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An Initial Exploration of Machine Learning Techniques  
to Classify Source Code Comments 

Abstract 
Providing real-time feedback to novice programmers is critical to their ability to learn to 
program. Higher enrollment in introductory computer science courses reduces the amount of 
time for individual student-instructor interaction. Reduced interaction time equates to a reduction 
in the time for and amount of instructor feedback. Building on our work involving manual 
classification and analysis of student source code comments, in this full paper we explore how 
machine learning techniques can be leveraged to provide automated feedback to students with 
regards to their computational thinking processes. This paper discusses the initial classification 
of student source code comments using supervised machine learning methods. In this phase of 
classification, we focus on whether a comment is sufficient or insufficient. The classification 
process is broken down into three steps: text processing, data exploration, and comment 
classification using the Multinomial Naïve Bayes Classifier and a Random Forest Classifier.  
 
We detail the text processing requirements, including how to prepare the raw student data using 
natural languages processing techniques such as stop word filtration, tokenization, and 
lemmatization. We also show how the data preparation process can affect the final classification 
outcome. Using Multinomial Naïve Bayes we achieved a precision rate of 82%. Using a Random 
Forest classifier and lemmatization we achieved a classification precision of 90%. We conclude 
with a description of how the current classification results can be used to provide real-time 
feedback to students while they are learning to program. Towards our ultimate goal of providing 
comprehensive real-time feedback to students, we describe future research plans, which include 
using unsupervised machine learning techniques to move beyond basic binary classification. 
 
1. Introduction 
In this paper, we explore the process for training two supervised machine learning classification 
algorithms to classify student code comments as sufficient or insufficient using Multinomial 
Naive Bayes Classifier and a Random Forest Classifier. We are classifying comments from 
student lab submissions as part of a larger NSF funded writing-to-learn to program project in 
which we are developing a framework for allowing students to self-monitor and self-assess their 
own metacognition [1,2]. Students are provided with an Integrated Development Environment 
(IDE) that allows the students to use Restructured Text in conjunction with Python code to 
simultaneously produce their lab code and report. Traditional lab students use Python’s Idle 
editor and produce a lab report in a separate document. The basis for this paper begins with the 
development of our qualitative codebook, developed as part of previous research efforts using a 
mixed methods investigation.  
This paper focuses on a single section of the codebook where a single comment is classified as 
either sufficient or insufficient. This is the first level of classification. An insufficient comment is 
one that is too short to warrant a more complex classification or does not provide any additional 



insight into the function or purpose of the code. In contrast, a sufficient comment displays 
adequate writing and further clarifies and improves the understanding the source code from an 
outside perspective. A second level of classification is still needed to further classify sufficient 
comments into their own categories. These include conceptual, reflective, organizational and 
literal comment types. This classification system is further documented in a previous work [3].  
 
2. Cleaning and Processing the Data 
 
The data set for this investigation comes from six sections of an Introduction to Programming 
course; two sections (section 05 and section 08) are writing-to-learn to program sections and the 
additional four sections are taught using the traditional lab approach. The training set consists of 
761 comments with 30% randomly sampled out as the test data and the remaining 70% serves as 
the training data. All students were taught by the same course instructor but labs were taught 
with different teaching assistants. Both of the writing-to-learn sections were taught by the same 
teaching assistant to help maintain consistency. 

 
During the course of the semester, students 
completed nine labs in total, eight of the nine 
labs will be used in this data set. Lab 7 is a 
two-part lab and Lab 9 was a top-down design 
project that was not accessible for evaluation. 
The structure of the labs is as follows, students 
are paired into groups of two and there are 
typically 24 students per a lab section. 
Students are required to complete the lab 
using pair programming and they are required 
to complete the lab and report and then demo 
it to the teaching assistant before they can 
leave. If the lab is not completed within the 

three-hour time frame students have until the next lab to demo and turn in their assignments. 
Homework assignments are available for evaluation but will not be used at this time. Comments 
were extracted from the lab files, labeled and organized into a .csv file. The first column is the 
label which is a 1 or a 0 to indicate if a comment is Sufficient or Insufficient. The second column 
is the raw comment text. For training the model all comments from both traditional and writing 
to learn sections have been combined into a single file. In Figure 1 we can see a sample of the 
raw data before text normalization. 
 
