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An Educational Tool to Support Introductory Robotics Courses 

 

With the rising popularity of robotics in our modern world there is an increase in the number 
of engineering programs that do not have the resources to purchase expensive dedicated robots 
but find a need to offer a basic course in robotics. This common introductory robotics course 
generally covers the fundamental theory of robotics including robot kinematics, dynamics, 
differential movements, trajectory planning and basic computer vision algorithms commonly 
used in the field of robotics. The nature of this material almost necessitates the use of robotic 
hardware to allow the students to practice implementing the theory they learn in class.  

This paper introduces a software based educational tool designed to be used in introductory 
robotics courses. The software simulates the geometry of motion (kinematics) of any multilink 
industrial robotic arm and is to be used in place of or along with an actual robotic arm. The 
students can use this tool to support their learning much the same way they use an actual robotic 
arm. The tool includes an integrated development environment that models the environments that 
typically included with robotics packages. This tool allows the student to input the characteristics 
of the arm they wish to program allowing the student to program any type of arm they wish. This 
tool provides a low cost solution to situations where purchasing expensive robotic arms typically 
needed for this course is not possible, where the existing equipment does not allow for direct 
joint programming, for on-line robotics courses and for non-software intensive programs where 
the students are not to produce robotic software. 

Keywords—robotics, software tool, kinematics, programming 

I.  INTRODUCTION 

In this paper we present a new software tool that is specifically designed to teach the basic 
Introduction to Robotics course. Many robotics books1-8 cover this material. The course 
generally covers robotics fundamentals including history, robot types, and degrees of freedom, 
robot kinematics including the transformation matrix, forward and inverse kinematics, and the 
Denavit-Hartenberg (D-H) parameters, differential motions, robot dynamics, trajectory planning, 
actuators and sensors, and robot vision.  

This course is generally a first course in robotics and may be an undergraduate or graduate 
level course. In many programs, this course is offered as the first in a sequence of several 
robotics courses in a robotics program with the goal of graduating students who specialize in 
robotics. This course has gained a reputation of being very interesting and attractive to students 
which has led many institutions to offer this course as an independent single course with an 
alternate goal not related to producing robotics experts. These goals range from teaching students 
how different systems work together such as in the Systems Engineering Program at Texas A&M 
International University to simply providing an interesting elective course such as in the 
Software Engineering Program at Florida Gulf Coast University.  

This tool supports teaching the topics which include robot degrees of freedom, forward and 
some limited inverse kinematics, Denavit-Hartenberg parameters, some path planning, and 
simple robot programming. The tool has many features that lend itself to teaching this course. 
Some of these features are generally not found in general purpose robotic simulators. The 
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learning outcomes this tool is designed to support are listed below. This tool is designed to 
support the student with learning: 

 The relationship between the standard Devanit-Hartenberg representation and the 
corresponding arm.  

 The forward kinematics equations.  
 How to use the inverse kinematic equations to program the arm.  
 How to program the arm at a high level by defining points and using the move instruction.   
 How to design a trajectory. 
 

The tool presented in this paper was created by the authors for the sole purpose of supporting 
the instructor in the Introduction to Robotics course. The tool is written in C++ using wxWidgets 
for its graphical user interface (GUI) and OpenGL for its graphics. The tool also has a component 
to support learning robotic vision but this component is not presented here. The two components 
are not integrated at this time.  

II. RELATION TO OTHER WORK 

There exist a large number of general purpose robotic simulators both free and commercially 
available10-13. These tools are used for professional robotics research and related work as well as 
for educational purposes. The problem with using these general tools for teaching an 
introductory robotics course is first, there is a relatively large learning curve needed to get 
sufficiently familiar with the tool before the student can use them for learning robotics. Our tool 
is specifically designed to allow a student that has never used the tool before to input the 
specifications of the robotic arm and get to the point where the student can move the links of the 
robot and adjust the viewing position in less than 5 minutes. Secondly actual robots are 
programmed using an included environment that uses a custom scripting language that performs 
all the inverse kinematics required for the robot. While this is how real robots are programmed, it 
does not lend itself to learning introductory robotics since the logic in these preexisting software 
components is precisely what the student needs to learn how to create. This tool differs from 
these robotic simulation tools in that the presented tool is specifically designed to teach this 
specific course and therefore has a much smaller learning curve and does not do the work the 
students need to do to learn.  
 

