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Abstract 
 

In recent years, the importance of concurrent programming has increased. However, 
many programmers are not appropriately trained to write correct and efficient 
concurrent programs. The techniques that most Operating Systems (OS) textbooks 
teach are ad-hoc, and such ad-hoc techniques are far too error-prone for solving 
complex synchronization problems. The global invariant approach developed by G. 
Andrews is much more formal and structured, and we have been teaching this 
approach since 1992 at Kansas State University. One possible drawback of the 
invariant approach is the difficulty to identify an appropriate invariant for a given 
synchronization requirement. To cope with this problem, we have developed a set of 
useful synchronization patterns and their solution invariants. Using the patterns, we 
can solve a wide-variety of synchronization problems found in many advanced OS 
textbooks. In Fall 2001, we successfully taught our pattern-based approach in our 
graduate-level OS course. In this paper, we will present our methodology and report 
qualitative and quantitative evaluation of the methodology by students in the 
classroom setting. 
 

1 Introduction 
 
 In recent years, concurrent programming has become the norm rather than the exception in 
many applications. The advantage of concurrent programming is that an individual thread (or 
process) is written as a sequential program focusing only on its sequential activities, and the 
coordination among activities by different threads is localized to a small amount of 
synchronization code.        
 

                                                        
* This work was supported in part by the National Science Foundation under NSF-CRCD Grant #9980321 and     
DARPA Order K203/AFRL #F33615-00-C-3044. 
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However, informal conversations with system designers/engineers at  Boeing and 3COM on 
separate occasions have revealed that in industry, many programs are written in the form of a 
sequential program or a simple non-preemptive event-driven program.  Even in cases where 
multiple threads are used, programmers tend to be conservative in the use of complex 
synchronization code, and they often adopt the simple but inefficient “lock everything” approach 
to avoid potential race conditions and deadlocks.  As the complexity of software systems grows, 
such simple strategies will become inadequate and inappropriate.     
 
The design practice to use simple software structures can be attributed to the following: 
1. Due to long life cycles of commercial systems, many programs use legacy code originally 

developed for much simpler systems.  However, these programs are becoming increasingly 
difficult to maintain and satisfy all system requirements as the complexity of the systems 
grow. 

2. Many programmers and designers are not appropriately trained to write correct and efficient 
concurrent programs.  Most Operating Systems (OS) textbooks explain synchronization by 
showing solutions in terms of low-level synchronization primitives for some well-known 
synchronization problems, such as the readers/writers problem and the dining philosophers 
problem.  Such solutions do not generalize to complex real-life synchronization problems in 
various primitives.  Furthermore, this approach only teaches ad-hoc techniques for 
development of synchronization code, and as stated in [1], ad-hoc techniques are far too 
error-prone for solving complex synchronization problems.  Since bugs caused by erroneous 
synchronization code are difficult to detect and debug, there is reluctance among the 
programmers to develop sophisticated concurrent programs.   

 
We have focused our research on the second issue. Through the support of an NSF Combined 
Research and Curriculum Development   grant, we have developed a formal methodology to 
construct reliable concurrent programs [8,10] and an interdisciplinary curriculum for teaching the 
methodology in the context of embedded systems development [11].  Our methodology is based 
on G. Andrews' global invariant approach [1,2,3] in which a programmer specifies 
synchronization using formulas in formal logic in terms of an invariant, and mechanically 
translates the invariant to low-level synchronization code in various languages and primitives.  
Since the translations are guaranteed to preserve the invariant, the methodology yields correct 
solutions in terms of the synchronization specification.   We have been teaching the global 
invariant approach in our graduate-level Advanced Operating Systems course (CIS720) since 
1992. 
 
The global invariant approach has many advantages.  First, it is a formal approach that enables 
verification and synthesis of programs being developed.  Second, the most important activity in 
the programming process lies at a high level; namely, specifying global invariants.  Once an 
appropriate global invariant is specified, much of the rest of the process is mechanical.  
Furthermore, global invariants are platform  (synchronization primitive) independent. For 
example, if the platform is switched from a semaphore-based to a monitor-based system, we only 
need to apply an appropriate translation to yield a monitor-based  program. 
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One possible drawback of the global invariant approach is the difficulty to identify an 
appropriate global invariant that correctly and accurately captures the synchronization 
requirement. Interestingly, writing low level code (using an ad-hoc approach) seems to be easier 
for many students than specifying the formal safety property in terms of an invariant.  Many 
students who took CIS720 prior to 2001 (that is, before we developed the pattern-based 
approach) remarked that they had developed code in low-level primitives first by trial and error 
and then obtained a global invariant by observing the code.  
 
