
AC 2009-2371: AN EXPERIMENT TO EVALUATE AN APPROACH TO
TEACHING FORMAL SPECIFICATIONS USING MODEL CHECKING

Salamah Salamah, Embry-Riddle Aeronautical University, Daytona Beach

Steve Roach, University of Texas, El Paso

Omar Ochoa, University of Texas, El Paso

Veronica Medina, University of Texas, El Paso

Ann Gates, University of Texas, El Paso

© American Society for Engineering Education, 2009

P
age 14.192.1

Experiment to Evaluate Teaching Formal Specifications Using Model

Checking

Salamah Salamah

Computer and Software Engineering Dept., Embry-Riddle Aeronautical University.

Steve Roach, Veronica Medina, Omar Ochoa, and Ann Gates

Computer Science Dept., University of Texas at El Paso.

Abstract

The difficulty of writing, reading, and understanding formal specifications remains one of the

main obstacles in adopting formal verification techniques such as model checking, theorem and

runtime verification. In order to train a future workforce that can develop and test high-assurance

systems, it is essential to introduce undergraduate students in computer science and software en-

gineering to the concepts in formal methods. This paper presents an experiment that we used to

validate the effectiveness of a new approach that can be used in an undergraduate course to teach

formal approaches and languages. The paper presents study that was conducted at two institutions

to compare the new approach with the traditional one in teaching formal specifications. The new

approach uses a model checker and a specification tool to teach Linear Temporal Logic (LTL), a

specification language that is widely used in a variety of verification tools.

1 Introduction

In software engineering, formal techniques such as software runtime monitoring [5], and model

checking [3, 8] require formal specifications that are based on mathematics. Formally specifying the

behavior of a software system, however, is a difficult task because it requires mathematical sophis-

tication to accurately specify, read, and understand properties written in a formal language. Natural

language descriptions of software requirements are inherently ambiguous and often incomplete.

Deriving a formal specification from a requirement written in natural-language of concurrent or

sequential behavior is made more difficult because of the variety of aspects that must be considered

when specifying software behavior. As such, a major impediment to the use of formal approaches

in software development remains the difficulty associated with the development of correct formal

specifications (i.e, ones that match the specifier’s original intent) [6, 7].

Currently, there exists multiple formal specification languages that can be used in a variety of

verification techniques and tools. Linear Temporal Logic (LTL) [11], Computational Tree Logic

(CTL) [10], and Meta Event Definition Language (MEDL) [9] are some of these languages. The

aforementioned languages can be used in a variety of verification techniques and tools. For exam-

ple, the model checkers SPIN [8] and NuSMV [2] use LTL to specify properties of software and

hardware systems. On the other hand, the SMV [3] model checker verifies system behaviors against

formal properties in in CTL. MEDL is used by JavaMac in runtime monitoring of java programs

[9].

Many undergraduate curricula do not include the topic of formal methods. Certainly, a high level

of mathematical sophistication is required for writing, reading, and understanding formal specifi-

1

P
age 14.192.2

cations. A number of tools have been developed to assist the generation of formal specifications,

such as the Specification Pattern System (SPS) [4], the Property Elucidation tool (Propel) [17], and

the Property Specification tool (Prospec) [12, 13]. While these tools support specification of a wide

range of properties, they do not support specification of some common software properties. For

example the recurrence property (i.e., if P happens to be false at any given point in a system execu-

tion, it is always guaranteed to become true) and stability property (i.e., there is always a point in a

system execution where P will become invariantly true) [8], are not supported by the current tools.

While pattern-based specifications can be adjusted to specify such properties, it requires someone

who is knowledgeable in temporal logic.

Additionally, it is sometimes the case that formal specifications generated by the aforementioned

tools do not match the natural language description of the specifications as provided by the tools

[16]. As such, it is imperative that software engineers who use formal specifications can validate

that the generated properties match their understandings.

In a previous work [14, 15] we introduced a novel technique for analyzing LTL specifications

by using the SPIN model checker to illustrate the traces of computations that are accepted by the

specifications. The educational component presented in the work can be used to introduce formal

specifications and model checking or to supplement existing instructional material on temporal

logic. In this paper we describe a case study to evaluate the effectiveness of the new approach in

teaching and learning formal specifications (specifically LTL) compared to the traditional method

of introducing formal specifications.