Peter Corke8 has developed a library of MATLAB functions and has made it available free9. 
This library is very popular but requires the student to write programs in MATLAB. While 
writing programs is far superior in helping the student learn robotics, it is not always feasible 
especially at institutions that do not have a software intensive program such as a robotics 
program. For example in the Systems Engineering Program at Texas A&M International 
University programming is a very small part of the engineering curriculum where students are 
not expected to be able to create whole programs yet they still offer the robotics course as 
required for the major.  It is not reasonable to add learning how to program to the robotics course 
contents. This course in the Systems Engineering Program was the initial motivation for creating 
our tool.  
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III. SPECIFYING THE ARM 

One of the best features of this tool is the user’s ability to specify an arm by simply entering 6 
numbers per link. There is no need to draw or design the arm and any arm the user can dream up 
can be used with the tool. These numbers include the four (D-H) parameters along with the lower 
and upper limits of the link’s motion. Using the forward kinematic equations formed by the D-H 
parameters, an arm with the correct kinematics can be totally specified. This arm may not look 
realistic but its kinematics are correct. That is, if the joints are moved to a specific set of angles, 
the location and orientation of the hand will be exactly the same as any robot, real or simulated, 
with that same set of D-H parameters. Excluding the limit of movement of each joint, the 
relationship between the joint angles and the position and orientation of the end-effector is 
dictated only by the D-H parameters and any two arms with the same parameters will have the 
same relationship. That is why those and the joint limits are the only parameters the tool needs to 
specify the arm. This results in the user being able to simulate any arm in the text book and 
furthermore being able to enter the arm in just a few minutes. In Figure 1 the specifications for 
the three DOF arm with two revolute joints and one prismatic joint (R2P) is shown entered into 
the arm creation pane. The rendered arm in shown in Figure 2a. 

 

 

Figure 1: The control panel to create the robotic arm.  

IV. RENDERING THE ARM IN THREE DIMENSIONS 

The arm is rendered using three dimensional (3D) graphics, see Figure 2a. The user can zoom 
in and out, select the coordinate axis that points up and move the eye position vertically and 
horizontally using the controls shown in Figure 2b.  
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Figure 2: (a) The 3D rendering of a 3 link R2P arm. (b) The 3D view controls.  

There is a two dimensional (2D) view as well. While any arm can be rendered in 2D, the 
motivation is to display the popular two link rotational arm shown in Figure 3a that appears in 
many books because of its simplicity. Figure 3b shows the same arm rendered in 3D. 

 

 

 
a b

Figure 3: (a) A two link arm rendered in 2D. (b) The same arm rendered in 3D. 

V. MOVING THE JOINTS USING SLIDERS 

Each joint is given a slider that the user can use to move that joint. The arm’s rendering 
changes as the slider moves in real time. In Figure 4a, the sliders have not moved and the arm is 
in its home position. In Figure 4b the sliders have moved and the arm is rendered in the position 
corresponding to the joint angle specified in the sliders. The angles are in degrees.  
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Figure 4: (a) The slider have not moved and the arm is rendered in its home position. (b) 
The two sliders have moved and the corresponding arm rendering is shown. 

