
Paper ID #26728

An Initial Exploration of Machine Learning Techniques to Classify Source
Code Comments in Real-time

Ms. Phyllis Beck, Mississippi State University
Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Dr. Jean Mohammadi-Aragh is an assistant professor in the Department of Electrical and Computer Engi-
neering at Mississippi State University. Dr. Mohammadi-Aragh investigates the use of digital systems to
measure and support engineering education, specifically through learning analytics and the pedagogical
uses of digital systems. She also investigates fundamental questions critical to improving undergraduate
engineering degree pathways. . She earned her Ph.D. in Engineering Education from Virginia Tech. In
2013, Dr. Mohammadi-Aragh was honored as a promising new engineering education researcher when
she was selected as an ASEE Educational Research and Methods Division Apprentice Faculty.

Christopher Archibald, Mississippi State University

c©American Society for Engineering Education, 2019

An Initial Exploration of Machine Learning Techniques
to Classify Source Code Comments

Abstract
Providing real-time feedback to novice programmers is critical to their ability to learn to
program. Higher enrollment in introductory computer science courses reduces the amount of
time for individual student-instructor interaction. Reduced interaction time equates to a reduction
in the time for and amount of instructor feedback. Building on our work involving manual
classification and analysis of student source code comments, in this full paper we explore how
machine learning techniques can be leveraged to provide automated feedback to students with
regards to their computational thinking processes. This paper discusses the initial classification
of student source code comments using supervised machine learning methods. In this phase of
classification, we focus on whether a comment is sufficient or insufficient. The classification
process is broken down into three steps: text processing, data exploration, and comment
classification using the Multinomial Naïve Bayes Classifier and a Random Forest Classifier.

We detail the text processing requirements, including how to prepare the raw student data using
natural languages processing techniques such as stop word filtration, tokenization, and
lemmatization. We also show how the data preparation process can affect the final classification
outcome. Using Multinomial Naïve Bayes we achieved a precision rate of 82%. Using a Random
Forest classifier and lemmatization we achieved a classification precision of 90%. We conclude
with a description of how the current classification results can be used to provide real-time
feedback to students while they are learning to program. Towards our ultimate goal of providing
comprehensive real-time feedback to students, we describe future research plans, which include
using unsupervised machine learning techniques to move beyond basic binary classification.

1. Introduction
In this paper, we explore the process for training two supervised machine learning classification
algorithms to classify student code comments as sufficient or insufficient using Multinomial
Naive Bayes Classifier and a Random Forest Classifier. We are classifying comments from
student lab submissions as part of a larger NSF funded writing-to-learn to program project in
which we are developing a framework for allowing students to self-monitor and self-assess their
own metacognition [1,2]. Students are provided with an Integrated Development Environment
(IDE) that allows the students to use Restructured Text in conjunction with Python code to
simultaneously produce their lab code and report. Traditional lab students use Python’s Idle
editor and produce a lab report in a separate document. The basis for this paper begins with the
development of our qualitative codebook, developed as part of previous research efforts using a
mixed methods investigation.
This paper focuses on a single section of the codebook where a single comment is classified as
either sufficient or insufficient. This is the first level of classification. An insufficient comment is
one that is too short to warrant a more complex classification or does not provide any additional

insight into the function or purpose of the code. In contrast, a sufficient comment displays
adequate writing and further clarifies and improves the understanding the source code from an
outside perspective. A second level of classification is still needed to further classify sufficient
comments into their own categories. These include conceptual, reflective, organizational and
literal comment types. This classification system is further documented in a previous work [3].

2. Cleaning and Processing the Data

The data set for this investigation comes from six sections of an Introduction to Programming
course; two sections (section 05 and section 08) are writing-to-learn to program sections and the
additional four sections are taught using the traditional lab approach. The training set consists of
761 comments with 30% randomly sampled out as the test data and the remaining 70% serves as
the training data. All students were taught by the same course instructor but labs were taught
with different teaching assistants. Both of the writing-to-learn sections were taught by the same
teaching assistant to help maintain consistency.

During the course of the semester, students
completed nine labs in total, eight of the nine
labs will be used in this data set. Lab 7 is a
two-part lab and Lab 9 was a top-down design
project that was not accessible for evaluation.
The structure of the labs is as follows, students
are paired into groups of two and there are
typically 24 students per a lab section.
Students are required to complete the lab
using pair programming and they are required
to complete the lab and report and then demo
it to the teaching assistant before they can
leave. If the lab is not completed within the

three-hour time frame students have until the next lab to demo and turn in their assignments.
Homework assignments are available for evaluation but will not be used at this time. Comments
were extracted from the lab files, labeled and organized into a .csv file. The first column is the
label which is a 1 or a 0 to indicate if a comment is Sufficient or Insufficient. The second column
is the raw comment text. For training the model all comments from both traditional and writing
to learn sections have been combined into a single file. In Figure 1 we can see a sample of the
raw data before text normalization.