Section 2 of the paper presents an overview of essential concepts: model checking, Linear Tem-

poral Logic (LTL), and SPS. Section 3 discusses the traditional approach for teaching formal spec-

ification the new approach. For the new approach, we include the teaching component lessons, and

exercises in Section 4, and Section 5 provides description of the new approach including lessons

and exercises. Section 6 provides the detailed description of the experiment including description

of participating subjects, experiment objects, and variables. A summary and acknowledgments

conclude the paper.

2 Background

2.1 Model Checking

Model checking is a formal technique for verifying finite or infinite-state concurrent systems by

examining the consistency of the system against system specifications for all possible executions.

The process of model checking consists of three tasks: modeling, specification, and verification.

Modeling. The modeling phase consists of converting the design into a formalism accepted by

the model checker. In some cases, modeling is simply compiling the source code representing the

design. In most cases, however, the limits of time and memory mean that additional abstraction is

required to come up with a model that ignores irrelevant details. In SPIN, the model is written in

the Promela language [8].

Specification. As part of model checking a system, it is necessary to specify the system properties

to be checked. Properties are usually expressed in a temporal logic. The use of temporal logic

allows for reasoning about time, which becomes important in the case of reactive systems. In

2

P
age 14.192.3

Figure 1. Model checking process.

model checking, specifications are used to verify that the system satisfies the behavior expressed by

the property.

Verification. Once the system model and properties are specified, the model checker verifies the

consistency of the model and specification. The model checker relies on building a finite model

of the system and then traversing the system model to verify that the specified properties hold in

every execution of the model [3]. If there is an inconsistency between the model and the property

being verified, a counter example, in form of execution trace, is provided to assist in identifying the

source of the error. Figure 1 shows the process of model checking.

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) [11] is a prominent formal specification language that is highly

expressive and widely used in formal verification tools such as the model checkers SPIN [8] and

NuSMV [2] . LTL is also used in the runtime verification of Java programs [18].

Formulas in LTL are constructed from elementary propositions and the usual Boolean operators

for not, and, or, imply (¬, ∧, ∨, →, respectively). In addition, LTL provides the temporal operators

next (X), eventually (¦), always (2), until, (U), weak until (W), and release (R). These formulas

assume discrete time, i.e., states s = 0, 1, 2, . . . The meanings of the temporal operators are

straightforward1

• The formula Xp holds at state s if p holds at the next state s + 1,

• pU q is true at state s, if there is a state s′ ≥ s at which q is true and, if s′ is such a state, then

p is true at all states si for which s ≤ si < s′,

• the formula ¦p is true at state s if p is true at some state s′ ≥ s, and

• the formula 2p holds at state s if p is true at all moments of time s′ ≥ s.

Detailed description of LTL is provided by Manna et al.[11].

A problem with LTL is that the resulting LTL expressions can become difficult to write and

understand. For example, consider the following LTL specification: 2(a → ¦(p ∧ ¦((¬p) ∧ ¬a)))

1In this work, we only use the first four of these operators, as they are the ones supported by the model checkers SPIN
and NuSMV. The other operators can be derived from these four.

3

P
age 14.192.4

represents the English requirement ”If a train is approaching(a), then it will be passing(p), and later

it will be done passing with no train approaching”.

2.3 Specification Pattern System: Patterns and Scopes

Writing formal specifications, particularly those involving time, is difficult. The Specification

Pattern System (SPS) [4] provides patterns and scopes to assist the practitioner in formally spec-

ifying software properties. These patterns and scopes were defined after analyzing a wide range

of properties from multiple industrial domains (i.e., security protocols, application software, and

hardware systems). Patterns capture the expertise of developers by describing software behavior

for recurrent situations. Each pattern describes the structure of specific behavior and defines the

pattern’s relationship with other patterns. Patterns are associated with scopes, which define the

portion of program execution over which the property holds.

The main patterns defined by SPS are: universality, absence, existence, precedence, and

response. The descriptions given below are taken verbatim from the SPS website [19].

• Absence: To describe a portion of a system’s execution that is free of certain events or states.

• Universality: To describe a portion of a system’s execution which contains only states that

have a desired property. Also known as Henceforth and Always.