VI. RUNNING THE TOOL IN SIMULATION MODE 

In simulation mode each joint moves in proportion to the power applied to the simulated joints 
motor. This models the movement of a real arm. The joint motors must be given a desired 
velocity for them to move. An object manages the movement of each joint and only moves the 
joint if it is given a velocity versus time function. The desired velocity must be reached by 
accelerating the joint to the desired velocity. Each joint is given a maximum acceleration which 
determines the time it takes to reach the desired velocity. The joint also needs to decelerate to 
reduce its velocity. The joint’s position is therefore a function of the joints power setting over 
time. The user can chose to stop simulation mode and move the joints by hand using the sliders. 
However the joint’s position in simulation mode remain unchanged and the arm will return to its 
last moved position once the user returns back to simulation mode. Figure 5 shows buttons that 
are used to move the joints in simulation mode. Pressing a button moves the joint by the degree 
specified in the box to the right. Pressing a button creates a 2-1-2 type trajectory to go from its 
current position to one that is the number of degrees specified away. This type of manual 
movement is available in most robot controllers.  

 

 
Figure 5: The buttons move each joint by the degrees specified in the box to the right.  

VII. USING THE TOOL TO TEACH ROBOT PROGRAMMING 

Most robotics systems contain a compiler or interpreter along with its corresponding 
programming language that can be used to program the robot. The language may be proprietary to 
that manufacturer or may be one of several standard robotic languages. These languages tend to 
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be very simple. They generally provide an instruction to move the robot given a predefined point. 
These machines are programed by first defining a list of points then the programmer can use the 
move instruction to move the robot to the predefined points. The points are defined by physically 
moving the robot to the position and recording the point.  

  
In our tool we are modeling the same process. The user can write a simple program in our 

robot language to move the arm. The program runs in simulation mode. The language includes a 
set of instructions to perform task such as to move to a predefined position, open and close the 
gripper, jump to an instruction and some variable manipulation. The process of writing the 
program starts with defining a set of positions. A position is a point in the 6 dimensional joint 
space where a point is represented by a 6-tuple with each number being an angle for the 
corresponding joint. The user then moves the arm manually using move buttons shown in Figure 
5 to the desired position and records the position. The user can override the default name by 
providing a unique name as shown in Figure 6. In Figure 7 the user can see and modify the list of 
points. After this list of points is created the user can write the program. The program generally 
moves between points as specified by the point parameter. The user must define points so that the 
movements between points will yield a path that does not hit any obstacles.  

 

 
Figure 6: To record a point the user clicks the add button. The user can override the 
default point name.  

 

 
Figure 7: The user can see and change the list of points.  

The list of instructions currently implemented is shown in Table 1. This part of the tool is not 
fully developed and more instruction may be added. All of the instructions have a line or 
instruction number assigned to it. Jumps are made to the instruction numbers. While this is not a 
structured programming language it is simple and is how real robots are generally programmed. 
The program is created by selecting the instruction from the pull down menu of the last empty 
instruction. Once the instruction is selected the rest of the parameters’ widgets are displayed and 
the user can then select the appropriate parameters. All the variables and point are available in 
pull down menus. Adding and deleting instructions are done by clicking the instruction number 
button to select the instruction then clicking the delete or insert button. In Figure 8 a program 
listing is shown. Note the widgets available to the programmer. The following is a detailed 
explanation of each instruction. 

 
 The MOVE instruction causes the arm to move from the current position to the 

destination position. A destination point and velocity must be specified. A 2-1-2 blend 
type path plan is created for each joint. The velocity functions produced by the path plan 
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are given to the simulator to power the simulated joint motors. The MOVE instruction 
takes two parameters, the destination point and the travel velocity. All the joints travel at 
the same velocity. As a result the movement are not linear.  
 

 The OPENGRIPPER and CLOSEGRIPPER instruction open and close the gripper. No 
parameters are needed. The gripper is not currently implemented.  
 

 The LET instruction is used to assign a value to a variable. Variables do not need to be 
declared and all can accommodate a floating point value. The parameters are the variable 
name which can be new or an existing name and its value.  
 

