies for which the path of motion of the 

mass center is non-trivial, so it is preferable to select an alternate point at which the equations of 

motion for the rigid body under consideration may be evaluated.  A simple/single rigid body will 

be initially examined, and a composite rigid body will be subsequently examined. 

EXAMPLE PROBLEM 1 – A Simple/Single Rigid Body 

A slender uniform bar of mass bm  and length bl  is constrained so that its ends must move along 

support surfaces (or guide rails) without incurring any frictional effects, as depicted in Figure 2.  

The angle   uniquely identifies the configuration of the bar.  The end sliders are assumed to be 

sufficiently small so that both their size and mass may be neglected.  The bar is released from a 

state of rest, with 30    at 0t  .  The case in which gravity alone drives the motion of the bar 

is investigated.  Evaluate the reaction forces A B,{ }R R  and angular acceleration   at the instant 

in time when the bar is released.  The data considered for this problem consists of b 50 lbmm  , 

b 4 ftl  , 45   , and 0  .  Accordingly, 2
b 50/32.174 1.554 (lbf s )/ftm    . 

Constraints and Relations 

As a direct result of the geometric constraints on the bar motion, simple vector relationships and 

two successive time-differentiations yield 

 1 1
G A B G A B2 2( ) ( )    r r r a a a  (16) 

Other kinematic constraints for the two-dimensional motion of the falling/sliding bar include 



 
GA A

B B

,
(cos ) (sin )[ ]

x ya aa

a   

 
  

a i ja i

a i j α k
 (17) 

When selected relations from Eqs. (16) and (17) are combined, it can be shown that 

 1 1
A B B2 2cos , sin[ ]x ya a a a a      (18) 

However, as revealed by the kinematic constraint below, Aa , Ba , and   are related: 

 2
B A B/A B/A B/A b; ( cos ) (sin )[ ]l        a a α r r r i j  (19) 

Taken together, the relations in Eqs. (17), (18), and (19), along with 0  , yield 

 

cos cos 1
A btan btan 2

cos 1
bB b 2sin

sin sin

(cos )

[ ] [ ]x

y

a l a l

a la l

 
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


   

 

   

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 (20) 

From the parallel-axis theorem, the mass-moment of inertia of the bar about end A  is given by 

 

2
A G b G/A

2 21 1
b b b b12 2

21
b b3

( )

I I m r

m l m l

m l

 

 
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 (21) 

For the reference frame adopted (see Figure 2), the relevant external forces acting on the bar are 

identified from the free-body diagram and expressed as 

 A A
b b

B B

( ) ,
(sin ) (cos )[ ]

R
m g

R  


 
 

R j
W j

R i j
 (22) 

Newtonian/Eulerian Equations of Motion 



From the free-body diagram for the bar, with Eqs. (17), (20), and (22), Eq. (1) becomes 

 
B B A b

cos 1 1
b b b btan 2 2

(sin ) (cos ) ( )

sin (cos )[ ]
R R R m g

m l m l


 

   

  
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i j j j

i j
 (23) 

which, by equating corresponding components on each side, yields the scalar equations 

 cos 1
B b btan 2(sin ) sin 0[ ]R m l

      (24) 

 1
A B b b b2(cos ) (cos )R R m l m g      (25) 

The advantage of the method advocated herein is revealed in the evaluation of the special form 

of the moments equation, which is Eq. (10) for this case.  In this problem, end A  of the bar will 

serve as the reference point P  for this equation.  If moments of forces indicated in the free-body 

diagram (as well as the inertial force depicted) are taken about end A , then AR  is not involved, 

which enables Eq. (10) to be more easily evaluated as 

 G/A b B/A B G/A b A A( )m I     r W r R r a α  (26) 

where 1
G/A B/A2r r .  When results from Eqs. (17) through (22) are combined with Eq. (26), and 

the indicated operations are performed, the equation obtained involves only terms based upon the 

unit vector k , so this equation can be simply expressed in the scalar form 

 
1

b b B b B b2

cos 21 1
b b b b btan 2 3

cos ( cos ) ( cos ) ( sin ) ( sin )

sin sin

( )

( )[ ]

m g l R l R l

m l l m l


    

   

 

