
Session 3226

An FPGA Project for use in a Digital Logic Course

Daniel C. Gray, Thomas D. Wagner
United States Military Academy

Abstract

The Digital Computer Logic Course offered at the United States Military Academy teaches
cadets the principles of combinational and sequential logic, with an emphasis on programmable
logic design. Classroom principles are reinforced with six lab exercises and two projects. In
previous versions of the course, cadets were given a digital alarm clock kit that they constructed
as credit for one lab.

In 1995, a decision was made to replace the alarm clock with a new project. The new project is a
scrolling sign that interfaces through the parallel port of a PC. Two versions of the project have
been built, the first using discrete MSI components, and the second using VHDL and a Xilinx
FPGA. The FPGA implementation will be used in the future as one of the labs in the Digital
Design Course.

This project proved to be a learning experience for the faculty in terms of VHDL, CAD tools,
and synthesis onto an FPGA. This paper describes the process of designing the scrolling sign
project and the intended use of the project in the EE curriculum at USMA. Lessons learned
throughout the process are described as they occurred. The tools used in the design and why
they were chosen are described.

I. Introduction

The Digital Computer Logic Course offered at the United States Military Academy teaches
cadets the principles of combinational and sequential logic, with an emphasis on programmable
logic design. Classroom principles are reinforced with six lab exercises and two projects. In
previous versions of the course, cadets were given a digital alarm clock kit that they constructed
as credit for one lab.

In 1995, a decision was made to replace the alarm clock with a new project. Two factors
contributed to this decision. First, the supplier stopped providing the clock chip used in the
design and another supplier could not be found. Second, it was time for a new project for cadets
to build in the digital logic course. Two versions of a new project were built. The first version
used discrete MSI (medium scale integration) components. The second version of the project
used VHDL and a Xilinx FPGA (field programmable gate array).

Existing CAD tools were used to determine if they would support VHDL simulation and
synthesis. The first iteration of the VHDL design was simulated in ViewLogic Powerview,
synthesized with ViewSynthesis, and mapped onto a Xilinx FPGA using Xilinx Alliance M1.4.
Both tools ran on a Sun SPARC1000. For the second iteration of the VHDL design, Xilinx P

age 4.70.1

Foundation was used, running on a 233 MHz Pentium MMX. Both iterations gave satisfactory
results.

This project proved to be a learning experience for the faculty in terms of VHDL, CAD tools,
and synthesis onto an FPGA. Using VHDL to describe a circuit is different from gate-level
design using traditional schematic capture techniques. The designer must be able to work
without the visual representation provided by a gate-level circuit diagram. The benefit is that
often much of the gate-level details can be abstracted away with a higher level VHDL
description. However, an abstracted description may not synthesize. While VHDL allows you
to write a standard “sequential” program, not all VHDL programs are guaranteed to synthesize
into hardware.

A VHDL design can be described at several different levels, the two most common being
behavioral and structural. A structural description mirrors a circuit layout, and leads to a design
that more rapidly configures onto hardware. A behavioral description (or architecture) tends to
look more like a traditional program. Some behavioral descriptions such as counters and state
machines synthesize well into hardware. Other behavioral descriptions, particularly those that
involve memory, or operations such as multiplication and division, may not lead to a design that
can be synthesized onto an FPGA. Simply writing a design as a traditional sequential program
without considering the hardware that is being described may not lead to a synthesizable design.
A better approach is to describe some sub-components behaviorally, but keep in mind the overall
hardware architecture when describing the circuit, and write structural architectures where
necessary.

Selecting the correct CAD tool for design is also critical. The combination of VHDL, FPGA’s,
and CAD tools creates a steep learning curve. Two goals were kept in mind when selecting a
CAD tool. First, the CAD tool had to support the entire design process through synthesis,
placement, and routing on the FPGA. Second, the CAD tool had to be available and usable by
undergraduates.

What follows is a high level architectural description of the chosen new project, comments on
the MSI-based approach to the design, and a description of the VHDL/FPGA-based approach to
the design. Lessons learned throughout the process are described as they occurred.

II. High Level Design

The project that was chosen was a scrolling sign. Like the digital clock, the scrolling sign
project was envisioned to be something the cadets could build and then use in their rooms. The
basic idea was to end up with a scrolling message display that could be connected to the cadets’
personal computers. The project would require interfacing the parallel port of a PC with an
Optrex LCD display through hardware that required design. The end product allows the user to
type a message on a PC. The message is then sent through the parallel port to the designed
hardware on a printed circuit board. The circuit stores the message and then scrolls the message
across the Optrex display. The hardware design contains the following components: an eight-bit
input register, an eight-bit output register, a seven-bit address counter, 128 bytes of SRAM, and a
finite state machine. Figure One shows the data and control flow of the final design. P

age 4.70.2

The data sent from the PC is in eight-bit ASCII character form. The data path flows from the
parallel port, through the eight-bit input register, to a byte-wide static RAM memory chip. Once
the message is stored, the data flows from the memory, through the eight-bit output register, to
the Optrex display. The finite state machine controls the entire operation.

