An Internet Approach
for Engineering Student Exercises

Richard Perry
Department of Electrical and Computer Engineering
Villanova University, Villanova, PA 19085

An approach for engineering student exercises using the Internet is described. In this approach,
for a given exercise, each student receives the same problem, but with different data. The
exercise content can be static or dynamic, and the dynamic form can be timeless or real-time.
The implementation provides immediate feedback to the students, letting them know if their
submitted answers are correct. Student results for each exercise are recorded in log files which
are available to the instructor. Example exercises from engineering computer security and
cryptography courses are presented.

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

Introduction

An approach for engineering student exercises using the Internet is described. In this approach,
for a given exercise, each student receives the same problem, but with different data. Alternatively,
each student could receive different or slightly different problems with the same or different data.

The exercise content can be static or dynamic. In the static form, each time a student accesses an
exercise, the same data is presented. This allows students to work offline on problems and return
later to submit their solutions. In the dynamic form, each time a student accesses an exercise,
different data is presented. The data is generated pseudo-randomly, based on the student UserID,
so it can be reproduced for the static exercises.

The dynamic form can be timeless or real-time. For a timeless dynamic exercise, students can
work offline on the problem as long as the original data web page is preserved in their browser or
saved in a file. For real-time dynamic exercises, students must submit their answers within a small
time window, e.g. 60 seconds. The real-time exercises are implemented using a custom server
process running on an Internet site; the other types of exercises are implemented using a standard
web server environment.

The implementation provides immediate feedback to the students, letting them know if their sub-
mitted answers are correct. For a multi—part exercise, which requires a sequence of answers, this
allows the students to complete the exercise part—by—part, moving on to successive sections as each
part in the sequence is completed correctly. For correctly completing an exercise, students may be
given a “reward”. Examples of rewards are: an opportunity to try a harder exercise for extra credit;
a random interesting adage from the Unix fortune utility; or simply a congratulatory statement.

Student results for each exercise are recorded in log files which are available to the instructor. The
results can be easily processed in an automated fashion for grading. The log files are also useful
for analyzing the behavior of students by looking at the time they started working on an exercise
(e.g. a week before it was due or an hour before it was due) and how many incorrect attempts they
made before submitting the correct answers. This can help the instructor identify students who are
performing extra well, or who may need extra help.

Example exercises from engineering computer security and cryptography courses will be pre-
sented, including a man—in—the-middle scenario and an exercise in secure authentication and con-
fidentiality over an insecure channel.

Static Examples

Figure 1 shows an example where the student must solve a modular equation for a single unknown.
The equation represents a linear congruential pseudo—random number generator. Here the student
has submitted an incorrect answer:

UserID: fred

Your answer for x0 is wrong.

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

UserlD: fred

X1 =(aXp+ c)mod m
1064325048971 = x1
386173047307 =a

44436739943 =¢c¢
1071322948639 =m

x0 = |

| Submit |

Figure 1: Static Example with a Single Answer

and here the student has submitted the correct answer:

UserID: fred

Your answer for x0 is correct.

UserID: fred
Server public key:

65537 =e
348651731396514990589362915149 =n

Credit-card number:
Plaintext = 1080702217618882

Ciphertext = | |
Number of kegs: |5 | ¥ |

Submit

Figure 2: Static Example using RSA to Digitally Sign a Credit Card Number

Figure 2 shows another static example using RSA to digitally sign a “credit—card” number for a
fake online transaction, with an option to specify how many kegs of “milk” to order. The option is
ignored when checking the results, but it makes the exercise a little more fun for the students. An
example of correct results:

UserID: fred

Your credit-card number is valid.

Your milk order will be shipped today!

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

UserlID: fred
key = 0110000100
K1 = |00001100 |
K2 = (11000100
plaintext = 10100101
after IP = (01110100 _
after 1st fK = |
after SW=|
after 2nd fK = |

ciphertext = |

|_Submit |

Figure 3: Static Multi—part Example

A multi—part example, requiring a sequence of answers, is shown in Fig. 3. In this exercise the
student must perform encryption and show intermediate results using a simplified form of the Data
Encryption Standard. An incorrect calculation by the student for one part would cause subsequent
parts to be incorrect. By submitting partial results, the student is able to complete the exercise
part—by—part, moving on to successive parts as each step in the sequence is completed correctly:

UserID: fred

Your answer for K1 is correct.
Your answer for K2 is correct.
Your answer for IP is correct.
Your answer for fK1 is wrong.
Your answer for SW is wrong.
Your answer for fK2 is wrong.
Your answer for c is wrong.