• Existence: To describe a portion of a system’s execution that contains an instance of certain

events or states. Also known as Eventually.

• Precedence: To describe relationships between a pair of events/states where the occurrence

of the first is a necessary pre-condition for an occurrence of the second. We say that an

occurrence of the second is enabled by an occurrence of the first.

• Response: To describe cause-effect relationships between a pair of events/states. An occur-

rence of the first, the cause, must be followed by an occurrence of the second, the effect. Also

known as Follows and Leads-to.

In SPS, each pattern is associated with a scope that defines the extent of program execution over

which a property pattern is considered. There are five types of scopes defined in SPS as shown in

Figure 2. A description of these scopes follows:

• Global: The scope consists of all the states of program execution.

• Before R: The scope consists of the states from the beginning of program execution until

(excluding) the state where the proposition R first holds.

• After Q: The scope consists of the states from (including) the state where the proposition

Q first holds and includes all the remaining states until program termination.

• Between Q And R: The scope consists of the states from (including) the state where the

proposition Q holds and includes all the states until (excluding) the state where the proposi-

tion R holds.

• After Q Until R: This scope is similar to the previous one, with the exception that in

the case where the proposition R does not hold then the scope contains all the states from

(including) the state where Q holds and all those states until the end of program execution.

A detailed description of these patterns and scopes is provided by Dwyer et.al.,[4].

SPS is a website [19] that provides descriptions of the patterns, including intent, relationships,

and known uses. The website provides a mapping of each pattern/scope combination into multiple

formal specification languages including LTL. The user then simply replaces his/her propositions

4

P
age 14.192.5

Figure 2. Scopes in SPS [19]

for L, R, P, and Q. For example, the property “Request (E) always triggers Acknowledgment

(A), between Beginning of execution (B) and System shutdown (N)”, can be described by the

S Responds to P pattern within the BetweenQ and R scope. The LTL formula for the pattern

and scope combination as provided by the SPS website is:

2((Q ∧ (¬R) ∧ ¦R) → (P → ((¬R)U(S ∧ ¬R)))UR).
Using the user’s propositions E, N, A, and B, the resulting LTL specification is:

2((B ∧ (¬N) ∧ ¦N) → (E → ((¬N)U(A ∧ ¬N)))UN).
Tools such as the Property Elicitation (Propel) [17] and the Property Specification (Prospec)

[12, 13] build on SPS by completely automating the generation of formal specifications based on the

notions of pattern and scope. These tools interact with the specifier through a series of predefined

questions. Based on the specifier’s answers, the corresponding pattern and scope combination is

selected and the corresponding formal specification is displayed.

3 Traditional Approach to Teaching LTL: Lessons and Exercises

LTL is taught to undergraduates in a typical lecture environment. The objectives of the lesson

are for students to be able to translate English statements into LTL, understand LTL statements, and

be able to determine the whether a given execution trace satisfies an LTL statement.

The lecture begins by discussing the execution of a program as a sequence of states ordered in

time. Then we introduce LTL syntax and show that an LTL valuation is a sequence of Boolean val-

uations, each of which represents a state. The satisfaction relation is described, as are equivalences

and adequate sets of operators. Examples are used throughout. For example, we introduce the se-

mantics of the until operator by stating that Q1 U Q2 means that Q1 is true continuously until Q2

becomes true, that Q1 and Q2 need not be true in the same state, and that Q2 must be true eventually.

Formally, this is written as: π |= Q1 U Q2 ⇐⇒ ∃i ≥ 1, πi |= Q2 ∧ ∀ 1 ≤ j < i, πi |= Q1

Once the students are represented with the formal definitions of the LTL operators such as the

Until operator above, they are then provided with exercises to translate English statements into LTL

or vice versa. Some of these examples follow:

• It is impossible to get to a state where we are started but not ready.