The finite state machine (FSM) is used to control the data flow. First, the FSM handshakes with
the PC to receive each character. The FSM sends an acknowledgment to the PC when it is ready
to receive a byte of data, and also after it has received the byte. This prevents the speed of the
PC from outpacing the hardware receiving the data by forcing the software to wait until it
receives the acknowledgments from the FSM. After receiving the byte, the FSM controls the
timing sequence to latch the data into the input register, store the byte into an address location on
the memory, and increment the address counter. While the FSM is storing the character data, the
software on the PC is waiting for the next handshake signal from the FSM before sending the
next byte. This sequence of states is looped in the state machine until the FSM receives a stop
character.

The standard parallel port contains three byte-wide ports: the data port, status port, and control
port. The software must ensure that it sets the control port bits correctly to enable data flow in
the correct direction through the data port. The handshaking signals from the FSM are received

Input Register

128 byte SRAM

Output Register

PC Parallel Port

Optrex Display

8 (D0-D7)

8 (D0-D7)

8 (D0-D7)

8 (D0-D7)

Finite
State

Machine

7

Write Enable
Write Clock

Output Enable
Latch Enable

Address
Counter

CountClear Load Latch Enable
Output Enable

Address Count

Enable
RS

Reset
Strobe

8
Data Stage 1

Data Stage 2

8

3

A2-0

Data PathControl

Data End Acknowledgment
Data Begin Acknowledgment
Reset Acknowledgment

Figure 1: High Level Architecture

P
age 4.70.3

through the status port. The software also adds Optrex display initialization data to the front of
the message and a stop character to the end of the message. All of the data is stored in sequential
locations of the on-board memory, starting at address location zero.

Upon receipt of the stop character, the FSM exits the loop and begins sending data from the
memory to the Optrex display. The first four characters are initialization characters for the
display. The remainder of the characters contain the actual message to be scrolled. The FSM
must send the appropriate control signals to read data from the correct memory location, latch it
into the output register, and send the data from the output register to the Optrex display. Also,
the display must be controlled for initialization and enabling data entry to the display. Once the
message is stored in the memory, the sign can be disconnected from the PC. The FSM will
ensure that the message is continuously scrolled.

III. The First Attempt

The first attempt at the scrolling sign project was designed and constructed using discrete MSI
components. The first design issue was an interface that would allow sending data through the
parallel port to an SRAM chip. This was designed using TTL logic components for input and
output registers, and an address counter. A 2K x 8 static RAM chip was used to store the
message. For the finite state machine, two AMD PALCE22V10 programmable chips were used.
Two PLD’s (programmable logic devices) were required because of the high number of control
outputs. The CUPL PLD programming language, from Logical Devices, was used to program
the PLD’s.

Initially, this parallel port interface was designed using these hardware components and DOS
debug. The debug commands compiled into a C program, which eventually became the software
used to get the message from the user and send it to the hardware.

Another design issue was the speed difference between the PC sending the message and the
hardware receiving the message. The PC sending the message operates at a higher clock rate
than the hardware design. This obstacle was overcome by using the previously mentioned
handshaking signals between the finite state machine and the software. This ensures that the
FSM is in the correct state to receive the next ASCII character from the PC, and that the PC
holds that character on the parallel port long enough for the hardware to read the data into the
input register.

The first design attempt proved that data could be written through the parallel port, saved in the
on-board memory, and written back to the parallel port. This required significant thought to
correctly interface the software sending the message with the finite state machine controlling the
hardware.

At this point, extending the design to control the sign display required frequent modifications to
the FSM and “reburning” the resultant FSM onto the two PLD’s. It was determined that if the
existing design could be rewritten in VHDL and used to configure an FPGA, the design would
be much more flexible and could more easily be used to prototype in hardware when the design
was extended to control the Optrex display. Furthermore, the FPGA would produce a much
more compact final product.

P
age 4.70.4

IV. Final Product

For the second attempt, it was decided to continue the design on an FPGA. This required
rewriting the existing design in VHDL, synthesizing it onto an FPGA, and then testing to ensure
that data could still be written through the parallel port, saved in the FPGA’s memory, and then
sent back to the PC as had been done with the MSI-based design. The first attempt provided
confidence in the soundness of the design. It also provided a baseline on which to gauge the
performance of the VHDL/FPGA design.

The FPGA was configured to contain the following synthesized components: an eight-bit input
register, an eight-bit output register, a seven-bit address counter, 128 bytes of SRAM, and a
finite state machine. Each MSI component was written using a behavioral description in VHDL.
As each component was completed, it was simulated for correctness. The components were then
tied together with a structural representation of the entire circuit and the overall system was
simulated. The top-level structural VHDL architecture was conceptually identical to the MSI
design. This proved to be an exceptional way for an experienced digital designer to learn
VHDL.

