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An Automated Approach to Assessing the Quality of Project Reviews 

Abstract 

Peer review of code and other software documents is an integral component of a software 
development life cycle. In software engineering courses, peer reviewing is done by other students 
in the class. In order to help students improve their reviewing skills, feedback needs to be 
provided for the reviews written by students. The process of reviewing a review or identifying the 
quality of reviews can be referred to as metareviewing. Automated metareviewing ensures 
provision of immediate feedback to reviewers, which is likely to motivate the reviewer to improve 
his work and provide more useful feedback to the authors. In this work we focus especially on 
reviews written for software development projects. Our goal with this study is to try and identify 
metrics that would be best suited to study the quality of project reviews in comparison to those of 
reviews written for paper technical articles. Textual submissions are more likely to receive 
reviews that refer directly to the content of the submission as well as contain a lot of praise or 
criticism. Therefore metrics such as content, tone and quantity are used for such reviews. We 
performed experiments on review data collected from Expertiza and learnt that project reviews 
tend to focus more on issues related to the code and implementation of the project (they discuss 
testing, design aspects, code duplication) and are also not likely to contain a pronounced tone. 
We use natural language processing and machine learning techniques to identify and calculate 
the values of the new metrics. We also found that when using the new metrics to represent 
reviews, metareview scores were predicted with an accuracy of 84.3%, which is much higher 
than when just content, tone and quantity were used to predict metareview scores, which is 
57.8%.   

Keywords: software project reviews, quality, metrics, expertiza, metareviewing 

1. Introduction 

Reviews help authors to improve the quality of their work. It is therefore important to ensure that  
the reviews are of a good quality. Metareviewing is the process by which the quality of a review 
is determined. At present metareviewing is done manually, since there are no systems that help 
identify the quality of reviews automatically. We introduce an automated metareviewing process 
that helps provide quick and effective feedback on the quality of reviews.  

In one of our earlier works, we introduced an automated metareviewing technique for reviews of 
technical articles or papers [6]. Henceforth in the paper we will refer to reviews written for 
technical submissions as plain-text reviews.  

In order to be able to provide feedback on quality of a review a good understanding of the 
review’s content is necessary. Hence, it is important to identify metrics that suitably represent 
reviews. For reviews written for a paper, the feedback is more likely to be summative, i.e., 
providing summaries of the content, or evaluative [5], i.e., offering praise or criticism to the P
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author’s work. An example of a review written for a paper is “The example for delegation is 
taken from one of the references listed at the bottom of the page.” This review is critical of the 
author’s work and implies that an example on the topic “delegation” had been copied from 
another source. We see that the content of this review is directly linked to the content of the 
submission.  

In the case of project reviews, they point out issues in the design, implementation or in the 
testing of the project. Such content may not be directly inferred from a description of the project, 
since it refers to implementation details. For example, consider the following review, “The 
system controller has the bulk of the functionality. It contains functions related to users, posts, 
replies and votes. Could have segregated these into separate sub controllers.” This review talks 
about the way the project has been implemented and the distribution of functionality across 
modules.  

Therefore, an important difference between software project reviews and plain-text reviews is 
that while plain-text reviews tend to reference (directly) content in the author’s submission, 
project reviews tend to discuss the way (e.g. code syntax, design, architecture etc.) in which the 
project was implemented. Thus project reviews might include more references to the code or 
design of the project than to the content in the software requirements document. That is the 
content of project reviews are not restricted by the content in software documents (requirements, 
design etc.). This does not imply that plain-text reviews are less technical than project reviews or 
vice versa.   These sets of reviews differ primarily in the object under discussion. 

However, there may also be project reviews that are evaluative in nature, i.e., they provide 
positive or negative criticism of the implementation or design of the project. For instance 
consider the review, “Yes , good O-O style has been made use of with right MVC architecture 
employed.” This review is praising the author’s choice of  object-oriented pattern. Thus although 
there appears to be differences in the content and the way they are written, project reviews and 
plain-text reviews have some similarities too. 

In this paper we focus on project reviews and try to identify metrics that suitably capture their 
meaning. We study the differences and similarities between the two types of reviews and try to 
identify what metrics are more likely to work for project reviews.  