2.1 Text Normalization
We can normalize the text through a serious of processes such as tokenization, lemmatization,
stemming, sentence segmentation and developing an edit distance metric. These steps allow us to

put our data into a consistent format making it easier to work with [5]. The first step in
normalizing the comments corpus is to convert all words to lowercase and to remove all
punctuation, then we can remove any unnecessary words using Stopword filtration.

2.2 Stopword Filtering
Stopword filtration allows us to remove certain words from our comment samples that occur
frequently within the English language but add no value to the meaning of the text. This list
includes words such as ‘a’, ‘the’, ‘an’, ‘but’, etc. For this paper, we will be using the list of stop
words that are included with the NLTK library [4]. We can import common stopwords from
nltk.corpus. A sample of the words included can be seen in Figure 2.

To demonstrate how stopword filtering will affect each comment we can look at the before and
after effects on a sample sentence. This shows the remaining words after all punctuation and
stopwords have been removed.

2.3 Tokenization
Tokenization is the process of splitting up a running body of text or text sample into individual
words or ‘tokens’ much like the process used for tokenizing when building a parser for a
programming language. This is necessary so that we can generate word frequencies and our
dictionary which contains a list of all the vocabulary that occurs within our corpus. We can see
the results of tokenization and text normalization on our data in Figure 3. The tokenized version
of the comments will be the data we use to generate the dictionary and word frequencies to be
utilized in calculating the inverse document frequency [4].

2.4 Lemmatization
Lemmatization allows us to group sets of word inflections in our text by their root so that they
are stored and analyzed as a single item in the dictionary. This allows us to store words such as
‘am’, ‘are’, ‘is’, and ‘was’ as a single word ‘be’ and it also removes pluralized forms of a word.
[5]. For this paper, we implemented the text processing algorithm with and without
lemmatization using the NLTK WordNetLemmatizer [4]. Without lemmatization, there were 647
unique vocabulary words and after lemmatization, there were 593 used to determine word
frequencies. Despite the reduction in the vocabulary size this process reduced the accuracy of the
Multinomial Naive Bayes classifier by 5% but improved the accuracy of Random Forest
Classifier by 6%.

3. Data Exploration

The second phase of the project focuses on exploring some of the properties of the data and
looking at some elementary statistics across the raw comment length and the tokenized
length of comments. The first thing we will look at is the raw comment length of both sufficient
and insufficient comments. We can see the raw frequency distribution of the comment lengths by
characters in Figure 4 and a statistical summary in Table 1. Here we can see that for an
insufficient comment the average character length of a comment is 19.41 characters compared to
an average of 52.66 characters for a sufficient comment. 75% of the comments are 60 characters
long or less with a single outlier comment that is 382 characters.
Next, we will look at the Tokenized comment length. A ‘token’ is a single word within a
tokenized comment after all punctuation and stop words have been removed. A statistical
summary of token length can be seen in Table 2 and the frequency distribution of the length of
code comments can be seen in Figure 5. In Figure 6 and Figure 7 we can see the distribution of

the lengths when they are grouped by label where 0 indicates an insufficient comment and a 1
indicates a sufficient comment.

Here we can see that a clear difference between a sufficient comment and an insufficient
comment is the token length where the average insufficient comment is 2.41 tokens and 75% are
three or fewer tokens where the minimum length of a sufficient comment is three tokens and
50% of them are 5 tokens or more. When a comment is approximately 3 tokens in length this is
where classification becomes difficult. A comment that is three words in length before
tokenization is automatically classified as insufficient because it is too short to be considered
significant in most cases.

Typically, most comments that are three words or less are restatements of the variable names or
organizational markers within the code and can be considered to be trivial as they do not
contribute to a deeper understanding of the code. However, some comments that were originally
longer than three words end up with only three tokens after text processing but can sometimes be
considered a sufficient comment candidate. We will see later that a majority of classification
errors occur when a comment has a token length of three.

4. Comment Classification

The final phase consists of using our tokenized comments to create our weighted “Bag of
Words” Model to train a Multinomial Naive Bayes Classifier and a Random Forest Classifier.

4.1 Bag of Words Model
In the “Bag of Words” model, we can represent the code comments corpus as an “unordered set
of words” where the position of the word is ignored and we only maintain a record of the
frequency of those words. Using the Count-Vectorizer from sci-kit learn that leverages our text
processing function we can create a sparse matrix that will represent our comments as a 2D
matrix of token counts where each row is for a single word and each column represents a
comment [5]. This process generates a vocabulary of 647 unique words when our text processor
does not include lemmatization.

