AC2012-4810: AN AUTOMATED APPROACH TO ASSESSING THE QUAL-
ITY OF CODE REVIEWS

Lakshmi Ramachandran
Dr. Edward F. Gehringer, North Carolina State University

Ed Gehringer is an Associate Professor in the departments of Computer Science and Electrical & Com-
puter Engineering at North Carolina State University. He received his Ph.D. from Purdue University and
has also taught at Carnegie Mellon University and Monash University in Australia. His research interests
lie mainly in computer-supported cooperative learning.

(©American Society for Engineering Education, 2012

T'¥ST°G2 abed

An Automated Approach to Assessing the Quality of @ject Reviews
Abstract

Peer review of code and other software documerdn istegral component of a software
development life cycle. In software engineeringses, peer reviewing is done by other students
in the class. In order to help students improvertreviewing skills, feedback needs to be
provided for the reviews written by students. Troegss of reviewing a review or identifying the
guality of reviews can be referred to as metareingwAutomated metareviewing ensures
provision of immediate feedback to reviewers, widdikely to motivate the reviewer to improve
his work and provide more useful feedback to thbas. In this work we focus especially on
reviews written for software development proje@sr goal with this study is to try and identify
metrics that would be best suited to study theityual project reviews in comparison to those of
reviews written for paper technical articles. Teadtaubmissions are more likely to receive
reviews that refer directly to the content of thibrmission as well as contain a lot of praise or
criticism. Therefore metrics such as content, tané quantity are used for such reviews. We
performed experiments on review data collected fExmertiza and learnt that project reviews
tend to focus more on issues related to the coddraplementation of the project (they discuss
testing, design aspects, code duplication) andatse not likely to contain a pronounced tone.
We use natural language processing and machinaiegitechniques to identify and calculate
the values of the new metrics. We also found thahwising the new metrics to represent
reviews, metareview scores were predicted withau@acy of 84.3%, which is much higher
than when just content, tone and quantity were tsguedict metareview scores, which is
57.8%.

Keywords: software project reviews, quality, metrics, exf@atimetareviewing
1. Introduction

Reviews help authors to improve the quality of theark. It is therefore important to ensure that
the reviews are of a good quality. Metareviewinthis process by which the quality of a review
is determined. At present metareviewing is doneualy, since there are no systems that help
identify the quality of reviews automatically. Wenoduce an automated metareviewing process
that helps provide quick and effective feedbackhenquality of reviews.

In one of our earlier works, we introduced an awdtad metareviewing technique for reviews of
technical articles or papers [6]. Henceforth inplager we will refer to reviews written for
technical submissions aain-text reviews

In order to be able to provide feedback on qualfts review a good understanding of the
review’s content is necessary. Hence, it is impurta identify metrics that suitably represent
reviews. For reviews written for a paper, the feskbis more likely to be summative, i.e.,
providing summaries of the content, or evaluatbleife., offering praise or criticism to the

Z2'¥ST°Se abed

author’s work. An example of a review written fopaper is “The example for delegation is
taken from one of the references listed at theobotif the page.” This review is critical of the
author’s work and implies that an example on tipéctédelegation” had been copied from
another source. We see that the content of thisweig directly linked to the content of the
submission.

In the case of project reviews, they point outéssim the design, implementation or in the
testing of the project. Such content may not bedtly inferred from a description of the project,
since it refers to implementation details. For egeanconsider the following review, “The
system controller has the bulk of the functionaliticontains functions related to users, posts,
replies and votes. Could have segregated thessépirate sub controllers.” This review talks
about thewvaythe project has been implemented and the disioibwtf functionality across
modules.

Therefore, an important difference between softvpaogect reviews and plain-text reviews is
that while plain-text reviews tend to referenceddily) content in the author’'s submission,
project reviews tend to discuss the way (e.g. &ytax, design, architecture etc.) in which the
project was implemented. Thus project reviews migtiude more references to the code or
design of the project than to the content in tHense requirements document. That is the
content of project reviews are not restricted lydbntent in software documents (requirements,
design etc.). This does not imply that plain-textiews are less technical than project reviews or
vice versa. These sets of reviews differ prinygarilthe object under discussion.

