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Abstract 
 
Science and engineering students do not typically receive explicit training in scientific problem 
solving, i.e. applying science principles to specific situations. Students’ problem solving skills often 
show little improvement throughout their course of studies. 
This paper describes a structured, graphical, interactive (GUI) learning environment, which 
presents problems and tools for analysis in systematic and logical order, and encourages the 
student to develop the solution path in the manner of an experienced expert. The learning 
environment’s subject area is Engineering Dynamics, which was selected for its systematic 
structure and its early (usually sophomore) place in the undergraduate curriculum.  
The software presents the concepts required to solve homework problems, organized along book 
chapters. First, the student is prompted to analyze the problem statement, i.e. to extract relevant 
information from the text and classify the problem. Free-body diagrams are developed interactively 
on-screen. The problem solution is then developed conceptually by applying the problem 
information to the current (and preceding) chapter’s laws as appropriate. The conceptual solution is 
complete if the number of variables in the problem matches the number of equations in the 
conceptual solution set. Lastly, the quantitative solution is developed in Mathcad, using the 
applicable laws from the conceptual solution and the data given. The problem solving software 
thus creates and reinforces a pattern for problem solving which is typically absent among novice 
students: they tend to start the solution process with the numbers at hand, and then try to find an 
equation that yields the desired result. Over time, the software thus is expected to train students in 
systematic problem solving. Context-sensitive help throughout explains laws, procedures, and their 
possible connections to the problem at hand.  
 
I.  Introduction 
 
Scientific problem solving in science and engineering education is a skill acquired by intensive and 
often frustrating training. Even when students understand the pertinent scientific theories and 
mathematics, no clear path or general strategy is typically visible to the beginner. There is ample 
evidence that teaching excellence (such as well designed presentations of sample solutions) and 
students’ subject knowledge do not per se translate into the acquisition of problem solving skills. 
Rather than solving by applying principles and laws, students often find it expedient to emulate 
sample solutions.  
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The Importance of  Problem Solving: The difficulty of teaching what H.M. Paynter (1961) in a 
classical paper termed ’the art of modeling’ is discussed, among others, in Hogan (1991) and Stein 
(1991). Problem solving involves the focused application of the learned science and math principles 
to a specific scenario. Problem solving requires additional skills, especially an in-depth analysis of 
the problem structure and a mapping of the path to the answer: see e.g. Caillot (1983), Pankratius 
(1990), Bucciarelli et al. (2000). Scrivener et al. (1994) show that instruction targeted at problem 
solving increases student performance and satisfaction significantly.  The lack of problem solving 
skills extends also to social and behavioral sciences (Woods et al., 1997). The Chemical 
Engineering Department at McMaster University restructured its curriculum to create four new 
undergraduate courses dedicated to problem solving and related issues such as motivation and self-
confidence (Woods et al, 1997). Barrett et al. (1998) describe a visual environment for teaching and 
designing digital systems, which presents guidance and tools as needed for each step. The authors 
report a quantitative improvement in student performance resulting from the availability of 
information as needed during the design process.  
Several key findings from the thorough case study at McMaster University by Woods et al. (1997) 
are quoted below: 
 

“(Faculty) … worked problems, supplied sample solutions, and showed a variety of problem 
solving heuristics. However, when tested, our students were unable to recognize, transfer or 
apply the skill for the process of solving their homework problems. In-class faculty 
demonstrations of the faculty’s skill in solving problems did not transfer skill to the 
students.” 

“The faculty asked students to show how they solved problems by having the students work 
problems on the board. We hoped that students should develop problem solving skills from 
these activities. Yet, students did not develop skill in problem solving. The students still 
could not solve problems when faculty changed the conditions slightly. They continued to 
depend extensively on sample solutions, even when these were shown to be inapplicable.” 

“Despite individual professors’ dedication and efforts to develop problem solving skill, 
“general problem solving skill” was not developed in the four years in our undergraduate 
program. Students graduated showing the same inability that they had when they started the 
program. Some could not create hypotheses; some misread problem statements. During the 
four-year undergraduate engineering program studied, 1974-1978, the students had worked 
over 3000 homework problems, they had observed about 1000 sample solutions being worked 
on the board by either the teacher or by peers, and they had worked many open-ended 
problems.” 

        “ In other words, they showed no improvement in problem solving skills despite the 
best intentions of their instructors.” 

 
II. Approach 
 
2.1 Didactics and Underlying Issues: In problem solving, students must map complex, multi-step 
sequences of mathematical operations. Among difficulties encountered are: 
         - The significance and usage of a law are not immediately apparent from its mathematical 
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formulation, and must be learned in addition to the laws themselves. 
- From the large set of laws governing the domain, an applicable subset must be selected and 
adapted to the problem at hand (modeling).  
- Problems are generally of a multi-variate nature, and the solution often requires solving 
simultaneously for all variables, e.g. using matrix methods. 