 The INCR and DECR instructions add or subtract 1 from the variable. At this time there 
is no support for implementing mathematical expressions and therefore these instructions 
are the only way to modify variable values such as to implement counters.  The only 
parameter is the variable. 
 

 The IF instruction takes a condition and if true jumps to the destination instruction. There 
is no else option implemented at this time. The condition consists of two variables and a 
Boolean operator. No support for complex mathematical Boolean expressions are 
implemented at this time. The parameters are the two variable names, the Boolean 
operator and the instruction number to jump to if the condition is true.  
 

 The JUMP instruction is an unconditional jump. The only parameter is the instruction 
number to jump to. 

Table 1: Current Instruction Set 
 
Instruction Description Parameters 
MOVE Moves the arm from the current position to 

the specified position 
The destination point 
name, the velocity. 

OPENGRIPPER Opens the gripper None. 
CLOSEGRIPPER Closes the gripper None. 
LET Assigned a value to a variable. The variable name, the 

value. 
INCR Increments the variable by 1. The variable name. 
DECR Decrements the variable by 1. The variable name. 
IF Conditional execution. The condition 

consists of a left and right variable and a 
Boolean operator. If the condition is true a 
jump to the instruction number is 
performed.  

Condition (left variable, 
Boolean operator, right 
variable, instruction 
number.  

JUMP Unconditional jump.  The instruction number to 
jump to. 
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In Figure 8 the listing of a program that moves the arm between P1 and P2 and back 2 times is 
shown. This program is described in more detail in the example presented next.  

 
 

Figure 8: The program listing in the example. 

Program execution is performed by the interpreter. When an instruction is executed its line 
number button turns blue to let the user know which instruction is currently being executed. The 
debug option displays a list of all the variables along with their current values. The user can see 
how these values change during program execution. The user can also step the program. That is 
execute one line and wait for the user to step again. This is useful for debugging.  

 
The following is an example program. The user starts by creating the arm. Figure 9 shows the 

setup window the user uses to input the specifications of the arm. The window shows the setup for 
a 2 revolute joint arm with link length of 35 units each and 0  to 360 joint limits. Clicking the 
Create Robot button creates the robotic arm shown in Figure 12a and Figure 12b.  
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Figure 9: The window used to enter the specifications including the D-H parameters of the 
arm. 

The program shown in Figure 8 above has two variables, “a” and “b”. To loop 2 times we use the 
variable a as the loop counter. The IF statement cannot accept a number in its condition so the 
variable b is created and initialed with the number 2. The IF statement forms a loop that loops 
until variable a reaches 2 which is stored in b. In the loop the variable “a” is incremented, the arm 
moves to position P1 then it moves to position P2. The list of positions is shown in the position 
window of the tool shown in Figure 10.  

 
 
Figure 10: The list of points. Note there are only 2 joints, J1 and J2, used with this arm. 

Figure 11 shows the listing as the program executes. At the bottom is the debugging information 
that includes the list of variables along with their current values. The current instruction being 
executed is highlighted by making its button red.  

 
 
Figure 11: The listing shown while executing. Instruction 4 is highlighted in red indicating 
that instruction is being executed. Debugging information is listed below. Note a = 2 and b 
= 2. 
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Figure 12a shows the arm after executing the current instruction, instruction 3 which moves the 
arm to position P1. At the end, the program returns the arm back to the home position. Figure 12b 
shows the arm after returning to the home position.  

a b 
 

 
Figure 12: (a) The arm in position P1 after executing instruction 3. (b) The arm in the 
home position after executing the last instruction in the program.  

The complete tool screen is shown in Figure 13 after executing instruction 3 and in Figure 14 after 
executing instruction 4. Note the arm used in this example was entered by the user. Any arm 
entered by the user can be used to program.   

 

 
 
Figure 13: The complete tool screen after executing instruction 3. 
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Figure 14: The screen after executing instruction 4. 