However, there may also be project reviews thataaduative in nature, i.e., they provide
positive or negative criticism of the implementatior design of the project. For instance
consider the review, “Yes , good O-O style has bwade use of with right MVC architecture
employed.” This review is praising the author’s iceoof object-oriented pattern. Thus although
there appears to be differences in the contentl@diay they are written, project reviews and
plain-text reviews have some similarities too.

In this paper we focus on project reviews anddridentify metrics that suitably capture their
meaning. We study the differences and similaribietsveen the two types of reviews and try to
identify what metrics are more likely to work forogect reviews.

This paper is organized as follows. Section 2 dasta description of our approach, which
involves studying similarities and differences betw the two types of reviews and ultimately
identifying a set of metrics that uniquely reprdgaoject reviews. In section 3 we study the
performance of each of these metrics by condu@impgriments to predict metareview scores.
Section 3.2. contains a discussion of our resulisZection 4 concludes with a summary of our
work.

€'¥GT'Ge abed

2. Approach
2.1. Data collection

Peer-review data was collected from the Expertipgept at North Carolina State University [2,
3]. Expertiza is a web-based collaborative learmingironment, which provides peer review and
metareviewing features to instructors and studé@itierent types of assignments including
coding projects can be hosted on Expertiza. It ts@sw rubrics to collect feedback from
students and instructors. The feedback considistbftext-based reviews as well as numeric
scores. Figure 1 shows a
T scre.enshot of a reyiew
e e rubric from Expertiza.

Home Assignments Course Evaluation Profile Contact Us

Do the page(s) stick to the topic?

Yes, it does.

jare there an appropriate number of links to outside sources?
Yes,good 3ob! 5

lysis clearly identify the ethical issues?

is gooa. a = st advice

Some examples of project
review rubrics used in
Expertiza are listed in
Tables 1 and 2. Table 3 lists
the rubric used to provide
plain-text reviews for a
technical article edited on the Web. As can be $e#n Tables 1 and 2, the questions focus
more onhowthe project was implemented than the specific fonetities of the project. Table
3, on the other hand, focuses on content (what)efechnical article. Although one question in
this rubric seeks information on the page’s orgatndn (how), the responses are likely to
contain references to specific content in the lariiself.

Figure 1. Screenshot of a review rubric from Expertiza, Wwhic
contains textboxes for students to write out textews and
dropdown boxes for scores.

Table 1: This rubric assesses the quality of the code
based on its implementation, comments providedease of understanding.

1 Has this team avoided duplication of code?
2 | Has this team incorporated design patterns iatoade?
3 | Has this team provided adequate comments in ¢tbeie?

4 | On ascale of 1 (worst) to 5 (best), how easiytsunderstand the code?

v ¥ST°Ge abed

Table 2: The following rubric focusses on the design aspetthe project.

1 Have the authors adequately explained the chandesmade to the system?

2 Does the design appear to be sound, followingagpjate principles and using appropriate patterns?
3 | Does the design appear to be as simple as pasgibén the requirements?

4 | Do the class diagram and/or other figures orttet clearly describe the changes to be madeetsytstem?

Table 3: Rubric used for submissions of technical articlepapers.

1 Do the pages stick to the topic?

2 | Are there an appropriate number of links to algsiources?

3 Does the analysis clearly identify the ethicaliess?

4 | Do the pages treat differing viewpoints fairly?

5 | Is the organization of page(s) logical?

6 | Do the pages identify several issues that areiitapt in learning about the topic?

For the analysis in this paper we collected prajeciew data from two software projects.
Students were asked to evaluate the entire prbogsed on rubrics in Tables 1 and 2, one rubric
for each software project. We follow an informdint review process, where reviewers are
given links to authors’ projects, which includesleand design documents. These software
artifacts are evaluated with the help of the remigbrics, and textual feedback and scores are
provided to the authors. The two development ptsjetien taken together had a set of 1427
individual text reviews.