You have 3 out of 7 parts correct.

Figure 4 shows an example where most of the data is actually dynamically created by the student.
The student must use their UserID (treated as a base—36 number, plus 1 if it is even) as the public
RSA exponent, but the other values are left for the student to create on their own, within certain
constraints. The exercise involves designing a two—user split RSA key, and using the key to pro-
duce a digital signature. The message to be signed is randomly generated using the Unix fortune
utility, and changes each time the student accesses the exercise, so this exercise is only partially
static.

The process of checking the student results in this case uses a conversational style, simulating what
an instructor might do when discussing student results in person. At the end, if all six parts are
correct, the student is given positive feedback:

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

UserID = fred
All values are in decimal

Enter your RSA2 key parameters:

Message to be signed: m =

"Consequences, Schmonsequences, as long as I'm rich."
-- "Ali Baba Bunny" [1957, Chuck Jones]

Hash of the message to be signed: h(m) = 229595415021476407239308023673270725313062818344
Enter the signature for h(m):

SAB = |

[E '!_ '! |

Figure 4: Two—user RSA Key Example

UserID: fred

e is correct, let’s check p next:

bitLength(p) == 128, good...

p is prime, almost there for p...

gcd(e,p-1) == 1, p is ok, let’s check g next:

g != p, that’s a good start...

bitLength(q) == 128, good...

g is prime, almost there for qg...

gcd(e,g-1) == 1, g is ok, let’s check d_A next:
bitLength(d_A) >= 240, good...

gcd(d_A ,p-1) == 1, almost there for d_A ...
gcd(d_A ,g-1) == 1, d_A is ok, let’s check d_B next:
d B != 1, that’s a good start...

e*d_A *d_B == 1, Brilliant!

h(m) is valid, checking signature:
s_AB is valid.

You have 6 out of 6 parts correct. You are the master of RSA2!

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

Timeless Dynamic Examples

Each time a student accesses a dynamic exercise, different data is presented. For a timeless dy-
namic exercise, students can work offline on the problem as long the original data web page is
preserved in their browser or saved in a file.

UserlID: fred

Current time = 1285158913377 (Wed Sep 22 08:35:13 EDT 2010)
Here are some random numbers:

7131683955462899639

2371508780648774125

627418875016148120

I bet you can't guess the next number in the sequence:
next =

| Submit |

Figure 5: Dynamic Example Based on the Current Time

Figure 5 shows a dynamic example where the data depends on the date and time at which the
student accesses the exercise. The data is generated using Java’s Random class, initialized using a
value close to the time of day in milliseconds. Using a program to check times near the one given,
the student can reproduce the pseudo-random sequence and generate the next value:

UserID: fred

Your answer 1s correct. You win!

That was fun. Are you ready for a harder problem?

Try this: I'11 give you just one value from nextlong(), using an instance

of Random initialized in a secret way, not related to the time of day.
And I bet you can’t guess the next number...<link to continue here>

As shown above, when the correct answer is submitted, the student is challenged to solve a harder
problem. If the student proceeds, a new exercise is generated dynamically, based on Java’s Random
class initialized in an unpredictable manner, as shown in Fig. 6. If the student is able to solve this
harder problem, they are congratulated:

UserID: fred

Your answer 1is correct.

I give up! You are the master of pseudo-random numbers!

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

UserlID: fred
Here is one Random number from nextLong():
1979696279406681749

I bet you can't guess the next number:
next =

Submit

Figure 6: Dynamic Challenge Exercise

In the previous example the exercise was split into two parts, with the second part representing a
challenge which is presented only after the first part is solved correctly. It is also possible to split
an exercise into multiple parts based on logical aspects of the problem being solved. An example
of this is shown in Figs. 7 and 8, where the student initiates a man—in—the—middle attack on the
Diffie-Hellman key agreement protocol in the first part, and in the second part the attack continues
by decrypting the secret communications. The caricatures of Alice, Darth, and Bob in Fig. 7 are
from Stallings .

