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An Interdisciplinary Elective Course to Build Computational Skills for 
Mathematical Modeling in Science and Engineering 

 
Abstract 
 
A cross-listed upper division and graduate elective course for students in science, technology, 
engineering, and mathematics (STEM) fields has been developed to build computational skills in 
mathematical modeling. The course aims to fill a gap in the practical training of students starting 
computational research projects across various STEM disciplines who have inconsistent previous 
experiences in computer programming and numerical methods. This is achieved by covering 
modern software tools for mathematical modeling in science and engineering and for 
reproducible research computing via an active, hands-on approach supplemented by reading 
materials. Rather than covering just the basics of programming or detailed algorithms for 
numerical methods, the course is geared towards implementing tools for solving realistic 
continuum scale science and engineering problems, managing open source code projects, and 
disseminating computational research results through scientific documentation and publications. 
The course is taught by a chemical engineering faculty member with research expertise in 
applied mathematics and computational science and engineering. MATLAB and Python are 
taught side-by-side throughout the course. The paper describes the course with the goal of 
enabling other educators to adapt and reuse the course content. 
 
Introduction 
 
Many STEM programs offer an introductory computer programming course to undergraduate 
students. This type of course typically focuses on details of a specific software or language, 
functional programming in a procedural or object-oriented paradigm, and the use of conditional 
statements and loops with basic data structures. A variety of languages are taught in such 
introductory courses as STEM educators have debated which is the “best” programming 
language to teach university STEM students[1-5]. Some undergraduate and graduate programs 
also include one or more courses on numerical methods, primarily aimed at teaching algorithms 
and error analysis techniques while surveying the appropriate methods to be used on categories 
of mathematical problems. Exposure to numerical methods is highly dependent on the university 
and the discipline[6]. Both the introductory programming and numerical methods courses clearly 
have their place in STEM fields; however, student training in these areas varies widely. This 
causes challenges for undergraduate and graduate students interested in research and industrial 
projects involving mathematical modeling using computational tools. Even with similarly titled 
prerequisite courses, students may have had drastically different experiences. Typically, students 
with gaps in their computational training are recommended or required by their research advisors 
or degree programs to take the time-intensive versions of the introductory undergraduate courses 
or comprehensive graduate courses, which are often not tailored to the practical computational 
skills that they need to engage in advanced mathematical and computational modeling in a 
relatively short time frame. By accelerating the training time to develop competency in 
implementing modern best practices, students are enabled to be productive at using 
computational tools for research early in their graduate studies, ideally allowing them to satisfy 
time-sensitive demands for generating research results.  
 



 

Several chemical engineering educators have developed course materials, books, and software 
aimed at computational tools for solving problems commonly encountered in chemical 
engineering[7-11]. Often these resources are taught in courses for upper division undergraduate 
and first year graduate students in chemical engineering. Many other STEM fields do not have 
analogous resources. Additionally, modern computational topics such as version control, 
reproducible computing, and design of graphical user interfaces are generally excluded from 
chemical engineering modeling courses. 
 
The Carpentries is a non-profit organization that has developed hands-on educational modules in 
software and data science aimed at rapidly teaching practical computational skills in short 
workshops to researchers with little relevant prior experience[12, 13]. Workshops on several topics 
are taught at many universities, and all the lessons are available online[14]. The idea for 
developing the elective course came from my experience in attending a Software Carpentry 
workshop on Python. The workshops include a significant amount of problem-based learning 
through active hands-on computational exercises during which the instructor answers questions 
around the room; this was preserved in the semester-long elective course. Additionally, both the 
workshops and the course aim to rapidly develop proficiency rather than provide a detailed 
coverage of all background and theoretical aspects, which are suitably covered by existing 
courses. 
 
To build computational skills in students interested in mathematical modeling from all STEM 
backgrounds, I developed the interdisciplinary elective course titled Applied Numerical 
Computing for Scientists & Engineers at Oklahoma State University. The course fills a gap in the 
practical training of students interested computational research projects and problem solving 
across various disciplines. The course topics are focused on modern software tools for 
mathematical modeling in science and engineering: version control using Git, mathematical 
typesetting in LaTeX, graphical user interfaces, and high level programming languages with 
libraries of solvers and visualization tools (Python and MATLAB). Version control is a system 
for automating and documenting the management of changes in computer codes and software. 
LaTeX is the standard document preparation system for formatting technical and scientific 
communications involving mathematics. I discuss and emphasize best practices for 
computational problem solving and scientific computing research from examples (and counter 
examples) from my research and from the published literature[15-33]. Rather than covering just the 
basics of programming or detailed algorithms for numerical methods, the course is geared 
towards implementing tools for solving realistic continuum scale science and engineering 
problems, managing open source code projects, and disseminating computational research results 
through scientific documentation and publications. 
 