In the next section we discuss the steps we toaketatify similarities and differences between
project and plain-text reviews.

G'¥ST'Ge abed

2.2. ldentifying similarities and differences betwen project reviews and plain-text reviews

In order to study factors that are likely to diffatiate project reviews from plain-text reviews,
we utilized a graph-based similarity-matching téghg" to extract the most significant patterns
from each of the review sets. These patterns ard plrases that capture the most frequent and
semantically importargubject — verpverb — objectsubject/object — adjectivendverb — adverb
relationships in the reviews. We use 662 plain-textews written for a technically worded
article to identify plain-text patterns. Some pattefor each type of review are listed in Table 4.

Table 4: Frequent and semantically important patterns
captured from the set of project reviews and ptaii-reviews.

Patterns from project reviews Patterns from plain-text reviews

seem have avoided - lobde duplication through use | ethicslinks - are

helper functions links for Utilitarianism — distinct

seem have been added rounditest suitebit sentence definition callback is copied
functionality test cases have been added basics MSIMD architectures- could have been
tests cases have been performed provided

useCapybara rspec- user admin username passworddiagrams — explanatory

From Table 4 we can see that project reviews irchlidcussion ofode duplicationreferences

to specifichelperfunctions thetest suiteandtest caseand some language specific tools such as
capybaraandrspec However in the case of patterns from plain-texiews we see that the

focus is directly on the objects in the articletsasethics, utilitarianism, sentence definitiand
MSMID architecture We can also see that these reviews contain éxplaise and criticism
expressed using words or phrases sua@xpknatory, distinct, is copied.

Table 5 lists some of the metrics that we condlideplain-text reviews in our earlier work [6].

For project reviews, we derive metrics that areilainto those listed in Table 5. From Table 4,
we see that project reviews focus on some coddfigpaspectsSummativeeviews (summaries
of author’s work) are less likely to occur in prdjeeviews and therefore can be eliminated.
However, there are reviews that identify problemeféer possible solutions. Hencentent
categoriegproblem detectiomndadvisoryare retained for project reviews. In additionhattwe
introduce a project-review specific metric thatgseldentify the degree to which the review
discusses the project or the code itself. This imetreferred to aproject review content.

From Table 4, we see that project reviews do npeapto contain evaluative reviews (explicit
praise or criticisms). Therefotenemight not be of much use while evaluating projeviews.

1 The similarity matching technique made use of tet [1] to identify synonymy, hypernymy, hyponymy type
of relations across word phrases.

9'¥ST'Ge abed

However,quantitymight be necessary to determine if the reviewsrgravided sufficient
feedback to the author. Table 6 lists some of th&ins that help represent project reviews.

Table 5: Metrics that suitably represent plain-text reviews.

Metric Description

Content Identifies the type of conten the review contains
Our classification of content consists of threeegaties —
- summativereviews provide a summary of the author’'s worlust a praise,
- problem detectionreviews identify problems in the author’s work and
- advisory reviews offer suggestions to the author on waympfoving the submission.

Tone Identifies the semanti orientatior of a review
Tone is classified as —
- positivereviews have a positive semantic orientation,
- negativereviews are those that have a negative semanéntation and
- neutral reviews are those that contain both positive amghtiee semantically oriented
reviews.

Quantity Identifies the numbe of tokens a review contain: anc helps identify the quantity of
feedback provided.