If incorrect results are submitted, the student is informed about which parts were wrong, and
encouraged to try again:

Man in the Middle
UserID: fred

Your value for M is wrong and your value for Cb is wrong. (checking...
Ka=1 Kb=1) Ka and Kb are equal, that’s non-standard! But Ka and/or Kb
are trivial, that doesn’t count. XTa 1 XTb 1

Get back in the middle and try again.

Real-time Dynamic Examples

For real-time dynamic exercises, students must submit their answers within a small time window.
In the following examples the time window is 60 seconds, i.e. the connection is dropped if the
student does not respond to any prompt within that time limit. This is implemented on the server
side using a simple socket timeout option, and prevents failed server processes from accumulating
indefinitely.

In these examples, the student uses a telnet client to communicate with the server and values are
sent and received in plain text using hex. In a more advanced course, the student may be required to
write a C or Java program to perform the network communications, sending and receiving binary
values directly. In that case the timeout would be set much lower, e.g. 10 seconds.

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

Mamn in the Middle
UserlD: fred

Aline 5nd Bob &re perfrming the Diffie-Hellmsn key xchange protocal

‘it 0m i nrernept and chenge what is Sent:

Darth
Wolue sent to Alice:

Bob's public value: G616456332626304270617540110543276260060807 3374383

Boh

DH Parameters:

0578073103890007 736065 30044 83635 263203 105650 7307556503013 26352264 34800

1107264911861872334 72794 $00504 60724 91622563394 24 315173141154 1138335107 65

_ Continue |

Figure 7: Man—in—the—middle Part 1

The first example demonstrates a one—way authentication attempt where the student does not re-
spond correctly to the challenge. In a correct response, the student would use their personal course—
assigned password key to encrypt the challenge. Seinfeld fans may note a similarity to a certain
soup kitchen episode in the authentication failure response:

% telnet fog.misty.com
Trying 198.137.254.19...
Connected to fog.misty.com.
Escape character is '"]'.
UserID: fred

Request #: 1

Challenge: e9024781elfc0037
Response: abc

Authentication failed. No fortune for you!

The next example shows one—way authentication with a correct response from the student. In
this case the student is rewarded with a random fortune. Note that the challenges are generated
randomly and will vary with each connection attempt:

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

Man in the Middle

UserlID: fred
Alice has encrypted a message M for Bob by XOR'ing it with her derived DH key.
Decrypt the message, and re-encrypt it for Bob:

Ciphertext from Alice: 305450492518739028914672960497480853488191503z

Flaintext M:
Ciphertext sent to Bob:

|_Cantinue |

Figure 8: Man—in—the—middle Part 2

UserID: fred

Request #: 1

Challenge: 88ce062ea5f139b6
Response: ee47dalf6691bc60

Authentication succeeded. Here is your random fortune:

"And it’s my opinion, and that’s only my opinion, you are a lunatic.
Just because there are a few hundred other people sharing your lunacy
with you does not make you any saner. Doomed, eh?"

-— 0Oleg Kiselev,0leg@CS.UCLA.EDU

The next level of the exercise uses two—way authentication, where the student challenges the server
to encrypt a value. To ensure that the student decrypts the server response and checks the result,
the server chooses one of the challenge bytes at random and changes it to a random value. After
decrypting, the student must identify which byte was changed and return that as the “check byte”:

UserID: fred

Request #: 2

Challenge: 1c3ec31535359%ac

Response: e8f6b957e9d2bled

Your challenge for me: aabbccdd00112233
My response: bb738ef05d1497c9

Check byte: cb

Authentication succeeded. Here is your random fortune:
The face of war has never changed. Surely it is more logical to heal

than to kill.
-— Surak of Vulcan, "The Savage Curtain", stardate 5906.5

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

The final level of the exercise uses two—way authentication with confidentiality. In this case, the
random fortune is encrypted using a key which depends on the student course—assigned password
and the two challenges:

UserID: fred

Request #: 3

Challenge: 841012a067425bla

Response: aef79354albbcec?