 
2.1 Text Normalization 
We can normalize the text through a serious of processes such as tokenization, lemmatization, 
stemming, sentence segmentation and developing an edit distance metric. These steps allow us to 



put our data into a consistent format making it easier to work with [5]. The first step in 
normalizing the comments corpus is to convert all words to lowercase and to remove all 
punctuation, then we can remove any unnecessary words using Stopword filtration. 
 
2.2 Stopword Filtering 
Stopword filtration allows us to remove certain words from our comment samples that occur 
frequently within the English language but add no value to the meaning of the text. This list 
includes words such as ‘a’, ‘the’, ‘an’, ‘but’, etc. For this paper, we will be using the list of stop 
words that are included with the NLTK library [4]. We can import common stopwords from 
nltk.corpus. A sample of the words included can be seen in Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
To demonstrate how stopword filtering will affect each comment we can look at the before and 
after effects on a sample sentence. This shows the remaining words after all punctuation and 
stopwords have been removed. 
 

 
 
 
 
 
2.3 Tokenization 
Tokenization is the process of splitting up a running body of text or text sample into individual 
words or ‘tokens’ much like the process used for tokenizing when building a parser for a 
programming language. This is necessary so that we can generate word frequencies and our 
dictionary which contains a list of all the vocabulary that occurs within our corpus. We can see 
the results of tokenization and text normalization on our data in Figure 3. The tokenized version 
of the comments will be the data we use to generate the dictionary and word frequencies to be 
utilized in calculating the inverse document frequency [4]. 
 



 
 
2.4 Lemmatization 
Lemmatization allows us to group sets of word inflections in our text by their root so that they 
are stored and analyzed as a single item in the dictionary. This allows us to store words such as 
‘am’, ‘are’, ‘is’, and ‘was’ as a single word ‘be’ and it also removes pluralized forms of a word. 
[5]. For this paper, we implemented the text processing algorithm with and without 
lemmatization using the NLTK WordNetLemmatizer [4]. Without lemmatization, there were 647 
unique vocabulary words and after lemmatization, there were 593 used to determine word 
frequencies. Despite the reduction in the vocabulary size this process reduced the accuracy of the 
Multinomial Naive Bayes classifier by 5% but improved the accuracy of Random Forest 
Classifier by 6%. 
 
3. Data Exploration 
 
The second phase of the project focuses on exploring some of the properties of the data and 
looking at some elementary statistics across the raw comment length and the tokenized 
length of comments. The first thing we will look at is the raw comment length of both sufficient 
and insufficient comments. We can see the raw frequency distribution of the comment lengths by 
characters in Figure 4 and a statistical summary in Table 1. Here we can see that for an 
insufficient comment the average character length of a comment is 19.41 characters compared to 
an average of 52.66 characters for a sufficient comment. 75% of the comments are 60 characters 
long or less with a single outlier comment that is 382 characters. 
Next, we will look at the Tokenized comment length. A ‘token’ is a single word within a 
tokenized comment after all punctuation and stop words have been removed. A statistical 
summary of token length can be seen in Table 2 and the frequency distribution of the length of 
code comments can be seen in Figure 5. In Figure 6 and Figure 7 we can see the distribution of 



the lengths when they are grouped by label where 0 indicates an insufficient comment and a 1 
indicates a sufficient comment. 

 
Here we can see that a clear difference between a sufficient comment and an insufficient 
comment is the token length where the average insufficient comment is 2.41 tokens and 75% are 
three or fewer tokens where the minimum length of a sufficient comment is three tokens and 
50% of them are 5 tokens or more. When a comment is approximately 3 tokens in length this is 
where classification becomes difficult. A comment that is three words in length before 
tokenization is automatically classified as insufficient because it is too short to be considered 
significant in most cases. 
 
Typically, most comments that are three words or less are restatements of the variable names or 
organizational markers within the code and can be considered to be trivial as they do not 
contribute to a deeper understanding of the code. However, some comments that were originally 
longer than three words end up with only three tokens after text processing but can sometimes be 
considered a sufficient comment candidate. We will see later that a majority of classification 
errors occur when a comment has a token length of three. 
 