Table 6: Metrics that suitably represent reviews of projects

Metric Description

Advisory content Identifies the type of conten the review contains

Content of project reviews can be classified a —

- problem detection, advisory(similar to the categories used for plain-
text reviews) or

- nong if the reviews do not fall into either of the tyoevious categories

Project review content Identifies the exten to which a review discusse the projec or code

Quantity Identifies quantity of feedbac provided

2.3. Calculating the metrics

We use a supervised text classification technigliea latent semantic analysis (LSA) to
determine the content of the project reviews [gALis widely used in the field of natural-
language processing to perform text classificatibproduces a succinct representation of a
term-document relationship matrix in a space oticed dimensions. We then apply the cosine
similarity metric to identify the document vectbat is closest to a new review's vector. The
closest document’s class is used to identify theatt category the new review would belong to.

/' ¥ST°S2 abed

LSA is used to calculate metriaglvisory content as well as project review contAdtisory
content is identified using a supervised approbgtiraining a model on a set of pre-tagged
reviews. Project review content is identified byngaring the reviews with patterns identified
from a set of training reviews. The degree of matith these patterns indicates the extent to
which these reviews discuss the project. Quanfifgedback is identified by taking a count of
the unique tokens in the review.

2.4. Comparing review vectors to determine metareew scores

Figure 1 shows the screenshot of a review rubripuasstionnaire used by Expertiza. A complete
review response includes all textual and numespaases provided by a reviewer to an author,
i.e., one completed review questionnaire. Reviegtors represent complete review responses.
Review vectors are therefore formed by combiningni®ing up) the metrics values for each of
the text reviews (individual responses to revietriziquestions). Categories of the metric
advisory contenare given discrete values (none — 0, problem deteet1 and advisory — 2) so
that they can be summed up easily. In generalwevibat provide suggestions for improvement
are more useful than those that merely identifypfgms or issues in the author’s submission.
Therefore advisory reviews are given a higher valben compared to problem detection
reviews. The other two metriggoject review conterandquantity of feedbackontain real
(degree of match) and integer values respectivaiyreence can be summed up to obtain the
final review vector representation.

Metareview scores of new reviews are identifiecbsparing (using cosine similarity) the
review vectors of the new reviews with those ok8Rr, metareviewed reviews. The closest
metareviewed review's metareview score is usedeatify the metareview score of a new
review.

3. Experiments
3.1. Technique

We carry out the following experiments to identifye effectiveness of the metrics and
categories we have identified for project revieW® also compare the new set of metrics with
the plain-text review metrics (listed in Table 5).

We use LSA trained a set of 636 previously anndteggiews to identify thadvisory contenof
1427 reviews.We use a set of 82 semantic patterns mined frenpttbject reviews to identify
the project review conterdf the same set of reviews. Due to the availabditgnly limited
data, we derive the patterns from the same dat&\&etise LSA and cosine to identify the
degree to which these reviews discussed code detatgent.

2 The reviews were segmented as part of a pre-gsoaestep and hence the large number of reviews.

8'¥ST'Ge abed

There are a total of 213 complete review resporidgs.set is divided into training and testing,
with 149 used for training and 64 used for testigtareview scores of test reviews are
predicted using those of the training reviews kgntifying the closest training review.
Metareview scores are given on a Likert scale watlnes from 1 to 5, where 1 is the lowest and
5 is the highest. Metareview scores of a compketew is determined by taking the average of
metareview scores awarded to each (metareviewicfujprestion.

3.2. Results and Analysis

We predict accuracy by determining if the prediateetascores are within 1 unit of the actual
metareview scores, i.ealfs (predicted metareview score — actual metareviescore)<=1).
Since averaged metareview scores take on realsjdbaking for an exact match between the
predicted and actual values might be a bit too ttaiméng. Therefore we use the above-stated
condition to study the extent to which predictedaneview scores agree with those given by
metareviewers.

Table 7 lists the accuracy values of predictingaretiew scores for project reviews using the
identified set of metrics. The accuracy we get whging the new set of metrics is 84.3%, i.e.,
the set of predicted scores that satisfied the edmoentioned condition. The accuracy of predic-
ting metareview scores using the plain-text reviewnsitrics is 57.8%. Thus we see that for the
current training and testing data, the system lis @bpredict metareview scores with a higher
accuracy while using the new set of metrics. Soxraenples of correctly classified project
reviews are listed in Table 8.