– 2¬(started ∧ ready)

• If a request is made, it will be serviced

– 2(requested → ¦serviced)

• Whatever happens, P will eventually become permanently deadlocked

– ¦2deadlock

5

P
age 14.192.6

• An elevator moving up at the second floor does not go down if it has passengers traveling to

the 5th floor

– 2(floor2 ∧ directionUP ∧ button5) → (directionUp U floor5)

4 Educational Component for Teaching Formal Specifications

4.1 Goals and Outcomes

The goal of the lessons designed in the new approach are to teach students how to: 1) write, read,

and understand formal specifications using LTL, and 2) use tools (SPS and SPIN, respectively) in

support of specifying software properties and analyzing the generated specifications using model

checking. This section briefly describes the technique and activities that support the attainment of

these goals. A detailed description of the technique, lessons, and exercises can be found in Salamah

et al [14]. The prerequisite for the educational component is a course in discrete mathematics in

which the students specify properties using propositional logic. The component described in the

new approach is approximately six hours in length with tutorials on using the tools.

The educational outcomes, given below, are separated using Bloom’s taxonomy [1], where level

1 outcomes represent knowledge and comprehension outcomes (those in which the student has

been exposed to the terms and concepts at a basic level and can supply basic definitions.); level 2

outcomes represent application and analysis (those in which the student can apply the material in

familiar situations); and level 3 represent synthesis and evaluation (those in which the student can

apply the material in new situations). The educational outcomes are:

1-1. Students will be able to describe the behavior of simple LTL formulas.

2-1. Students will be able to use a model checker to determine if properties hold in a model.

2-2. Students will be able to identify the appropriate pattern and scope associated with a property

and to apply them to generate a formal specification.

2-3. Students will be able to use a model checker to improve their understanding of LTL.

3-1. Students will be able to specify a property in LTL and will be able to define

equivalence-class and boundary-value analysis test cases to test the property.

5 Overview of The New Technique

5.1 The Use of SPS: Exercise 1

The new technique uses SPS and model checking to enhance student’s understanding of formal

specifications. The use of SPS is straightforward. The students are first given an introduction to

LTL and a tutorial on SPS. The students are then given hands-on exercises in which they use SPS to

specify a series of properties. The lesson focuses on Outcome 2-2 and teaching students how to use

SPS to specify patterns and scopes to generate an LTL formula. There are 25 possible SPS pattern

and scope combinations. The concentration should be on the use of the response pattern, which is

one of the most commonly used patterns in property specification [4].

In the first exercise the students are given a set of properties in natural language and are asked to:

(1) define the property pattern, (2) define the property scope, (3) map the propositions used in the

pattern and scope to the appropriate phrases in the property description, and (4) generate the LTL

formula for the pattern and scope. A sample property is “ A request always triggers reply between

start of execution and system shutdown.”

6

P
age 14.192.7

5.2 Using Model Checking to Enhance Understanding

As opposed to using a model checker such as NuSMV to test the correctness of the model, the

technique employed here uses a simple model written in the smv language to test whether an LTL

specification holds for a given trace of computation. A trace of computation is a sequence of states

that depicts the propositions that hold in each state. In this technique, the model produces a simple

finite state automaton with exactly one possible execution and a small number of states.

The user models a trace of computation by assigning truth values to the propositions of the LTL

formula for a particular state. For example, a user may examine one or more combinations of the

following: a proposition holds in the first state, a proposition holds in the last state, a proposition

holds in multiple states, a proposition holds in one state and not the next, an interval (scope) is

built, an interval is not built, and nested intervals exist. This assignment of values is referred to as a

test. The user runs SPIN using the Promela code, the test case, and the LTL specification. Each run

assists the user in understanding a formula by checking expected results against actual results. The

simplicity of the model makes inspection of the result feasible.

Specification of the LTL formula to be analyzed and the assignments of conditions to proposi-

tions are done using the LTLV tool which is graphical user interface to the NuSMV developed for

the purpose of this study.

Inspection of LTL formulas helps with understanding the subtleties of the language simply by

manipulating the propositions in the. For example, the LTL formula “¦P ” asserts that P holds at

some future state. However, a reasonable question would be “What if P holds in the current state

where the formula is asserted. Would this be an acceptable behavior of the formula?” The answer to

this question is “Yes”, since the current state is part of the future in LTL. This piece of information

can be easily missed by a naı́ve or beginner LTL specifier. Using our method, one can easily test

such situation by simply asserting that P holds in the first state and test the formula ¦P and examine

LTLV’s output.

5.3 Exercises Using a Model Checker

The lessons described here follow a tutorial in which students are introduced to model checking.