Based on my personal experiences with MATLAB, Python, C, and FORTRAN, I opted to teach 
MATLAB and Python side-by-side in the course due to the widespread adoption of these two 
languages across STEM fields and the accessibility to novice programmers. MATLAB has an 
extensive collection of built-in functions, toolboxes, and visualization capabilities well-suited to 
STEM applications. Python is open source and is emerging as the standard language for open 
scientific computing. “The learning progression across two programming languages is critical to 
developing a student’s ability to generalize across various computational tools”[2]. Thus, we used 



 

both MATLAB and Python for the course. With competency in both of these languages, students 
could extend their skills into other languages such as C, Java, or FORTRAN as needed. 
 
This paper is written in a “steal this course” format to provide other instructors access to the 
course materials, which they can then adapt as desired. 
 
Methods 
 
Note that most of this Methods section is taken from the course syllabus with a few explanatory 
notes infused here for the readers. 
 
Course Learning Objectives 
 
Upon completion of this this course, students should be able to 

• utilize Git for version control using common commands: status, add, commit, push, pull 
• write scientific reports and similar documents in the LaTeX typesetting language with 

TeXMaker as the editor using an article template and include equations, figures, tables, 
document hierarchy, cross referencing, and citations (using BibTeX) in the documents 

• use basic Unix commands to run programs, navigate and organize a file system, and 
access the university’s supercomputing cluster 

• use best practices for computational problem solving and research and scientific 
computing as described in publications provided as assigned readings 

• develop graphical user interfaces for interactive model reuse 
• program well-documented, readable code in the high-level languages of Python and 

MATLAB that uses libraries, built-in functions, and user-defined functions 
o to solve systems of linear and nonlinear equations, 
o to numerically integrate functions and data, 
o to solve systems of ordinary and partial differential equations,  
o to estimate parameters for mathematical models using optimization and data 

fitting tools,  
o to calculate statistics of data and stochastic processes, and  
o to create publication quality figures 

 
General Course Structure  
 
The class meets twice weekly in 75-minute periods. Prerequisites include an undergraduate 
differential equations course and a basic programming course or experience with any 
programming language (students should be familiar with functions, if statements, and for loops). 
Students are assigned to read relevant background materials before class. The first portion of 
each class period includes a 5 – 10 minute group discussion of the readings. The bulk of each 
class period is dedicated to working example problems or walking through instructor-led 
tutorials. Students bring their personal computers to class. Guest lectures from science and 
engineering faculty conducting computational research supplement the course. The course does 
not have exams. Student grades are distributed among ten reading assignments (2% each), six 
computational assignments (the first two worth 5% each, the third worth 10%, the fourth and 



 

fifth worth 15% each, and the final worth 25%), and one video assignment (5%). These 
assignments are discussed in the following sections. Course topics are adjusted or reordered 
based on students’ grasp of concepts in in-class exercises, office hours, and assignments and 
based on their feedback. For example, students in 2018 requested that tips for using LaTeX for 
manuscript and thesis/dissertation preparation be discussed at the midpoint of the course rather 
than in the last week as in previous years. Students are encouraged to work together on 
computational assignments and to seek assistance from the instructor.  
 