Table 7: Accuracies of predicting metareview scores for gebjeviews
using different sets of metrics.

Metrics used Accuracy of predicting metareview
scores

Content, tone and quantity 57.8%

Advisory content, project review content and quantiy 84.3%

We also notice that for 28.1% of the test revi¢wisile using the plain-text reviews’ metrics),
metareviewers had given reviewers high scores Yaithiough no textual feedback was
provided. Metareviewers tend to be quite generodsaavard reviewers very high scores.
Metareviewers must be provided with a suitableinutbrat will guide them better during the
metareview process. This could ensure more accaratareview scores for our experiments in
the future.

3 Metareview rubrics are similar to review rubrécsd allow metareviewers to provide textual and migne
feedback, but for our experiments we focus onlyh@nnumeric scores.

6'ST G2 abed

Table 8: Examples of project reviews that were correctsslfied using the new set of metrics.

1 No design patterns involved in this code. | Wwidlwever require clarification from author regaglin
the same . < < UPDATE > > The project mainly deaih performance analysis. So no design
patterns were involved. Some more comments ccaNe been provided < < UPDATE > >
Comments are added as requested.

2 The testcases cover the functionality requitéxdre are different testcases. However, | stilllgdo
require a clarification from the authors on whiehts to look into and a readme file would be great.
Strongly advice you to write a README file indicadj what is done and where to find the required
code and also how to run the tests . | did a bitiging myself still could not figure out whicbsts
were performed by you and how to review the sarmne UPDATE > > ReadMe provided with
detailed description.

3 Have u deployed the code on VCL to run the testsurrently have my project hosted on VCL and
hence can't take another session. Can u provida W€L session to verify the testcases?

4 It seems like the design patterns that were @dyrézllowed by expertiza has been retained and also
introduced some. Yes. Modules have been made. 8ortonality moved to other models. Testing
done.

4. Conclusions

In this paper we have identified a new set of msttd determine the quality of project reviews.
We found that project reviews discuss content tegj.cases, specific functions, software tools
etc.) that may not refer directly to the projecsat@ption or requirements, in contrast to plain-

text reviews, whose contents are often directlgtesl to the technical article or paper’s text. We

also notice that project reviews do not contaiataf praise or criticism like the plain-text
reviews do. We use the new metraadvisory content, project review contamdquantityto
predict metareview scores of project reviews. Wentbthat project reviews produce higher
accuracy values with the new metrics than with im@tontent, tonendquantityused by plain-
text reviews.

References

[1] Christiane Fellbaum (1998, ed.) WordNet: Andftenic Lexical Database. Cambridge, MA: MIT
Press.

[2] E. F. Gehringer, L. M. Ehresman, and W. P. Gon&.G., “Reusable learning objects through peer
review: The Expertiza approach,”limnovate: Journal of On- line Educatio®Q07.

[3] E. F. Gehringer, “Expertiza: information manegmnt for collaborative learning,” im Monitoring
and Assessment in Online Collaborative Environmeditgergent Computational Technologies for E-
Learning SupportlGI Global Press, 2009.

0T ¥ST'SZ abed

[4] F. P. W. Landauer, T. K. and D. Laham. An inmotion to latent semantic analysisDiscourse

Processes. Special Issue on Quantitative Approaich8smantic Knowledge Representati@@—284.
Volume 25. 1998.

[5] T. A. S. Pardo, L. H. M. Rino and Maria das Gaa Volpe Nunes, “Extractive summarization: How to
identify the gist of a text,” ifProceedings of the 1st International Informatiorchieology Symposium -
I2TS,Florianpolis-SC, Brazil, October 1-5 2002, pp. 1-6.

[6] Lakshmi Ramachandran and Edward F. Gehring¥rl 2Automated assessment of review quality

using latent semantic analysidth IEEE International Conference on Advanced baday Technologies.
136-138 July.

TT¥S1°GZ obed