  
 (27) 

or, equivalently, 



 cos1 1 1
B b b b3 2 tan 2cos( ) (sin ) sin (cos )[ ]{ }R m l m g

           (28) 

where the identity cos( ) cos cos sin sin         has been utilized.  Equations (24), (25), 

and (28) form a set of relations for the unknown variables A B,{ }R R  and  .  At this juncture, it 

is prudent to enter the data given for the parameters within these relations, which become (when 

reordered) the following system of equations: 

 
B

B

A B

0.9659 0.05080 21.65

0.7071 6.937 0

0.7071 2.692 50

R

R

R R





 
 

  
 (29) 

Because the first two equations involve only the variables BR  and   (which is made possible by 

the special form of the moments equation utilized above), they can be jointly solved to yield 

 A
B

2.297 rad/s
27.88 lbf

22.53 lbf
R

R

 
 


 (30) 

where the value of AR  is an immediate consequence of the last equation in Eqs. (29). ■ 

Remark:   Example Problem 1  is best suited for an introductory-level dynamics course. 

EXAMPLE PROBLEM 2 – A Composite Rigid Body 

Consider a composite rigid body consisting of a slender uniform bar which is rigidly joined to a 

disk (of uniform thickness) that rolls without slipping on a horizontal planar support surface, as 

depicted in Figure 3 (where basic dimensions are indicated).  The disk and bar are homogeneous 

in material composition with masses dm  and bm  (respectively).  The disk-bar system is confined 

to planar (2-D) motion, and its configuration is uniquely identified by the angle  . 



In addition to the effect of gravity, the system is subjected to a specified force of magnitude aF , 

which may be time-varying, but it always acts in the horizontal direction.  Develop the standard 

equations of motion for this system.  Also, in the special case with a 0F  , determine the natural 

(undamped) frequency n  for small-amplitude oscillations of the system due to gravity alone. 

Constraints and Relations 

Based upon the rolling-without-slipping condition for the disk on the support surface, it is found 

that the kinematics and relative positions of various points on the system are governed by 

 P d P d P dx r v r a r         (31) 

 1
Q/P b C/P d2 sin cos ,[ ]l r     r i j r j  (32) 

where points P  and Q  identify the respective mass centers of the disk and bar, and C  identifies 

the point of contact (always directly below P ) between the disk and the support surface.  Other 

kinematic constraints for the two-dimensional motion of the disk-bar system include 

 P P

P P

,
v

a




  
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v i ω k

a i α k


  (33) 

The (separate) mass-moments of inertia for the disk and bar are given below.  These results then 

may be combined via the parallel-axis theorem to obtain the total mass-moment of inertia for the 

disk-bar system (composite rigid body) about point P  as 

 2 21 1
P disk d d d Q bar b b b2 12,( ) ( )I I m r I I m l    (34) 



 

P body P disk P bar

2
d b b Q/P

2 21 1
d d b b2 3
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I I I

I I m r
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 
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 (35) 

For the reference frame adopted (see Figure 3), the relevant external forces acting on the overall 

body are identified from the free-body diagram and expressed as 

 d d f f
a a

b b n n

( )
, ,

( )

m g F
F

m g F

  

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W j F i

F i
W j F j

 (36) 

Newtonian/Eulerian Equations of Motion 

As previously introduced, Eq. (14) was specifically developed to facilitate an assessment of the 

translational motion of a composite rigid body.  In this instance, Eq. (14) with 2n   becomes 

 d P b Qm m F a a  (37) 

where Pa  is evaluated as indicated in Eqs. (31) and (33), while Qa  is obtained via Eq. (6) as 
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Q P Q/P Q/P

21 1
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Based upon the free-body diagram provided in Figure 3, the expressions for the external forces 

given in Eqs. (36), and the expressions for Pa  and Qa  obtained above, the i  and j  components 

on each side of Eq. (37) yield the scalar equations 

 21
f a d b d b b2( ) sin cos( )F F m m r m l            (39) 



 21
n d b b b2( ) cos sin( )F m m g m l          (40) 

As previously introduced, Eq. (11) was specifically developed to facilitate an assessment of the 

rotational motion of a composite rigid body.  In this instance, Eq. (11) with 2n   becomes 

 Q/P b C/P f d P/P b Q/P P P disk P bar( ) ( ) ( )[ ]m m I I       r W r F r r a α  (41) 

where P/P r 0 , a consequence of the particular choice of the reference point P , which happens 

to coincide with the mass center of one of the rigid elements of the composite rigid body.  Based 

upon Eqs. (31) through (36) and the free-body diagram, Eq. (41) [just as in the case of Eq. (26), 

only vector components that involve k  survive] yields the single scalar equation 

 2 21 1 1 1
b b f d b d b d d b b2 2 2 3sin cos ( )m g l F r m r l m r m l         (42) 

This equation is already greatly simplified because three of the five external forces acting on the 

system do not produce moments about point P  (because their lines of action all pass through P ), 

which is the primary reason for the selection of that particular point as the reference point. 