VIII. USING THE TOOL TO TEACH THE FORWARD KINEMATIC EQUATIONS 

Robotic arms consist of links connected by joints. Each joint is connected to an actuator that 
can rotate or translate the link. Prismatic joints translate linearly as the actuator moves while 
revolute joints rotate. In a two revolute link robot where link 1 is connected to the stationary base 
and link 2 is connected to link 1, see Figure 15a, as the joint for link 2 moves link 2 rotates 
relative to link 1,Figure 15b. When Link 1 rotates it rotates relative to the base but it moves link 2 
since it’s attached to it Figure 15c. This dependency is represented by the product of 
transformation matrices explained below. 

 

 

         

 
a b c 

 

Figure 15: (a) A 2 link planner arm. (b) Link2 moves relative to link 1. (c) Link 1 move 
relative to the base. 

The goal of the study of kinematics is to derive a set of equations that when given the desired 
position of the robot’s end-effector, its hand for example, the angles for each joint that will result 
in the hand having this desired position (location and orientation) can be computed. That is given 
(x, y, z) the desired location of the hand in three dimensional Cartesian coordinates and the 
desired orientation of the hand, (r, p, y) roll, pitch and yaw then the angle that each joint must 
have ),( 1 n   to achieve can be computed.  
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The fundamental mathematical tool that is used to model the robot’s kinematics is the 
transformation matrix. This matrix represents the location and orientation of a reference 
coordinate frame relative to some other frame. The idea is to attach a reference frame to each link 
of the robot then represent the location of the frame of each link relative to the frame of the link it 
is attached to. Each link is attached to another link with the first link attached to the base. The 
next few paragraphs are a brief explanation of the theory behind forward and inverse kinematic 
equations using homogenous transformation matrices. After this brief explanation, the description 
of how to use the tool to support the instructor in teaching this material is presented.  

For example: Let  AP be point P  represented in coordinate frame A, BP be point P represented 

in Frame B and B
AT be the transformation matrix that represents frame B represented in the 

coordinates of frame A. Then 

BB
A

A PTP   (1)

So when a transformation matrix is multiplied by a vector that represents a point in some frame 
the resultant product is a vector representing the same point represented in the other frame.  

Furthermore if in addition to B
AT  we have C

BT  the transformation matrix that represents frame C 
represented in the coordinates of frame B then we have   

CC
B

B PTP   (2)

and combining the two equations we get 

CC
B

B
A

A PTTP   (3)

where CP is the point represented in frame C. In general we use iA to represent i
i T1 the 

representation of frame i  in terms of the coordinates of frame 1i .  Each link is represented by a 
matrix called iA  for link i.  The complete robot is then represented by the product of all the A 

matrices or nAAAT 21 . 

 Note that when a joint angle changes the position of the link’s frame relative to the link it’s 
attached to changes and therefore the iA matrix for that link changes. The A matrices are functions 
of the four D-H parameters and include the rotation the link has relative to the link its attached to,
  the length of the link, d  the joint offset, a and the joint twist, . All are constants describing 
the physical characteristics of the link except for either   for revolute joints or d  for prismatic 
joint. 

 The matrix nAAAT 21  is called the forward kinematic equations and is a function of 
actuator settings either  or d . Given the current position of all of the joint angles and 
displacements the forward kinematic equations produces the transformation matrix that relates the 
joint angles and displacement to the position of the end-effector.  Our goal is the opposite that is 
we know the desired end-effector position. It’s the joint angles and displacements that need to be 
calculated so that they can be given to the actuators to move. Our goal is then to produce the 
inverse kinematic equations that give the joint angles and displacements given the desired position 
of the end-effector. 