Reading Assignments 
 
In each reading assignment, students are required to type a brief summary (0.5 – 1 pages) for 
each of the documents assigned. The summary must be in their own words. Most of the readings 
are extracts from books and journal articles[15-33]. A few online manuals for software tools are 
also provided. All of the reading materials are posted on the course learning management system 
for students to access. Topics for the reading assignments include 
 

1. Background and overview information on LaTeX for mathematical typesetting 
2. Best practices for software engineering in scientific computing 
3. Basics of Python programming 
4. Using built-in functions in MATLAB and Python for solving common classes of 

problems in scientific computing with established numerical methods, focusing on 
nonlinear equations, numerical integration, and ordinary differential equations (ODEs) 

5. Python modules NumPy and SciPy 
6. Parameter estimation by linear and nonlinear least squares regression 
7. Sensitivity analysis 
8. Graphical user interfaces (GUIs) for scientific computing in MATLAB and Python 
9. Verification and validation in scientific computing 
10. Reproducible research computing and other tips for sharing figures, code, and 

documentation from computational projects 
 
Computational Assignments 
 
Computational assignments give students practice with programming well-documented, readable 
code in MATLAB and Python through use of libraries, built-in functions, and user-defined 
functions to solve systems of ODEs, to estimate parameters for mathematical models using 
optimization and data fitting tools, to create publication quality figures, and to design and 
implement GUIs for interacting with mathematical models. Students are also tasked with 
documenting their work in LaTeX, HTML, and/or Jupyter Notebook formats in certain 
assignments. The time allotted for each assignment is roughly proportional to the weight of the 
grade of that assignment.  
 
The overviews for the assignments are as follows: 

1. Version control in Git and document typesetting in LaTeX  
• Create a Git repository to track versions of assignment files (in this and 

subsequent assignments) 



 

• Produce a LaTeX document with several required components using research or 
major course work as the topic 

2. Programming in MATLAB while developing best practices for scientific computing 
(version control, commenting, and documentation) 

• Write a function to define a system of ODEs 
• Provide well-documented code following specified standards 
• Generate an HTML output file from MATLAB documenting the code 

3. Using built-in functions and library routines for numerical methods (specifically ODE 
solvers) in MATLAB and Python 

• Solve a system of ODEs using numerical solvers in MATLAB and Python 
• Plot the results 
• Generate an HTML file to document the code from MATLAB 
• Generate a Jupyter Notebook file and a LaTeX file to document the code from 

Python 
4. Parameter estimation of dynamic models using MATLAB and Python 

• Solve a system of ODEs using numerical solvers in MATLAB and Python 
• Use an optimization routine to iterate the ODE model parameters to fit data 
• Plot the results 
• Generate an HTML file to document the code from MATLAB 
• Generate a Jupyter Notebook file and a LaTeX file to document the code from 

Python 
5. Develop a GUI in MATLAB starting with an existing computational model 

• Create a GUI in MATLAB to take user inputs and display simulation results from 
a set of user-defined functions provided by the instructor 

6. Design and construct a GUI in MATLAB, verify code implementation, and review 
content covered throughout the course 

• Develop a GUI for MATLAB that takes a user-specified number of ODEs and 
explicit equations as input, solves the system of ODEs using ode45 in MATLAB, 
returns and exports the solution vector, and plots the solution vector components 
against the independent variable 

• Verify that the GUI works for test cases from the systems of ODEs used in 
Computational Assignments 3 and 4 

 
For computational assignment 5, the problem topic has varied between course offerings. The top 
student submissions have been reused in STEM outreach activities conducted by my lab. In 
2016, the user-defined function for the topic was the numerical solution of a time-dependent 2D 
heat transfer problem (Figure 1). In 2017 and 2018, the user-defined function was an agent-based 
model for the motions of bees in response to a pesticide (Figure 2). 
 
The final course assignment is treated as a cumulative course project in lieu of a final exam. 
Along with two students who took the course, I published a detailed description and sample 
submissions for the final assignment[34]. 
 
  



 

Differentiation of Instruction between the Undergraduate and Graduate Students and the Video 
Assignment 
 
Only graduate students were allowed the first time the course was offered (Fall 2016). Based on 
student interest, senior undergraduate students were allowed in subsequent years (Fall 2017 and 
Fall 2018). During the 2017 course, the official university course designation and description 
was submitted for approval. At that time, a generic special topics course distinction was used. 
The instruction in 2017 was exactly the same for both cohorts of students, except that I asked 
that the graduate students present brief introductions to their research topics during a class 
period. This activity was not required for a grade. As all of the seniors were chemical 
engineering students who I had taught the previous semester, I was very familiar with their 
baseline of training in computational topics in our curriculum. I used a lot of examples from their 
earlier courses. Graduate students in disciplines outside of chemical engineering had a wide 
range of computational backgrounds, so I started the class with fundamentals that were 
approachable by the undergraduate and graduate students alike. To have the course approved for 
separate undergraduate and graduate course designations, the course requirements had to differ 
in some way. Thus, for the 2018 course, I included the video assignment for the graduate 
students to develop their skills in communicating to lay audiences and for them to think about 
how to implement course topics into their graduate research and education. All students, 
including the undergraduate students, were tasked with watching the videos to diversify their 
exposure to computational topics across the STEM disciplines represented among the students. 
To assess this, students were required to provide a substantive comment or question related to the 
video content for each video that they watched (brief comments such as “good job”—while 
positive and supportive—are not engaging nor do they provide evidence of watching, so students 
were instructed that these did not count towards the required number of comments). 
 