          - Problem solving is error-prone and frustrating. Each operation must be executed judiciously.  
         It is well established that the fundamental difference between novice problem solvers and 
expert problem solvers is that the experts have a well-organized, hierarchically arranged, easily 
retrievable knowledge base (Pankratius, 1990). Expert problem solvers in physics, for example, 
spend more time classifying problems than novices; however, the classification is made according 
to deep underlying principles and goes a long way towards solving the problem. Novices, on the 
other hand, classify problems according to their physical features and very quickly attempt to solve 
them using what may be called means-ends analysis. Thus, before one can select and apply a 
principle of physics (such as Newton’s second law) one must know the principle and its relationship 
to other principles and laws in the hierarchy of the organized knowledge base. It would thus seem 
that difficulties with problem solving are not merely rooted in a lack of conceptual understanding, 
but also in the difficulty of building a systematic knowledge base. 
 
2.2 Skills Development Software - The interactive GUI software described below has been 
designed specifically for the development of problem solving skills within an existing science 
course in engineering physics (Dynamics). For each section of a standard dynamics textbook 
(e.g. Hibbeler, 1992, Riley and Sturges, 1996, Beer and Johnston, 1997), problem solving units 
are being developed through which the student can learn and practice the methods to solve the 
problems of that section. Presently, units for kinematics (rotation and translation) and point mass 
dynamics are available, with additional units under development for inertial dynamics and 
energy methods.  
 
The interactive GUI (Graphical User Interface) framework for the mapping, organizing, and 
conceptual solving of problems structures the solution process, shows possible solution paths, and 
guides the student towards developing insight into the nature of problem solving and to gradually 
develop experience and self-confidence.  
Software Structure: The software consists of GUI analysis sections as outlined below, combined 
with symbolic computing software (choice: Mathcad). The software contains a database of problem 
assignments. The student can select a chapter topic and solve a problem within the chapter’s 
context. Content-sensitive help explains laws, procedures, and their possible connections to the 
problem at hand. The software presents the learning topic systematically and requires the student to 
proceed to the solution in a logical sequence. However, except for completed sample problems, the 
software does not provide solutions. Students must execute each step on their own. By structuring 
the solution path and rewarding the student (in most cases) with the comparatively rapid and 
successful completion of an assignment, the software gradually develops the ability to approach and 
solve problems systematically. 
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III. Application Example: Kinematics 
 

For each problem, the software requires the student to follow the sequence below:  
Step 1: Problem Definition: The Opening Window loads the selected problem text and its 
illustration. The student must identify known facts, e.g. constants, variables, geometry, desired 
result. Fig. 1 shows an example pertaining to curvilinear kinematics (quoted from: Riley and 
Sturges, 1996). In its upper right corner, the opening window also displays in a small graph the 
terms used in the analysis, and a Mathcad window where the student may enter data and equations. 

 
Figure 1 Problem Statement and Mathematical Solution of Kinematics Problem. The 
Mathcad Solve block finds horizontal distance traveled and travel time. 
Student Entries:  Data and Parameters in Mathcad Window, Solve Block. Here, we solve 
for variables d and h after completing the conceptual solution of Fig. 2 
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Step 2: Conceptual Solution: A second ’Conceptual Solution Window’ (Fig. 2) is displayed next 
to the opening window of Fig.1. The equation set applicable to our kinematics problem is shown in 
the window labeled ‘Equations’ in Fig. 2, with five parameters initially undefined and positioned to 
the right of the Equations window. Known parameters are declared in the checkboxes labeled 
‘Check Known Parameters’ in Fig. 2, and the software moves icons for declared parameters to the 
equation’s left side, thus providing visual feedback to the student. In addition, the ‘Message 
Window’ at the right of the checkbox offers context-sensitive assistance and status information 

 
Figure 2 Conceptual Solution Window, Curvilinear Kinematics Example.  The conceptual 
solution shown applies to the sample problem of Fig. 1. 
Student Entries: Given parameters are identified by clicking on checkbox. The message 
window and the position and color of each selected parameter provide visual feedback. 

P
age 6.170.5



Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition 
 Copyright  2001, American Society for Engineering Education 

through the conceptual solution process. The analysis is conceptually complete when the number 
of equations equals the number of remaining unknown variables.  In the example of Fig. 2, only 
two scalar variables remain at the output side of the two-dimensional vector equation, i.e. the 
solution vector (time t and horizontal travel distance d) has been conceptually found.  
 