Synthesis of the existing design onto a Xilinx XC5202 FPGA was attempted. This proved to be
a bad choice, because the XC5202 does not support on-chip memory. Next, a design with the
XC5202 and a separate memory chip was implemented. While this worked, it increased the
pincount on the FPGA due to address and data lines between the memory chip and the FPGA.
To address that problem a Xilinx XC4005E was chosen because it includes support for on-chip
memory. The CAD tools configured the design for the XC4005E; however, there were new
problems that using FPGA on-chip memory presented.

Although successful in the end, on-chip memory use proved to be challenging on an FPGA.
First, as mentioned above, not all FPGA’s would support on-chip memory. Second, the method
used to describe the memory in VHDL had a significant impact on synthesis time and final
operation in hardware. Initially, the memory was designed using a behavioral VHDL
description. The design simulated correctly. However, the behavioral design required excessive
time to synthesize. This occurred because the CAD tool read the behavioral description as a
series of thousands of Boolean equations and then attempted to map them onto the FPGA. Also,
while the behavioral SRAM simulated correctly and synthesized, it did not operate correctly
when placed on the XC4005E. As a result, a structural VHDL implementation of the SRAM was
written. This greatly reduced synthesis time because the CAD tool recognized the hardware-
oriented structure of the memory. The structural VHDL description also performed correctly
when configured on the actual FPGA.

As an alternative to structural memory descriptions in VHDL, Logiblox, from Xilinx, was used
to create an SRAM memory model. This performed as well as the structural VHDL description
and alleviated the need to write a structural SRAM architecture. This allows the designer to add
SRAM to a design without needing to define the precise inner-workings of the memory. Simply
understanding the memory’s interface and control timing will suffice. Logiblox created a
synthesized SRAM construct for FPGA configuration, and a behavioral VHDL description for
simulation. To use the SRAM created by Logiblox, we simply instantiated the SRAM
component in our top-level VHDL design.

P
age 4.70.5

The final product contained behavioral descriptions of the input and output registers, an address
counter, and the finite state machine. The SRAM was created in Logiblox, as mentioned above.
The entire design was tied together with a structural VHDL architecture. As an added benefit,
the Foundation CAD tool allowed us to place an on-chip oscillator in the FPGA, alleviating the
need to generate a clock signal off-chip. The resultant design used 77% of the FPGA’s capacity,
producing a circuit equivalent of approximately 6,253 logic gates. The VHDL/FPGA prototype
was much easier to troubleshoot and implement than the previous MSI prototype. Furthermore,
the FPGA design facilitated printed circuit board layout because there was a need for fewer
board-level components. Also, flexibility of pin-assignments on the FPGA simplified board
routing.

V. Conclusions and Further Work

This project will be a good teaching tool for digital design and VHDL. The project will be given
to cadets as a kit to build in the Digital Computer Logic course. The follow-on computer
architecture courses can then use the design to teach VHDL. There are many different ways that
the design can be implemented by varying the behavioral/structural architecture mix of the
components.

The tools to support teaching VHDL and FPGA’s were validated. In a classroom of Sun
workstations, Powerview lends itself well to VHDL simulation. Foundation requires an add-on
tool for VHDL simulation. Or, the design can be simulated in Foundation after synthesis. Both
companies offer student editions of their tools that provide schematic capture and simulation, but
no VHDL support. We chose to use the full version of both tools for this project due to the
requirement to use VHDL. For more advanced designs, the cadets will have the option of using
either tool.

Once the initial steep learning curve is overcome, these tools and techniques lend themselves
well to rapid systems prototyping. Because of the ease with which digital designs can be
prototyped and implemented, a VHDL/FPGA based clock chip is being designed to replace the
original clock chip that is no longer provided by the suppliers. In the near future, multiple FPGA
projects may enhance VHDL instruction at the Military Academy.

Bibliography

1. K. C. Chang. Digital Design and Modeling with VHDL and Synthesis. Los Alamitos, CA: IEEE Computer
Society Press (1997).

2. J. F. Wakerly. Digital Design Principles and Practices, 2nd Ed. Englewood Cliffs, NJ: Prentice Hall (1994).

3. Xilinx, Inc. The Programmable Logic Data Book. San Jose, CA: Xilinx, Inc. (1998).

4. S. Yalamanchili. VHDL Starter’s Guide. Upper Saddle River, NJ: Prentice Hall (1998).

P
age 4.70.6

DANIEL C. GRAY
Daniel C. Gray is an Assistant Professor of Electrical Engineering in the Department of Electrical Engineering and
Computer Science. He received a Master’s Degree in Electrical Engineering from Duke University in 1994. His
primary research interests are digital design using VHDL and FPGA’s, and parallel computing.

THOMAS D. WAGNER
Dr. Thomas D. Wagner is an Assistant Professor of Computer Science in the Department of Electrical Engineering
and Computer Science. He received the PhD from Vanderbilt in 1992. His primary research interests include
parallel computing and digital image halftoning using error diffusion neural nets. Current work includes custom
Windows NT device drivers and the application of the error diffusion neural nets to high speed analog to digital
conversion.

P
age 4.70.7