This paper is organized as follows. Section 2 contains a description of our approach, which 
involves studying similarities and differences between the two types of reviews and ultimately 
identifying a set of metrics that uniquely represent project reviews. In section 3 we study the 
performance of each of these metrics by conducting experiments to predict metareview scores. 
Section 3.2. contains a discussion of our results and Section 4 concludes with a summary of our 
work. 
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2. Approach 

2.1. Data collection 

Peer-review data was collected from the Expertiza project at North Carolina State University [2, 
3]. Expertiza is a web-based collaborative learning environment, which provides peer review and 
metareviewing features to instructors and students. Different types of assignments including 
coding projects can be hosted on Expertiza. It uses review rubrics to collect feedback from 
students and instructors. The feedback consists of both text-based reviews as well as numeric 

scores. Figure 1 shows a 
screenshot of a review 
rubric from Expertiza. 

 

 

 

Some examples of project 
review rubrics used in 
Expertiza are listed in 
Tables 1 and 2. Table 3 lists 
the  rubric used to provide 
plain-text reviews for a 

technical article edited on the Web. As can be seen from Tables 1 and 2, the questions focus 
more on how the project was implemented than the specific functionalities of the project.  Table 
3, on the other hand, focuses on content (what) of the technical article. Although one question in 
this rubric seeks information on the page’s organization (how), the responses are likely to 
contain references to specific content in the article itself.  

Table 1: This rubric assesses the quality of the code  
based on its implementation, comments provided and ease of understanding. 

1 Has this team avoided duplication of code? 

2 Has this team incorporated design patterns into its code? 

3 Has this team provided adequate comments in their code? 

4 On a scale of 1 (worst) to 5 (best), how easy is it to understand the code? 

 

 

 

Figure 1: Screenshot of a review rubric from Expertiza, which  
contains textboxes for students to write out text reviews and  
dropdown boxes for scores. 
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Table 2: The following rubric focusses on the design aspects of the project. 

1 Have the authors adequately explained the changes to be made to the system? 

2 Does the design appear to be sound, following appropriate principles and using appropriate patterns? 

3 Does the design appear to be as simple as possible, given the requirements? 

4 Do the class diagram and/or other figures or text that clearly describe the changes to be made to the system? 

 

Table 3: Rubric used for submissions of technical articles or papers. 

1 Do the pages stick to the topic? 

2 Are there an appropriate number of links to outside sources? 

3 Does the analysis clearly identify the ethical issues? 

4 Do the pages treat differing viewpoints fairly? 

5 Is the organization of page(s) logical? 

6 Do the pages identify several issues that are important in learning about the topic? 

 

For the analysis in this paper we collected project review data from two software projects. 
Students were asked to evaluate the entire project based on rubrics in Tables 1 and 2, one rubric 
for each software project. We follow an informal, blind review process, where reviewers are 
given links to authors’ projects, which includes code and design documents. These software 
artifacts are evaluated  with the help of the review rubrics, and textual feedback and scores are 
provided to the authors. The two development projects when taken together had a set of 1427 
individual text reviews.  

In the next section we discuss the steps we took to identify similarities and differences between 
project and plain-text reviews. 
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2.2. Identifying similarities and differences between project reviews and plain-text reviews 

In order to study factors that are likely to differentiate project reviews from plain-text reviews, 
we utilized a graph-based similarity-matching technique1 to extract the most significant patterns 
from each of the review sets. These patterns are word phrases that capture the most frequent and 
semantically important subject – verb, verb – object, subject/object – adjective and verb – adverb 
relationships in the reviews. We use 662 plain-text reviews written for a technically worded 
article to identify plain-text patterns. Some patterns for each type of review are listed in Table 4.  

Table 4: Frequent and semantically important patterns  
captured from the set of project reviews and plain-text reviews. 

Patterns from project reviews Patterns from plain-text reviews 

seem have avoided - lot code duplication through use 
helper functions 
seem have been added rounding - test suite bit 
functionality test cases - have been added 
tests cases - have been performed 
use Capybara rspec - user admin username password 

ethics links - are 
links for Utilitarianism –  distinct 
sentence definition callback - is copied 
basics MSIMD architectures - could have been 
provided 
diagrams – explanatory 

 

From Table 4 we can see that project reviews include discussion of code duplication, references 
to specific helper functions, the test suite and test cases and some language specific tools such as 
capybara and rspec. However in the case of patterns from plain-text reviews we see that the 
focus is directly on the objects in the article such as ethics, utilitarianism, sentence definition and 
MSMID architecture. We can also see that these reviews contain explicit praise and criticism 
expressed using words or phrases such as explanatory, distinct, is copied. 