 Currently the tool does not have a way to allow the user to input a set of inverse kinematic 
equations or to program the arm by directly controlling the simulated joint motors. While this will 
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change in future versions, at this time the tool can only be used to verify the student’s work. The 
tool does compute the forward kinematic equations and renders the arm using these equations. 
The student can derive the forward kinematic equations, then given a set of joint angles or 
displacements the tool can compute the coordinates of the hand in the Cartesian world frame. 
Figure 16a shows the sliders the student can use to input the joint angles. Figure 16b shows the 
resultant world coordinates produced by the tool’s forward kinematic equations. Figure 17 shows 
the tool’s complete screen including the rendering of the arm corresponding to the inputted joint 
angles. The tool does not need to be in simulation mode for this part to work. The student can also 
derive the inverse kinematic equations and use the tool to verify their work as well. The student 
can input a point in the world frame, compute the joint angles then enter these joint angles in to 
the tool and have the tool move the hand to the position specified by the inputted joint angles.  

 

 

 
a b

 

Figure 16: (a) The joint angle sliders where the student can enter the joint angles computed 
by hand. (b) The corresponding world coordinates produced by the forward kinematic 
equations of the tool.  

I. USING THE TOOL TO TEACH PATH PLANNING 

Path planning is the creation of polynomials that given the time as input returns the position, 
velocity and acceleration of each joint. It is used to plan a smooth path when moving the arm from 
one position to another. The inverse kinematic equations only tell the angles at the destination. It 
does not specify how the angles change over time in going from their current angle to their 
destination angle. Typically a robotic arm in which one override the controller and get access to 
the joint angles can be programmed by specifying the velocity of each joint. The student moves 
the arm by creating polynomial that continuously telling each joint the velocity it needs to have. 
The joint’s feedback controller then adjusts the power to track this velocity. 

To study path planning the tool has a mode where it models a real robotic arm which needs to 
be controlled at the joint level. Each joint can only be moved by specifying a velocity. The links 
then moves from their current location based on the input velocity. One cannot simply tell the 
joint to instantaneously be at a particular angle. It must be moved by commanding it to move at a 
specific velocity and wait until it works its way to the desired angle. Furthermore the velocity is 
limited by the maximum acceleration. An actual joint motor can only provide a limited amount of 
force that translates to a maximum acceleration given its fixed mass. The maximum acceleration 
is input to the tool and the velocity is then limited by this acceleration.  

 At this time the tool does not have the capability to allow the user to enter these polynomials. 
This is a similar to the situation where the tool does not allow the student to enter the inverse 
kinematic equations.  
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Figure 17: The tool’s screen with the inputted joint angles, the outputted world coordinates 
and the corresponding image of the arm given the joint angles.  

Eventually the student will be able to move the arm by creating a path plan which specifies the 
velocity of each joint. A poor plan will result in the arm not moving as desired and possibly 
overshooting the target destination angle or perhaps the arm may run into an obstacle if the 
various joint’s movement are not coordinated properly. This will be evident by observing the 
movement just as one will do with a real robotic arm.  

Currently however there is support to allow the student to design a single 2-1-2 blend type path 
plan. By single we mean that a single trajectory may be planned as opposed to a sequence of 
movements as is done when creating a general program. To create a path plan, for each joint the 
student must enter the distance to move in degrees, the velocity to cruse at and the acceleration. 
Then the arm moves according to the path plan. Note the student only specifies the parameters of 
the plan and does not actually develop the polynomials. Developing the polynomials, while 
harder, will result in the student obtaining a better understanding of path planning. This is why 
this is planned for a future version.  The 2-1-2 blend is a very common path to plan and the easiest 
of the blend types. The student will learn how to set the parameters that yields the desired path. In 
the example below a path was created from the home position, see Figure 18a to a position where 
link 1 is at 45 degree relative to the base and link 2 is 45 degrees relative to link 1. The speed 
was set to 5 degrees per second and the total time to arrive it 10 seconds, see Figure 18b. The path 
of the hand as it moves is recorded by painting green circles as it moves. It’s as though the hand 
has a pen and is drawing as it moves. This gives the student a record of the resultant path. The 
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movement can be seen including how the hand accelerates at the beginning and slows down 
towards the end of the path.  