Students will have used the LTLV tool to check the correctness of simple models. In the exercises,

students apply the new technique using the LTLV tool2.

Exercise 2: The focus of Exercise 2 is to clarify the subtleties of the temporal operators of LTL

(Outcome 2-3). For example, the LTL formula “¦P ” asserts that P holds at some future state;

however, in LTL, the current state is part of the future and, hence, the situation where P holds

in the current state is accepted by this specification. Exercise 2 provides the students with a SPS

pattern/scope combination, the corresponding LTL formula, and a list of traces of computations.

The students are asked to run the traces of computations against the LTL formula using LTLV and

then answer some questions. For example, the students are given the Response-Global pattern/scope

and a set of traces. They are then asked to answer questions like “in the response property, can the

cause (P) and effect (S) hold at the same state? Explain your answer.”

Exercise 3: Exercise 3 focuses on teaching students the concepts of traces of computations, and

how they can be used to visualize the appropriate behavior of an LTL formula. In addition, the

2The current LTLV tool can be requested from salamahs@erau.edu. Also a demo of the tool will be performed at the
ASEE 09.

7

P
age 14.192.8

subtle properties of LTL are explained (Outcome 3.2). In the exercise the students are given an

LTL formula and a set of traces of computations, and they are asked to predict the output of the

LTLV tool when running the formula against each trace. The students are then asked to validate

their expected results by actually running the formula and trace in LTLV.

Exercise 4 After completing the previous exercises, the students should be able to define more

sophisticated LTL specifications. In addition, they should be able to define test cases in the form of

traces of computations to validate their generated LTL formulas. Exercise 4 checks student’s ability

to satisfy Outcome 3.1. In Exercise 4, students’ total understanding of LTL is put to the test. The

students are given a list of natural language properties and they are asked to:

• specify a corresponding LTL formula for the property,

• define a set of traces of computations to validate the generated LTL formula,

• define the expected outcome for each trace of computation, and

• Use LTLV to test each trace of computation against generated LTL formula.

A sample property is “When a connection is made to the SMTP server, all queued messages in the

OutBox mail will be transferred to the server.”

6 Description of the Experiment

This section describes the experiment conducted at Embry-Riddle Aeronautical University (ERAU)

in Daytona Beach, Florida, and the University of Texas at El Paso (UTEP). The results of the experi-

ment are not available at the time of writing this paper. The results will be available for presentation

at ASEE in June 2009. In addition, analysis of the results and supporting documentation of the ex-

periment can be obtained from the authors.

6.1 Objective and Hypotheses

The formal experiment reported in this paper was a controlled investigation that examined the

effectiveness of two alternative methods for teaching formal specifications, specifically LTL. The

two methods are the traditional approach and the new one introduced in [14]. The objective of the

experiment was to determine the effect that the two approaches have over the completeness and

correctness of the generated software property specifications. The null hypotheses were defined

as:

• Students who are introduced to LTL using the new approach identify, on the average, the same

number of correct mapping between an LTL formula and a set of traces of computations and

the truth value of running each of these traces against the LTL formula as those who are

introduced to LTL using the traditional approach.

• Students who are introduced to LTL using the new approach define, on the average, the same

number of correct properties in LTL as those who are introduced to LTL using the traditional

approach.

The research hypotheses were defined as:

• Students who are introduced to LTL using the new approach identify, on the average, larger

number of correct mapping between an LTL formula and a set of traces of computations and

8

P
age 14.192.9

the truth value of running each of these traces against the LTL formula as those who are

introduced to LTL using the traditional approach.

• Students who are introduced to LTL using the new approach define, on the average, larger

number of correct properties in LTL as those who are introduced to LTL using the traditional

approach.

6.2 Subjects, Objects, and Variables

Subjects The experimental subjects were undergraduate students, graduate students, and re-

searchers from the Computer Science Department at UTEP, and the Computer and Software Engi-

neering Department at ERAU. The subjects will report, through a pre-evaluation form, their degrees

of knowledge and experience about requirements engineering, formal specifications, and LTL. Sub-

jects will be given a 50 minute tutorial about: a) need for formal specifications and model checking,

b) patterns and scopes; c) specification of properties using patterns and scopes; and d) navigation

of LTLV tool.