Step 3: Adaptation: The student matches parameter names in generic laws (as formulated in 
‘Equations’) in terms of the pertinent, problem-specific variables and constants defined in Step 1. 
Example: In the upper part of the Mathcad window in Fig. 1, parameters in the Equation Set are 
matched with those in the problem statement of Fig. 1.  
Step 4: Solution: From the conceptual map of Fig. 2 and from the set applicable laws (here the 
Equations in Fig. 2), The student is asked to copy applicable symbolic equations to the Mathcad 
window of Fig. 1. Here, the two equations cited completely describe the horizontal and vertical 
motions. Once the definitions, their correspondences with the generic equation terms, and the 
symbolic equations have been entered into the Mathcad window, Mathcad can solve for the 
unknown variables if a solution exists. The example of Fig. 2 identifies these variables as time t and 

 
Figure 3 Newtonian Dynamics Example: Motion Analysis of Two Coupled Masses. 
Opening window for Conceptual Analysis.  
Student Entries: Make selections on Radiobuttons. 
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horizontal travel distance d. The Mathcad command Find(t,d) then produces the symbolic and 
numerical results.  
While the software environment presents possible solution paths graphically, it never mandates a 
specific path. The student working on an assignment must make all choices and selections, and will 
complete the assignment only by solving the problem on a conceptual level.  
 
IV. Application Example: Point Mass Dynamics 

 
Dynamic motion analysis typically requires the student to define a frame of reference, to perform 
a free-body analysis of the system, and to apply Newton’s law to each mass element. In addition, 

 
Figure 4  Newtonian Dynamics Example: Defining the Frame of Reference. 
Student Entries:  Select frame of reference for each mass by dragging and dropping 
appropriate icons from the menu at left onto the picture. 
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constraint equations must be found whenever the number of coordinates chosen exceeds the 
systems number of degrees of freedom. 
Figure 3 shows a typical example. The problem is defined by a problem statement and an 
illustration. The latter serves as a backdrop for the free-body analysis. The software prompts the 
user to list the number of masses (used in subsequent windows to check for incomplete free-body 
analyses) and the frame of reference. Here, a Cartesian frame is appropriate. The student then 
proceeds to defining the appropriate coordinate system in a new window (Figure 4). By clicking 
on any of the arrow or Names icons on the right side of Fig.4, the selected item appears in the  
illustration at left, where it can be freely moved with the mouse or replaced by another user-
selected icon as desired. The frame is complete after placing two arrows and two names onto the 
illustration. The subsequent two windows (Figures 5 and 6) require the student to add embedded  

 
Figure 5   Newtonian Dynamics Example: Defining the Applied Forces 
Student Entries:  Identify and name each applied force by dragging and dropping 
appropriate icons from the menu at left onto the picture. 
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forces and reaction forces, respectively, to the illustration. The complete free-body diagram then 
guides the student to complete the analysis by applying Newton’s law in each coordinate 
direction, and to define the constraint equation. The complete mathematical solution is shown in 
the Mathcad window of Fig. 7. The equation set consists of one equation each in x- and y-
directions, respectively, and one constraint equation stating that the accelerations in x- and y-
directions are the same, i.e. yx &&&& = . 

 
Figure 6 Newtonian Dynamics Example: Defining the Reaction Forces 
Student Entries:  Identify and name each reaction force by dragging and dropping 
appropriate icons from the menu at left onto the picture . 
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Downloadable Demonstration Software – The interested reader is encouraged to examine the 
examples described here by downloading their code from the UNLV web site. Both programs 
can be found at:  http://www.me.unlv.edu/coursenotes/egg207/meg207.htm 
The code was developed with MS Visual Basic and runs on Windows 95 and later systems. The 
Mathcad window is not active in the downloadable versions of the software.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
V. Conclusion 
 

A structured approach to training engineering students by means of a software-based concept for 
training problem solving skills in applied scientific problem solving has been presented. 
Beginning students regularly experience frustration and anxiety because they have not yet 
learned to organize newly learned material systematically. The extensive use of GUI tools 
provides convenient user interaction and continuous visual feedback concerning current status 
and further required solution steps. The GUI software environment structures the solution 
process and offers step-by-step guidance, yet requires the student to make all choices. The 

 
Figure 7 Newtonian Dynamics Example: Completing the Solution in Mathcad 
Student Entries:  Data and Parameters in Mathcad Window, The equations in the 
Mathcad Solve Block (Newton’s Law) express the sum of free-body forces for each 
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student is thus encouraged and required to understand and actively practice the concepts leading 
to successful completion of assignments. The presentation of pertinent facts and concepts in 
combination with a GUI environment for their immediate application should facilitate their 
adaptation and practice and facilitate the training of students in practical scientific problem 
solving. 
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