 
 
4. Comment Classification 
 
The final phase consists of using our tokenized comments to create our weighted “Bag of 
Words” Model to train a Multinomial Naive Bayes Classifier and a Random Forest Classifier. 
 
4.1 Bag of Words Model 
In the “Bag of Words” model, we can represent the code comments corpus as an “unordered set 
of words” where the position of the word is ignored and we only maintain a record of the 
frequency of those words. Using the Count-Vectorizer from sci-kit learn that leverages our text 
processing function we can create a sparse matrix that will represent our comments as a 2D 
matrix of token counts where each row is for a single word and each column represents a 
comment [5]. This process generates a vocabulary of 647 unique words when our text processor 
does not include lemmatization. 
 



We can look at how a single comment is represented within the matrix, for example, the fourth 
comment (at index 3) is “Ask for the diameter of the water tank, in meters” and the resulting bag 
of words for this comment is represented in Figure 8. Each token in our sentence is 
represented as an index and a frequency, for example, the word represented at index 282 in the 
sparse matrix is the word ‘diameter’ from our original sentence and it only occurs once in this 
comment. The properties of the resulting sparse matrix using our code comments corpus can be 
seen in Table 3. 

 
4.2 Inverse Document Frequency 
The Term-Frequency – Inverse Document Frequency (TF-IDF) metric allows us to improve 
upon our Bag of Words model by adjusting the word counts based on their frequency in the 
corpus. The term frequency represents the importance of a word in a comment and the inverse 
document frequency is how important a word is in relation to the whole corpus. The TF-IDF 
value acts as a weight for a particular token where the most common tokens get the lowest 
weights. The resulting TF-IDF formula is represented by the 
equation in Figure 9 where N is the number of total comments, ‘tf’ is the term frequency and ‘df’ 
is the number of comments containing i. [5]. Using the same comment as before, comment 4 at 
index 3, we can now see in Figure 10 that each word has a weighted frequency 
attached to it. 

 
4.3 Training the Classifiers 
To train the classifiers we created a pipeline using a Sci-kit Learn pipeline which allows one to 
pass in the bag of words, the TF-IDF frequencies and the model to be trained. 70% of the 
comments corpus is used for training and 30% is used for testing. The first tests exclude 
lemmatization and the second training tests include lemmatization. Interestingly enough 
lemmatization resulted in better outcomes for the Random Forest Classifier but worse on average 
for the Multinomial Naive Bayes Classifier. 



 
Overall, the Random Forest outperformed the 
Naive Bayes classifier in every training session. 
As a final illustration, we have a plot that 
demonstrates the predicted labels of our 
comment data using the Multinomial Naive 
Bayes Classifier. I used the Raw Length and 
Token Length to illustrate the relationship 
between the classification and the length of the 
comment. Here we can see that classification 
become mixed when the token length is around 
three which plays a strong role in the current 
error rate of our classifiers. 
 

5. Future Research 
As part of our current and future research, we continue to develop features for the classification 
of the student’s Thinking Processes and Visual Organization [6]. Our aim is to develop a set of 
models that can be utilized to provide real-time classification and feedback to the student as they 
are programming. Future developments include classifying sufficient comments as conceptual, 
literal, reflective or organizational by utilizing convolutional neural networks and fine-tuning the 
classification of visual organization through the development of additional features to allow for 
the classification of sub-organizational units s as opposed to classifying the full document under 
a single strategy which becomes more useful as source code becomes more complex.  
 
6. Conclusion 
 



In this paper, we have discussed how to clean and process raw data using stop word filtration, 
tokenization, and lemmatization. We explored the data to discover some of its properties 
and to illustrate various characteristics of an insufficient comment versus a sufficient comment 
classification. Finally, we trained two supervised machine learning classifiers, the Multinomial 
Naive Bayes classifier and a Random Forest Classifier using the bag of words model and TFIDF 
weighting. We were able to achieve a precision of 82% using the Multinomial Naive Bayes 
classifier and using lemmatization a 90% precision rate on the Random Forest Classifier. 
Additional work includes experimenting with alternative supervised learning classifiers, 
comparing and contrasting traditional versus writing to learn comments, and creating a second 
level of classification for sufficient comments that classify them into literal, conceptual, 
reflective and organization.  
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