Equations (39) and (42) can be combined to easily eliminate fF , and thereby obtain 
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or, equivalently, 

 
2 2 23 1 1
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Equations (39), (40), and (44) are the standard equations of motion for the disk-bar system when 

aF  is specified.  At this juncture, it must be emphasized that the development of Eq. (44) in the 

manner presented above is far superior to the conventional approach, which proceeds by starting 

with Eq. (2) in the form which is strictly valid for planar (2-D) motion:  G GIM α .  The author 

has taken this approach and confirmed that identical results are indeed obtained, but it involves a 

somewhat arduous and protracted effort (as may be verified by interested readers). 

Next, consider the case in which (a) a 0F  , and (b) the system is subjected to initial conditions 

o( , ) ( , 0)    at 0t  , with o 60   .  In this case, the system will manifest small-amplitude 

angular oscillations for which o  .  Also, under these conditions, it is well known [12] that 

 2sin
; (sin ) 0

cos 1

 
 







  (45) 

As a result, Eq. (44) then approximately becomes 
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m g l
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This ordinary differential equation corresponds to simple harmonic motion [13].  Therefore, n  

is an estimate, since this equation is only an approximation, of the natural (undamped) frequency 

for small-amplitude oscillations exhibited by the disk-bar system when it behaves as a vibratory 

system driven by gravity alone ( a 0F  ). 

It also should be mentioned that Eqs. (39) and (40) may be utilized to enforce f nF F , which 

establishes a necessary condition upon   in order to achieve the rolling-without-slipping motion 

presumed to occur, apart from which the entire analysis conducted above is invalid.  This inquiry 



has been pursued by the author, and it reveals some intriguing results for the frictional quantities 

fF  and  , but it is beyond the intended scope of this article. ■ 

Remark:   Example Problem 2  is best suited for an intermediate-level dynamics course. 

Pedagogical Effectiveness and Learning Enhancement 

At his academic institution, the author teaches two distinct undergraduate dynamics courses: 

  Dynamics I – the traditional course in an introductory engineering mechanics sequence 

  Dynamics II – an intermediate-level course; covers further theory, topics, and methods 

The method proposed herein is briefly introduced in Dynamics I, when the consideration of rigid 

bodies is undertaken and after several examples (involving simple/single rigid bodies) have been 

solved via the traditional method of analysis for such bodies:  Eqs. (1) and (2).  This exposure is 

intended to emphasize to students that greater care must be exercised when applying a moments 

equation in dynamics as compared to the relative ease of application experienced in statics.  But 

students in Dynamics I are not expected (in terms of learning objectives) to demonstrate mastery 

of the method advocated in this article; it is merely offered as an enhancement to basic methods. 

When the method is presented in this course, most students are generally favorable toward it, and 

some students even express that they would prefer to learn the generalization of Euler’s equation 

at the beginning of the material on rigid-body kinetics because of its flexibility for evaluation.  A 

survey instrument was developed to measure these sentiments, and it was administered during a 

recent academic term in order to acquire definitive student feedback concerning opinions on both 

the method and the course for assessment purposes.  The survey was voluntarily completed, and 

responses were anonymously submitted.  The survey instrument appears in the Appendix of this 

article; the questions (‘Inquiry Items’) are reproduced below for the convenience of the reader. 



Inquiry Items: 

 1. I understand the difference between the alternative form of Euler’s equation and the other 
two standard forms of this equation (for the mass center and a fixed point, respectively) covered 
in previous class lectures. 

 2. I recognize that the alternative form of Euler’s equation could offer an advantage over the 
other two standard forms of this equation for the solution of some dynamics problems. 

 3. With some further examples, guidance, and practice, I believe that I could effectively apply 
the alternative form of Euler’s equation to solve certain dynamics problems. 

 4. Although ENGR 212 has been a challenging course in my engineering degree program, I 
have enjoyed learning the basic concepts and principles of introductory dynamics. 