We can look at how a single comment is represented within the matrix, for example, the fourth
comment (at index 3) is “Ask for the diameter of the water tank, in meters” and the resulting bag
of words for this comment is represented in Figure 8. Each token in our sentence is
represented as an index and a frequency, for example, the word represented at index 282 in the
sparse matrix is the word ‘diameter’ from our original sentence and it only occurs once in this
comment. The properties of the resulting sparse matrix using our code comments corpus can be
seen in Table 3.

4.2 Inverse Document Frequency
The Term-Frequency – Inverse Document Frequency (TF-IDF) metric allows us to improve
upon our Bag of Words model by adjusting the word counts based on their frequency in the
corpus. The term frequency represents the importance of a word in a comment and the inverse
document frequency is how important a word is in relation to the whole corpus. The TF-IDF
value acts as a weight for a particular token where the most common tokens get the lowest
weights. The resulting TF-IDF formula is represented by the
equation in Figure 9 where N is the number of total comments, ‘tf’ is the term frequency and ‘df’
is the number of comments containing i. [5]. Using the same comment as before, comment 4 at
index 3, we can now see in Figure 10 that each word has a weighted frequency
attached to it.

4.3 Training the Classifiers
To train the classifiers we created a pipeline using a Sci-kit Learn pipeline which allows one to
pass in the bag of words, the TF-IDF frequencies and the model to be trained. 70% of the
comments corpus is used for training and 30% is used for testing. The first tests exclude
lemmatization and the second training tests include lemmatization. Interestingly enough
lemmatization resulted in better outcomes for the Random Forest Classifier but worse on average
for the Multinomial Naive Bayes Classifier.

Overall, the Random Forest outperformed the
Naive Bayes classifier in every training session.
As a final illustration, we have a plot that
demonstrates the predicted labels of our
comment data using the Multinomial Naive
Bayes Classifier. I used the Raw Length and
Token Length to illustrate the relationship
between the classification and the length of the
comment. Here we can see that classification
become mixed when the token length is around
three which plays a strong role in the current
error rate of our classifiers.

5. Future Research
As part of our current and future research, we continue to develop features for the classification
of the student’s Thinking Processes and Visual Organization [6]. Our aim is to develop a set of
models that can be utilized to provide real-time classification and feedback to the student as they
are programming. Future developments include classifying sufficient comments as conceptual,
literal, reflective or organizational by utilizing convolutional neural networks and fine-tuning the
classification of visual organization through the development of additional features to allow for
the classification of sub-organizational units s as opposed to classifying the full document under
a single strategy which becomes more useful as source code becomes more complex.

6. Conclusion

In this paper, we have discussed how to clean and process raw data using stop word filtration,
tokenization, and lemmatization. We explored the data to discover some of its properties
and to illustrate various characteristics of an insufficient comment versus a sufficient comment
classification. Finally, we trained two supervised machine learning classifiers, the Multinomial
Naive Bayes classifier and a Random Forest Classifier using the bag of words model and TFIDF
weighting. We were able to achieve a precision of 82% using the Multinomial Naive Bayes
classifier and using lemmatization a 90% precision rate on the Random Forest Classifier.
Additional work includes experimenting with alternative supervised learning classifiers,
comparing and contrasting traditional versus writing to learn comments, and creating a second
level of classification for sufficient comments that classify them into literal, conceptual,
reflective and organization.

Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. DUE-
1612132. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

References
[1] Mohammadi-Aragh et al., 2017] Jean Mohammadi-Aragh et al. “Coding the Coders: A

Qualitative Investigation of Student’s Commenting Patterns”, In Proceedings of the 2018
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE '18). ACM,
Baltimore, MD, USA.

[2] Mohammadi-Aragh et al., 2017] Jean Mohammadi-Aragh et al. “Coding the Coders: A
Qualitative Investigation of Student’s Commenting Patterns”, In Proceedings of the 2018
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE '18). ACM,
Baltimore, MD, USA.

[3] Mohammadi-Aragh et al., 2017] Jean Mohammadi-Aragh et al. “Coding the Coders: A
Qualitative Investigation of Student’s Commenting Patterns”, In Proceedings of the 2018
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE '18). ACM,
Baltimore, MD, USA.

[4] Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with
Python. O’Reilly Media Inc

[5] Dan Jurafsky and James H. Martin. Speech and Language Processing. 3rd ed. 2017. Internet:
https://web.stanford.edu/~jurafsky/slp3/, [Accessed: Dec 6, 2017]

[6] Mohammadi-Aragh et al., 2017] Jean Mohammadi-Aragh et al. “Coding the Coders: A
Qualitative Investigation of Student’s Commenting Patterns”, In Proceedings of the 2018
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE '18). ACM,
Baltimore, MD, USA.