Table 5 lists some of the metrics that we consider for plain-text reviews in our earlier work [6]. 

For project reviews, we derive metrics that are similar to those listed in Table 5. From Table 4, 
we see that project reviews focus on some code specific aspects. Summative reviews (summaries 
of author’s work) are less likely to occur in project reviews and therefore can be eliminated. 
However, there are reviews that identify problems or offer possible solutions. Hence content 
categories problem detection and advisory are retained for project reviews. In addition to that we 
introduce a project-review specific metric that helps identify the degree to which the review 
discusses the project or the code itself. This metric is referred to as project review content. 

From Table 4, we see that project reviews do not appear to contain evaluative reviews (explicit 
praise or criticisms). Therefore tone might not be of much use while evaluating project reviews. 

                                                           

1 The similarity matching technique made use of Wordnet [1] to identify synonymy, hypernymy, hyponymy type 
of relations across word phrases. 
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However, quantity might be necessary to determine if the reviewer has provided sufficient 
feedback to the author. Table 6 lists some of the metrics that help represent project reviews. 

Table 5: Metrics that suitably represent plain-text reviews. 

Metric Description 

Content Identifies the type of content the review contains.  
Our classification of content consists of three categories –  
- summative reviews provide a summary of the author’s work or just a praise,  
- problem detection reviews identify problems in the author’s work and  
- advisory reviews offer suggestions to the author on ways of improving the submission. 

Tone Identifies the semantic orientation of a review.  
Tone is classified as –  
- positive reviews have a positive semantic orientation,  
- negative reviews are those that have a negative semantic orientation and  
- neutral reviews are those that contain both positive and negative semantically oriented 
reviews. 

Quantity Identifies the number of tokens a review contains and helps identify the quantity of 
feedback provided. 

 

Table 6: Metrics that suitably represent reviews of projects. 

Metric  Description 

Advisory content Identifies the type of content the review contains.  
Content of project reviews can be classified as follows –  
- problem detection, advisory (similar to the categories used for plain-
text reviews) or  
- none: if the reviews do not fall into either of the two previous categories 

Project  review content Identifies the extent to which a review discusses the project or code. 

Quantity Identifies quantity of feedback provided. 

 

2.3. Calculating the metrics 

We use a supervised text classification technique called latent semantic analysis (LSA) to 
determine the content of the project reviews [4]. LSA is widely used in the field of natural-
language processing to perform text classification. It produces a succinct representation of a 
term-document relationship matrix in a space of reduced dimensions. We then apply the cosine 
similarity metric to identify the document vector that is closest to a new review’s vector. The 
closest document’s class is used to identify the content category the new review would belong to.  
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LSA is used to calculate metrics advisory content as well as project review content. Advisory 
content is identified using a supervised approach, by training a model on a set of pre-tagged 
reviews. Project review content is identified by comparing the reviews with patterns identified 
from a set of training reviews. The degree of match with these patterns indicates the extent to 
which these reviews discuss the project. Quantity of feedback is identified by taking a count of 
the unique tokens in the review. 

2.4. Comparing review vectors to determine metareview scores 

Figure 1 shows the screenshot of a review rubric or questionnaire used by Expertiza. A complete 
review response includes all textual and numeric responses provided by a reviewer to an author, 
i.e., one completed review questionnaire. Review vectors represent complete review responses. 
Review vectors are therefore formed by combining (summing up) the metrics values for each of 
the text reviews (individual responses to review rubric questions). Categories of the metric 
advisory content are given discrete values (none – 0, problem detection – 1 and advisory – 2) so 
that they can be summed up easily. In general reviews that provide suggestions for improvement 
are more useful than those that merely identify problems or issues in the author’s submission. 
Therefore advisory reviews are given a higher value when compared to problem detection 
reviews. The other two metrics project review content and quantity of feedback contain real 
(degree of match) and integer values respectively and hence can be summed up to obtain the 
final review vector representation. 

Metareview scores of new reviews are identified by comparing (using cosine similarity) the 
review vectors of the new reviews with those of existing, metareviewed reviews. The closest 
metareviewed review’s metareview score is used to identify the metareview score of a new 
review. 

3. Experiments 

3.1. Technique 

We carry out the following experiments to identify the effectiveness of the metrics and 
categories we have identified for project reviews. We also compare the new set of metrics with 
the plain-text review metrics (listed in Table 5). 