 
Figure 1: Sample student submission for Computational Assignment 5 in 2016. 

  



 

Results 
 
Student Performance 
 
In the three offerings of the course thus far, 30 graduate students and 10 senior undergraduate 
students have taken the course. The student majors were chemical engineering, mechanical 
engineering, aerospace engineering, civil engineering, environmental engineering, chemistry, 
plant and soil sciences, and mathematics. Collectively, the final grades have averaged 3.73 on a 
4.0 scale. The students who earned B’s typically struggled with major concepts on two or three 
assignments and procrastinated on at least one assignment, where they submitted less than half of 
the required components. Each of these students discussed course performance with me one-on-
one in office hours, learned from their mistakes on earlier assignments, and spent adequate time 
and effort on the final course assignment demonstrating that they had gained competency in 
course topics by the end of the course. Most of the more than 75% of students who earned A’s in 
the course regularly attended class and asked me questions about homework assignments either 
after class or during office hours. 
 

 
Figure 2: Sample student submission for Computational Assignment 5 in 2018. 

Student Incorporation of Course Topics 
 
In the 2018 course offering, one of the course assignments required each graduate student to 
create a 3 – 5 minute video describing how the course topics relate to their field of study or how 
they use the course topics in their research. The students evenly distributed themselves between 
these two alternatives. Of those that discussed how they used course topics, one graduate student 
from outside chemical engineering enthusiastically described how he was teaching his labmates 
and his research advisor how to use version control and LaTeX for scientific communication. 
Others echoed the adoption of version control and typesetting with LaTeX as key things they 
were translating into their research, no matter their field of study.  
 



 

Graduate students from my research group and other computational research labs have used 
many of the skills developed in the course in their research endeavors. Several students showed 
me examples of GUIs in MATLAB and Python that they were developing for use on research or 
course projects outside of my class and asked for assistance in improving their GUIs. Almost all 
of the graduate students who have taken the course have utilized LaTeX for writing their theses 
or dissertations and some manuscripts. 
 
The CHE seniors who took the fall 2017 course were competent MATLAB users by the end of 
the course. MATLAB training was not formally provided in any other course in the curriculum. 
In senior design in Spring 2018, at least two of the students told me how they had built a 
MATLAB simulation for their design team to use to complete the AIChE national design 
contest. All five of the students were able to help their peers with MATLAB when they used it in 
process control in Spring 2018 for a two-week course project involving using a hands-on 
temperature control lab[35].  
 
Course Evaluations 
 
The response of faculty to the course has been supportive as several faculty members (in several 
departments) are encouraging or even requiring all of their incoming graduate students to take 
the course. The university’s high performance computing center distributes the course flyer to all 
users and labs with user accounts. The instructor advertises directly to the chemical engineering 
junior class each spring. These three factors and word of mouth account for much of the 
enrollment, which has been capped at 20 graduate students and 10 undergraduate students. The 
student responses to the course have been very positive, with evidence provided by university-
administered anonymous online end-of-course evaluations. The university did not report 
evaluation results for the 2016 course or the 2018 undergraduate section of the course due to 
having fewer than three respondents for each. There were sufficient responses in 2017 for both 
student cohorts and for the graduate students in 2018. In aggregate over 29 responses in two 
semesters, the average rank for the instructor was 4.59/5 (4.40 ± 0.57, 4.57 ± 0.68, and 4.7 ± 
0.53), and the average view of the course was 3.64/4 (3.71 ± 0.50, 3.63 ± 0.56, and 3.61 ± 0.51). 
In the free response section of the evaluations, students provided the following selected 
comments (copied without modification, except redaction of the instructor’s name): 
 

• “My computing skills (especially through Matlab and Python) I have gained throughout 
this course has been tremendously improved. The computational methods and MATLAB 
skills I have learned in this course have been not only beneficial in my research but also 
in other classes of mine, specifically Process Modeling course in the Fall, and Advanced 
Bioprocessing in the Spring. The course is highly recommended to be maintained and 
required for other science-related majors students (both graduates and undergraduates), 
especially those who are interested in computational research. Aside notes for math 
majored students or students who are taking numerical analysis course from the 
mathematics department; this course is highly suggested as a prerequisite, or taken 
simultaneously with numerical analysis.” 