 

 

 

 

  

a b

 

Figure 18: (a) The arm in its home position. (b) The arm after joints 1 and 2 move by 45  
while the hand’s path is traced. 

II. ASSESSING THE TOOL 

 The tool is being used for the first time in spring 2015. The instructor will present the lecture 
as usual without the use of this tool. The students will be tested on the material covered. Then 
after these exams the tool will be available for the students to use. The final exam will be 
comprehensive and will retest them on this same material. No additional instruction will be given 
to the students in these areas and so the only difference in their preparation is the use of this tool 
and any additional studying they may perform. The design of this approach was influenced by the 
fact that the tool was not ready until after the corresponding material was covered in the class and 
the students were tested. Unfortunately the results of the exams before and after the use of the tool 
will not be available for the printing of this paper.  

 In addition a survey will be given to the students at the end of the course to ask about such 
issues as the usefulness of the tool in helping them learn the material, the appropriateness of the 
tool in general, the ease of use of the tool, its user friendliness, and what features or changes 
would they recommend.  However please note that the only other resource that is really 
competing with this tool is the library of MATLAB functions offered by Peter Corke and this 
resource require the students to have previous programming skills making it not suitable to 
programs where the students do not have this programming skill. Consider also that some 
instructors do not want to have the students invest the extra time it will take to have them write 
programs even if they know how. This tool is not competing with this and possible other libraries 
but rather filling a gap where no other tool exist with this focused application. Since all the 
students must be treated equally, separating the students into two groups and giving each group a 
different tool will lead to some student having to write programs while the other do not. Therefore 
a survey is the only practical assessment tool we can use. The questions follow. The answer 
choices are (strongly agree, agree, neutral, disagree, and strongly disagree) numbered from 4 
down to 0.  

1. This tool gave me support in learning the D-H representation. 
2. This tool was not aligned with the course content. 
3. This tool was difficult to use. 
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4. Seeing the arm produced by supplying the tool the D-H parameters help me understand 
how to represent an arm using the DH representation.  

5. The tool did not support me in understanding the use of the inverse kinematic equations.  
6. This tool help me learn how to program a robotic arm using its own robotic language. 
7. Assignments using this tool was better than simple pencil and paper homework problems. 
8. I learned how to use the tool very quickly. 
9. The tool help me learn how to create a trajectory for a joint.  
10. The tool did not help me in understanding how to assign the D-H axis and compute its 

parameters.  
11. The tool did not offer support in understanding how to write a robotic program. 
12. I prefer to use this tool than to write a program using a library of image processing 

routines.   
13. Using this tool was easy. 
14. Even though I can represent any robot arm I wish I did not take advantage of this and 

only used the arms preexisting in the tool.  
15. The tool was not much help in understanding trajectory planning.  
16. I spent a lot to time learning to use the tool. 
17. The tool help me understand how to use the inverse kinematic equations to program the 

robot at the joint level.  
18. I would have preferred to write a program using a library of routines than using this tool.  
19. Please indicate the time it took you to figure out how to use the tool.  
20. Please indicate the time it took you to input a robotic arm once you had the D-H 

parameters determined.  
21. What changes, improvements, or new features do you recommend for this tool?  

 
Note many question are redundant and phrased differently to make sure they do not change their 
view based on how the question is worded. The survey will be given after they complete all the 
assignment which is towards the end of the course so the results will not be ready in time for this 
publication but will be presented in the presentation.  