This experiment will require two groups of participants. The first group will be obtained from

UTEP advanced Computer Science classes, such as CS3331 or CS4310. This group will be known

as the UTEP group. The second group will be obtained from the Department of Computer and

Software Engineering at Embry-Riddle Aeronautical University. This group will be known as the

ERAU group.

The UTEP group will have approximately sixty participants and the ERAU group will have ap-

proximately twenty five participants. The difference in numbers is due to the gap in the number of

students registered in Computer Science at UTEP versus the number of students registered in Com-

puter Science at ERAU. All participants are taking or will be taking advance courses of Computer

Science. Neither the age, sex, or ethnic background of the participants is relevant for the purpose

of this experiment; therefore, it will not be taken into account.

This experiment will take place on March 25-30. There will be two locations for this experiment.

The first part of the experiment will take place at the University of Texas at El Paso in El Paso, Texas

and the other part of the experiment will take place at Embry-Riddle University in Daytona Beach,

Florida.

In order to recruit participants, an announcement will be made during the advanced CS classes,

which will ask the students for their voluntary participation in this experiment. During the an-

nouncement, the students will be informed of the purpose of the experiment and what will be

required as part of their participation.

Two faculty members from UTEP and ERAU will conduct the experiments. UTEP students will

be volunteers from CS 3331 and CS4310 courses. ERAU students will be volunteers from SE300

and CS317 courses. Participants will be upper division students in Computer Science or Software

Engineering who have exposure to propositional logic but not to temporal logic. Student proficiency

in these areas will be assessed with a short pre-test.

Students from each institution will be randomly assigned to a study group and a control group.

The control group will receive a 50 minute lecture on LTL using the traditional approach. The study

group will receive a lecture using the new technique and the LTLV tool. The total instruction time

for the study group will be identical to the instruction time given to the control group.

At the end of the instruction time, both sets of students will be given a set of approximately

10 exercises designed to assess the student’s understanding of LTL. The control group will simply

complete the 10 exercises. The study group will complete the exercises without the tool, then will

9

P
age 14.192.10

be allowed to use the tool and resubmit answers. Experiment facilitators will time the students as

well as assess the correctness of their answers. Students will be given a 30 minute time span to

complete the exercises. To encourage students to perform well on the assessments, students who

answer at least 70% of the questions correctly will be entered into a pool for a drawing for token

awards. Student have the option to not participate in the drawing.

The experiment is expected to last approximately two hours, including a ten minute break. To

protect the privacy and the confidentiality of participants, they will be assigned a unique key to

be used on the pretest and final assessments. The key table will be used to enter students into the

drawing. At the end of the experiment, the key table will be destroyed. Students will not be given

their individual results. However, the correct answers and the results of the drawing will be made

public.

The analysis of data will consist of comparing the initial and final scores within each group

and comparing the final scores of the control group, the final scores of the study group on the

unsupported answers, and the final scores of the study group after using the supporting software

tool. There are no foreseen risks or problems associated with the execution of this experiment.

Objects The experimental objects in this experiment will be English descriptions of software

properties. The domains of application for these properties are operating systems, avionics, and

software applications. A complete list of properties used in this experiment, along with the corre-

sponding LTL formulas and traces of computations can be obtained from the authors and will be

presented at the the ASEE conference.

Variables The independent variable or factor, i.e., the variable that can change the outcome,

was the teaching method. There were two levels for this independent variable: traditional approach

and the new approach. The dependent variables, i.e., the outcomes, were the correct LTL score

(corrLTL) and correct traces mapping score (corrTraceMap) of the property specification. The

corrLTL score for each participant measures the number of correct LTL formulas defined for

property descriptions. The corrTraceMap score measures the number of correct evaluations of

the truth value of each trace of computation against a specified LTL formula by the participant.

7 Summary

Software verification remains one of the most challenging aspects of software development. Test-

ing continues to be the most widely used verification technique. However, testing can be costly and

time consuming, and as software systems become more complex, testing is less able to provide

assurance of correct software behavior. Formal verification approaches such as model checking,

theorem proving, and runtime verification complement testing and assist in discovering subtle er-

rors at earlier stages of software development. A major impediment to the use of these techniques

remains the difficulty of writing and understanding the required formal specifications. A neces-

sary step, therefore, is to educate and train future generation of software engineers to write and

understand formal specifications.