• “The course ‘Applied Numerical Computing’ is very informative and is helping me a lot 
in my research. This course contains almost all the topics that I am wondering for and 
also much new topics that I am learning. For example, version control to track our 



 

research progress, LaTeX to write our proposal or any future papers, Python and Matlab 
where I learned a lot about coding and it potential applicability and other numerous topics 
are covered. I must be very thankful for the course and Instructor.” 

• “I liked learning so many different computational topics in just one course.” 
• “Really enjoyed the diversity of the class in terms of lessons and computer languages 

taught.” 
• “Very interesting course for students to take where you can gain skills you may not 

normally gain in the classroom.” 
• “Very useful for applying in research.” 
• “Excellent and relevant topics for science-based students.” 
•  “This course is highly related to my research work, and I really enjoyed this course. 

Students fought to take this course due to its reputation from last year.” 
• “Very good. Covered useful computational methods and coding practices. I really 

enjoyed the side-by-side coding in Python and Matlab on assignments. It helped me learn 
how to ‘translate’ my code into another language.” 

• “Really impressed, great course” 
• “10/10 would recommend to anyone in science or engineering.” 
• “offered a lot reading materials during teaching, which helped me learn this course 

faster.” 
• “I think learning the version control and the latex software were the most beneficial 

content for me.” 
• “This course is highly recommended for graduates students/undergraduate research 

students who are interested in and conducting computational research.” 
• “Very useful course, have already suggested it for friends to take.” 
• “I found it very helpful that the course was taught in a way that was accessible to those 

without a strong background in computer science and programming.” 
• “It is a very good course to learn on Computational software.” 
• “Its a good course for the beginner in the field of numerical analysis.” 
• “Our professor prepares the materials lucidly and clearly that we can understand it, also 

does the coding on class in Python and Matlab the makes us understand each code. So, I 
learned many coding practices from basic level to advance.” 

• “Overall, this course is very good and all the graduates should take this course as a 
required graduate course. So that they can get basics in Latex, for their paper writing, 
computing skills in MatLab, python.” 

• “The course was great. I learned so much information yet I didn't feel overwhelmed. I 
was challenged but the course was still manageable. The material was all very useful.” 

• “Work Load: Almost too light.” 
• “Work Load: Can be pretty heavy at times. Reading assignments can be really time 

consuming (some are very long), especially when you also have a computational 
assignment to work on.” 

• “The course was really great but I wished we could focus more on open-source materials 
(Python) rather that MATLAB.” 

• “Work Load: The homeworks were rather long, but I believe she gave more than 
sufficient time to complete them. Additionally, there weren't that many of them, so 
overall, the homework to time ratio was perfect. However, I did not care for the reading 



 

assignments. They were DEFINITELY useful and relevant, but just being given and 
graded on reading assignments in grad school seems a little weird and slightly annoying. 
Again, the reading assignments were useful and relevant, but it would have been nice to 
have them as supplemental instead of required.” 

 
Conclusions 
 
An elective course suitable for upper division undergraduate and graduate students in STEM 
fields with limited prior experience in computer programming and numerical methods with 
diverse skillsets has been developed to train students to be competent users of Git, LaTeX, 
MATLAB, and Python for mathematical modeling and research computing. Although the topics 
were initially selected due to relevance to my research group, faculty from across several 
departments in engineering, science, and mathematics view the course as useful training for their 
incoming graduate students engaged in computational projects. Students from across the 
university have taken the course and have provided positive feedback on their experiences. 
Course reading and computational assignments were outlined here for brevity. I am willing to 
share any or all course files (syllabus, grading rubric spreadsheets, assignments, readings, etc.) 
electronically with educators upon being contacted by email. 
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