Your challenge for me: 0011223300112233
My response: b41808205c531837

Check byte: 74

Authentication succeeded. Here is your random fortune:

KVvUeBXI/0kQ3A8TFa/G4zB1SkVPxLOOdgBIF0QGYdqu78eFR5vacYmgcIHp
XQIRbQJVAH1£1Q50d0h+mczG+uGUNXiPVI8pJEQVOLV jmE70SKrwx7980Gyx
530fk jYM2wb55qzF4khrJB8mu94gBdP9Qm8XdePI/HrIEkypqUU76ALrGs0+
GWEFBvVHpSVQOJIXwQGhTfgqgoBzJQaMBp20WEYoXL5ZfNQ2nE9rM8ocVMb+nY Iy
1Jzn+SUgOAG9gZrQDEDpWxc0Lo/rEBIMcxHIWpu2 zXuwgQPE 92nXmkOI +5Bw
Tn8xqg5gDwbHqg+zgd02s0L7KeMyVSyleiQ==

When the student decrypts the message, the random fortune and a *“user authentication code” are
displayed:

To a Californian, the basic difference between the people and the
pigeons in New York is that the pigeons don’t crap on each other.
-— From "East vs. West: The War Between the Coasts

7144cd971alc9d8b5d%ac68cdacleeflal206e78leled7£73e2¢c34e93edbcdlbe

User Authentication Code Check

Your UAC:

Figure 9: Submitting the User Authentication Code

The user authentication code is generated pseudo—randomly, based on the student UserID, and is
used by the student to prove that they decrypted the message by submitting it via a web form as
shown in Fig. 9.

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

Analyzing and Grading Student Results

Student results for each exercise are recorded in log files which can be easily processed in an
automated fashion for grading. For example, the following results were generated from the log
files for an assignment which had four parts with each part worth 25 points:

fred 25 25 25 25
alice 25 5 25 15
bob 25 0 25 25
sam 25 25 10 25
tony 25 0 25 O
phil 0 0 25 25
harry 25 15 25 25
nancy 25 0 25 25

Partial credit can be automatically computed for multi—part exercises where the student only com-
pleted some of the parts correctly. Some credit for effort can also be automatically assigned for a
student who did not supply a correct answer for an exercise but made many attempts to do so.

Detailed results can be produced for each student and exercise, showing when and how often the
student attempted to solve the exercise, including incorrect attempts, for example:

25

log count = 10

Sun Apr 4 19:39:45 EDT 2010 fred You have 1 out of 3 parts correct.
Fri Apr 9 22:58:24 EDT 2010 fred You have 2 out of 3 parts correct.
Fri Apr 9 23:19:39 EDT 2010 fred You have 2 out of 3 parts correct.
Fri Apr 9 23:26:14 EDT 2010 fred You have 2 out of 3 parts correct.
Fri Apr 9 23:32:49 EDT 2010 fred You have 2 out of 3 parts correct.
Sat Apr 10 00:20:24 EDT 2010 fred You have 2 out of 3 parts correct.
Sat Apr 10 00:31:49 EDT 2010 fred You have 2 out of 3 parts correct.
Sat Apr 10 00:38:52 EDT 2010 fred You have 2 out of 3 parts correct.
Sat Apr 10 11:33:25 EDT 2010 fred You have 2 out of 3 parts correct.
Sat Apr 10 18:37:42 EDT 2010 fred You have 3 out of 3 parts correct.

This shows that fred had no trouble with parts 1 and 2 of the exercise, obtaining the correct answers
on the first try, but had some trouble with part 3, finally supplying the correct answer after 7 or 8
failed attempts.

Students are never penalized for incorrect attempts; in fact, they are encouraged to enter random
junk to start with for an exercise just to see how the results are processed, and this is generally
demonstrated in class when a set of exercises is first assigned.

In computer security courses the students are also encouraged to examine the exercise interfaces
closely and try to “break” the system if they can, i.e. try to have a correct response logged without

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

actually supplying a correct answer. So far, that has never happened, although maybe it did and
was just not detected.

Conclusion

The approach for engineering student exercises using the Internet was demonstrated using exam-
ples from computer security and cryptography courses. For a given exercise, each student receives
the same problem, but with different data. This approach is applicable to any type of engineer-
ing exercise where the correct answers are suitable to be checked automatically, which includes
numerical and computational types of exercises, and perhaps others.

Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice, Fifth Edition.
Prentice Hall, 2010.

Fall 2010 Mid-Atlantic ASEE Conference, October 15-16, 2010, Villanova University