III. THE DEVELOPMENT OF THE TOOL 

 One would think that one of the hardest parts of implementing this tool is to draw the robot. 
Since the robot moves the drawing function needs to know the joint angles and be able to know 
the position of each link. Then each individual line making up the links must be drawn such that 
the position is correct. However the very same robot theory that this tool is teaching the students 
can be used to draw the robot. Recall that the forward kinematic equations determines where the 
location of the hand is in the world frame given all the joint angles. As the arm moves, the joint 
angles change and the forward kinematic equations give the position of the hand at that time. The 
hand can then be drawn knowing where it is to be drawn. The rest of the links are drawn in the 
same way by generating the forward kinematic equation from the base to the particular link.  

 For example the following code is all that is needed to know how to draw a 2 DOF arm to its 
current position.  

FillA(A1,theta1,0,L1,0); 
FillA(A2,theta2,0,L2,0); 
 
l1 = A1*Link1; 
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l2 = A1*A2*Link2 
 

Note the FillA(.) function produces the A transformation matrix given the 4 D-H parameters 
that totally describe the link including its current position. Link1 and Link2 are matrices of points 
that define the boundary of the link represented in the links own frame. And l1 and l2 are 
matrices of the boundary points but represented in the world frame already corrected for the links 
relative position within the robot and for the arms current position. So drawing the robot simply 
consists of drawing lines between all pairs of points in l1 and l2. This feature allows the tool to 
dynamically draw any arm specified by the user.   

 The graphical user interface (GUI) and drawing windows were implemented using wxWidgets. 
This allows the tool to be ported to many platforms in future implementations. A library was 
created to interface between the wxWidgets and the tool’s code so that the program does not have 
any code specific to any particular GUI tool. Then porting it to other languages is also easier. For 
example porting to Java will require replacing all the wxWidgets calls with Java Swing calls 
however only the library created will need to be changed. The tool’s actual code will remain the 
same. Due to the amount of existing code we have from previous projects all written in C++ we 
decided to implement this tool in C++. 

 The most difficult part of this project was to justify the time and effort in creating the tool. 
Since there are many preexisting tools that are used for both image progressing and robotic 
simulations a careful study was performed to investigate the appropriateness of using these tools. 
The merit of this tool then became clear; to create a tool that is specifically designed to support 
the instructor and students in teaching and learning in the Introduction to Robotics course. This 
includes a tool that does not require a significant effort to learn how to use, allows the students to 
use any robotic arm in the book or elsewhere, allows for programming at the joint level, and 
finally a tool that performs just the right amount of functionality leaving the students to 
implement the rest.  

IV. FUTURE ENHANCEMENTS 

 There are many improvements planned for future versions. The first is to integrate the vision 
component with the rest of the tool. This will allow the student to attach a camera to the arm or 
ceiling looking down at the table. The image from the camera will then correspond to where the 
camera is pointing and what is in its view. The student will then be able to implement a program 
that includes robotic vision algorithms to identify and locate the part within the image, then use 
the kinematic equations to locate the part in the world frame. The student will then be able to 
program the arm to reach and grab the part.  

The second major improvement is to add capabilities to decipher equations. This will allow the 
student to enter the inverse kinematic equations. This involves adding a compiler to the code to 
compile the equations.  

Most all commercially available robots, even those used for educational purposes, 14 do not 
allow one to program the joint angles directly. Instead their controller is programmed using a 
robotic language such as the one presented above where one commands it to move to a specific 
location at a specific speed and the controller performs al of the inverse kinematics. One generally 
does not have the option to override the controller and control the joint angles directly. There are 
safety concerns in overriding the controller as well. The third major improvement is to expand the 
compiler to include other programming structures such as if-else, loops and so on to allow the 
student to program the arm at the joint level. 
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V. CONCLUSIONS 

 In this paper we presented a tool to support the instructor and students in the basic Introduction 
to Robotics course. This tool allows students to input any robotic arm by just entering the arm’s 
D-H parameters and the joint movement limits. Then the student can program the arm using a 
robotic type of language, use the arm to verify their forward and inverse kinematic equation 
computations and design a 2-1-2 type path plan. The tool supports 3D graphics with zoom and 
pan features.  
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