 5. I am interested in taking a higher-level dynamics course, as an elective engineering course, 
after I have completed ENGR 212. 

 Table 1.  Survey Results for Opinions on an Alternative Form of Euler’s Equation 

Inquiry Item 
Definitely 

Agree 
Partially 
Agree 

Neutral 
Partially 
Disagree 

Definitely 
Disagree 

#1 50.0% 27.3% 13.6% 9.1% 0.0% 

#2 59.2% 31.8% 0.0% 4.5% 4.5% 

#3 63.7% 22.7% 9.1% 0.0% 4.5% 

#4 54.6% 31.8% 9.1% 4.5% 0.0% 

#5 22.7% 27.3% 27.3% 22.7% 0.0% 

 Note:  22 respondents completed the survey from a class membership of 24 students. 

From these results, it is evident that over 90% of respondents recognize the potential usefulness 

of the alternative form of Euler’s equation, and upwards of 85% of this same group believe they 

could effectively apply this alternative form to solve dynamics problems.  It seems to be the case 

that the generalized form of Euler’s equation has definite merit and could be deserving of closer 



attention (and adoption) by course instructors and textbook authors of engineering mechanics. 

In contrast, in Dynamics II, the method proposed herein facilitates the study of various forms of 

Euler’s equation for the rotational dynamics of a rigid body which are needed to treat problems 

involving 3-D motion.  When first presented in the context of problems involving 2-D motion, it 

offers the students a simpler application scenario which can be later extended and generalized to 

more sophisticated situations.  Also, it is not until Dynamics II that students are exposed to more 

complicated systems such as composite rigid bodies, where the method advocated in this article 

has been shown to be very advantageous (in the last example considered). 

Because the generalization of Euler’s equation is a required topic in Dynamics II, the opinions of 

the students (enrolled in this course) regarding this topic have not been formally assessed, but it 

can be reported that these students are able to easily assimilate and apply the method involved. 

Final Remarks 

It is the sincere hope of the author that the alternative form of Euler’s equation presented in this 

article, including the versions for the simple/single and composite rigid-body cases, will become 

widely known through this venue and potentially be advocated in popular engineering mechanics 

textbooks.  The greater flexibility it affords for the evaluation of moments produced by forces is 

practicable and convenient for dynamics problems involving various kinds of rigid bodies. 

Even though it is possible to utilize the conventional approach in lieu of the proposed approach, 

it is worthwhile to present this option in engineering mechanics courses.  With over two decades 

of experience as an engineering, mathematics, and physics educator, the author is convinced that 

there is an enduring benefit in exposing students to multiple analytical approaches, especially for 

students who desire a deeper understanding of, and a greater proficiency in, dynamics. 
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APPENDIX 

Dynamics I (ENGR 212) 
Survey for Presentation on / Example of 
an Alternative Form of Euler’s Equation 

Please respond to the following inquiry items concerning your understanding of and opinions on 
the supplemental topic presented in our class meeting today.  Please select the response that best 
represents your understanding/opinions from the options available for each item.  Your efforts in 
thoughtfully and carefully completing this survey are greatly appreciated. 

 1. I understand the difference between the alternative form of Euler’s equation and the other 
two standard forms of this equation (for the mass center and a fixed point, respectively) covered 
in previous class lectures. 

  Definitely Agree   Partially Agree   Neutral   Partially Disagree   Definitely Disagree 

 2. I recognize that the alternative form of Euler’s equation could offer an advantage over the 
other two standard forms of this equation for the solution of some dynamics problems. 

  Definitely Agree   Partially Agree   Neutral   Partially Disagree   Definitely Disagree 

 3. With some further examples, guidance, and practice, I believe that I could effectively apply 
the alternative form of Euler’s equation to solve certain dynamics problems. 

  Definitely Agree   Partially Agree   Neutral   Partially Disagree   Definitely Disagree 

 4. Although ENGR 212 has been a challenging course in my engineering degree program, I 
have enjoyed learning the basic concepts and principles of introductory dynamics. 

  Definitely Agree   Partially Agree   Neutral   Partially Disagree   Definitely Disagree 

 5. I am interested in taking a higher-level dynamics course, as an elective engineering course, 
after I have completed ENGR 212. 

  Definitely Agree   Partially Agree   Neutral   Partially Disagree   Definitely Disagree 

Thank you for your participation in this survey.  Your responses will remain anonymous. 