We use LSA trained a set of 636 previously annotated reviews to identify the advisory content of 
1427 reviews.2 We use a set of 82 semantic patterns mined from the project reviews to identify 
the  project  review content of the same set of reviews. Due to the availability of only limited 
data, we derive the patterns from the same data set. We use LSA and cosine to identify the 
degree to which these reviews discussed code related content.  

                                                           

2 The reviews were segmented as part of a pre-processing step and hence the large number of reviews. 
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There are a total of 213 complete review responses. This set is divided into training and testing, 
with 149 used for training and 64 used for testing. Metareview scores of test reviews are 
predicted using those of the training reviews by identifying the closest training review. 
Metareview scores are given on a Likert scale with values from 1 to 5, where 1 is the lowest and 
5 is the highest. Metareview scores of a complete review is determined by taking the average of 
metareview scores awarded to each (metareview) rubric3 question. 

3.2. Results and Analysis 

We predict accuracy by determining if the predicted metascores are within 1 unit of the actual 

metareview scores, i.e., (abs (predicted metareview score – actual metareview score) <=<=<=<= 1).  
Since averaged metareview scores take on real values, looking for an exact match between the 
predicted and actual values might be a bit too constraining. Therefore we use the above-stated  
condition to study the extent to which predicted metareview scores agree with those given by 
metareviewers. 

Table 7 lists the accuracy values of predicting metareview scores for project reviews using the 
identified set of metrics. The accuracy we get when using the new set of metrics is 84.3%, i.e., 
the set of predicted scores that satisfied the above-mentioned condition. The accuracy of predic-
ting metareview scores using the plain-text reviews’ metrics is 57.8%. Thus we see that for the 
current training and testing data, the system is able to predict metareview scores with a higher 
accuracy while using the new set of metrics. Some examples of correctly classified project 
reviews are listed in Table 8. 

Table 7: Accuracies of predicting metareview scores for project reviews  
using different sets of metrics. 

Metrics used Accuracy of predicting metareview 
scores 

Content, tone and quantity 57.8% 

Advisory content, project review content and quantity 84.3% 

 

We also notice that for  28.1% of the test reviews (while using the plain-text reviews’ metrics), 
metareviewers had given reviewers high scores (>> 1) although no textual feedback was 
provided. Metareviewers tend to be quite generous and award reviewers very high scores. 
Metareviewers must be provided with a suitable rubric that will guide them better during the 
metareview process. This could ensure more accurate metareview scores for our experiments in 
the future. 

                                                           

3 Metareview rubrics are similar to review rubrics and allow metareviewers to provide textual and numeric 
feedback, but for our experiments we focus only on the numeric scores. 
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Table 8: Examples of project reviews that were correctly classified using the new set of metrics. 

1  No design patterns involved in this code. I will however require clarification from author regarding 
the same . < < UPDATE > > The project mainly dealt with performance analysis. So no design 
patterns were involved.  Some more comments could have been provided < < UPDATE > > 
Comments are added as requested. 

2  The testcases cover the functionality required. There are different testcases.  However, I still would 
require a clarification from the authors on which tests to look into and a readme file would be great.  
Strongly advice you to write a README file indicating what is done and where to find the required 
code and also how to run the tests . I did a bit of digging myself  still could not figure out which tests 
were performed by you and how to review the same . < < UPDATE > > ReadMe provided with 
detailed description. 

3 Have u deployed the code on VCL to run the tests ? I currently have my project hosted on VCL and 
hence can’t take another session. Can u provide me a VCL session to verify the testcases? 

4 It seems like the design patterns that were already followed by expertiza has been retained and also 
introduced some. Yes. Modules have been made. Some functionality moved to other models. Testing 
done. 

 

4. Conclusions 

In this paper we have identified a new set of metrics to determine the quality of project reviews. 
We found that project reviews discuss content (e.g. test cases, specific functions, software tools 
etc.) that may not refer directly to the project description or requirements, in contrast to plain-
text reviews, whose contents are often directly related to the technical article or paper’s text. We 
also notice that project reviews do not contain a lot of praise or criticism like the plain-text 
reviews do. We use the new metrics advisory content, project review content and quantity to 
predict metareview scores of project reviews. We found that project reviews produce higher 
accuracy values with the new metrics than with metrics content, tone and quantity used by plain-
text reviews. 
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