This paper describes an experiment to test the efficiency of a new approach to teaching formal

specifications using tools for writing and validating these formal specifications. The experiment

will be conducted at the University of Texas at El Paso, and Embry-Riddle Aeronautical University.

The participants will be upper level computer science and software engineering students.

10

P
age 14.192.11

8 Acknowledgment

The authors would like to extend their thanks to the students participating in this experiment as

well as the lab assistants at both UTEP and ERAU for their help. This work is partially sponsored

by the office of the provost at ERAU in Daytona Beach through the office of sponsored research.

References

[1] Bloom, B.S., “Taxonomy of Educational Objectives: The Classification of Educational

Goals,” Susan Fauer Company, Inc., 1956, pp. 201-207.

[2] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M., “NuSMV: a new Symbolic Model

Verifer” International Conference on Computer Aided Verifcation CAV, July 1999.

[3] Clarke, E., Grumberg, O., and D. Peled. Model Checking. MIT Publishers, 1999.

[4] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C., “Patterns in Property Specification for

Finite-State Verification,” Proceedings of the 21st Intl. Conference on Software Engineering,

Los Angeles, CA, USA, 1999, 411-420.

[5] Gates, A., Roach, S., “DynaMICs: Comprehensive Support for Run-Time Monitoring,” Run-

time Verification Workshop, Paris, France, July 2001, pp. 61-77.

[6] Hall, A., ”Seven Myths of Formal Methods,” IEEE Software, September 1990, pp. 11-19.

[7] Holloway, M., and Butler, R., “Impediments to Industrial Use of Formal Methods,” IEEE

Computer, April 1996, pp. 25-26.

[8] Holzmann, G. J., “The model checker SPIN” IEEE Transactions on Software Engineering.,

23(5):279-295, May 1997.

[9] Kim, M., Kannan, S., Lee, I., and Sokolsky, O., “Java-mac: a run-time assurance tool for java.

In Proceedings of Runtime Verification (RV’01), volume 55 of Electronic Notes in Theoretical

Computer Science. Elsevier Science, 2001.

[10] Laroussinie, F. and Ph. Schnoebelen, “Specification in CTL+Past for verification in CTL,”

Information and Computation, 2000, 236-263.

[11] Manna, Z. and Pnueli, A., “Completing the Temporal Picture,” Theoretical Computer Science,

83(1), 1991, 97–130.

[12] Mondragon, O. and Gates, A., “Supporting Elicitation and Specification of Software Prop-

erties through Patterns and Composite Propositions,” Intl. Journal Software Engineering and

Knowledge Engineering, XS 14(1), Feb. 2004.

[13] Mondragon, O., Gates, A., and Roach, S., “Prospec: Support for Elicitation and Formal Spec-

ification of Software Properties,” in Proceedings of Runtime Verification Workshop, ENTCS,

89(2), 2004.

[14] Salamah, S., and Gates, A., “A Technique for Using Model Checkers to Teach Formal Specifi-

cations” Proceedings of the 21st IEEE-CS International Conference on Software Engineering

Education and Training (CSEE&T), Charleston, SC, April 2008, 181-188.

[15] Salamah, S., Gallegos, I., and Ochoa, O., “A Novel Approach for Software Property Vali-

dation” Proceedings of the International Conference for Software Engineering Theory and

Practice (SETP), Orlando, Fl, July 2008

11

P
age 14.192.12

[16] Salamah, S., Gates, A., Roach , S., and Mondragon, O., “Verifying Pattern-Generated LTL

Formulas: A Case Study. Proceedings of the 12th SPIN Workshop on Model Checking Soft-

ware. San Francisco, California, August, 2005, 200-220

[17] Smith, R.L., Avrunin, G.S., Clarke, L.A., and Osterweil, L.,J. “PROPEL: an approach support-

ing property elucidation.” In Proceedings of the 24rd International Conference on Software

Engineering. 2002, pp. 11-21

[18] Stolz, V., and Bodden, E., “Temporal Assertions using AspectJ”, Fifth Workshop on Runtime

Verification Jul. 2005.”,

[19] Spec Patterns, http://patterns.projects.cis.ksu.edu/, March 2009.

12

P
age 14.192.13