 To cope with the difficulty of identifying global invariants, we have developed a set of useful 
synchronization patterns and their solution global invariants [8,10].  These patterns work as basic 
building blocks, and their solution invariants can be composed to produce global invariants for 
more complex synchronization.  Most problems in OS textbooks can be solved easily by 
composing these synchronization patterns. We are currently trying to apply our pattern-based 
approach to real-life synchronization problems found in military applications through the support 
of a DARPA  grant. 
 
In Fall 2001, we taught our pattern-based approach for the first time in a formal class-room 
setting in CIS720. In this paper, we will present our methodology and report qualitative and 
quantitative evaluation of the methodology by students in the course.     
 
2 Overview of our methodology 
 
Our pattern-based approach [8,10] is developed in the framework of    aspect-oriented 
programming [7], in which properties that must be implemented are classified into the following 
two types:  
· Components that can be captured in general procedures, and  
· Aspects that cannot be clearly encapsulated in general procedures, such as synchronization. 
 
We apply a well-regarded Object-Oriented methodology, called Rational Unified Process  (RUP) 
[6], to develop component (sequential) code.  One of the key processes in RUP is to describe the 
sequential behavior of each component in a scenario (also called a use-case realization).   
Component code can be effectively obtained from a scenario, if the scenario is described in 
enough detail. Each component is executed by one or more threads. Therefore, a system 
consisting of multiple components is executed potentially by multiple threads. Therefore, in such 
a system, we need to implement appropriate synchronization to control the behavior of those 
threads.     
 
G. Andrews developed a formal approach (called the global invariant approach) to develop 
synchronization code [1,2,3].  In this approach, for a given problem, we first specify a global 
invariant that implies the safety property1.  Then, the programmer derives a so-called coarse-
grained solution from the global invariant. The process of deriving a coarse-grained solution is 
based on Programming Logic and is strictly mechanical. The resulting coarse-grained solution 
preserves the global invariant.  Next, the coarse-grained solution is mechanically translated to 
fine-grained synchronization code.  The translation preserves the global invariant; therefore, the 
                                                        
1 The safety property asserts that the program never enters a bad state. P
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resulting program is guaranteed to satisfy the safety property of the synchronization requirement.  
Many translations from a coarse-grained solution to fine-grained synchronization code exist, 
including translations to semaphore code, monitor code, active monitor code in message passing 
systems[1], and Java synchronized blocks[9].  
 
Our methodology uses RUP to develop sequential component code and the global invariant 
approach to develop synchronization code [8,10].  We will explain our methodology by using the 
following problem, called the Roller Coaster Ride Problem, found in advanced concurrent 
programming textbooks[1,5].  
 

 There are n passengers and one roller coaster car.  The passengers repeatedly wait to 
take rides in the car, which holds C passengers.  The car can go around the track only 
when it is full.  The car takes the same T seconds to go around the track each time it fills 
up. After getting a ride, each passenger wanders around the amusement park for a random 
amount of time before returning to the roller coaster for another ride. 

  
The first step of our methodology is to apply RUP to develop scenarios. 
 
The scenario for the car thread is (it repeats the following steps):   
[C1]  {Assertion: the car is empty}  wait until C passengers have gotten on the car   
[C2]  {Assertion: C passengers are on the car} go around the track  (elapse T seconds) 
[C3]  stop and have the passengers get off the car  
[C4]   wait until all C passengers have left     
 
The scenario for a passenger thread is (it repeats the following steps):  
[P1]  wait until his turn comes and get on the car 
[P2]  {Assertion: the passenger is on the car} wait until the car goes around and stops 
[P3]  {Assertion: the car has stopped} get off the car  
[P4]  wander around the amusement park (elapse a random amount of time)  
 
Note that one thread executes the sequential component code obtained from the passenger 
scenario and that n concurrent threads execute the sequential component code obtained from the 
passenger scenario. 
 
The second step is to identify synchronization regions and clusters in the scenarios.  
Synchronization regions are segments in scenarios in which the execution must wait (be blocked) 
until some condition holds or in which the execution changes some condition which is waited for 
by other threads.  These synchronization regions are divided into partitions called clusters, based 
on the reference relations.  In the above example, steps C1, C3, and C4 constitute 
synchronization regions, denoted RC1, RC3, and RC4, respectively.   Steps P1, P2, and P3 
constitute synchronization regions, denoted RP1, RP2, and RP3, respectively.  Since the execution 
in region RC1 waits for condition that could be changed to true by the execution in region RP1, 
they form a cluster, denoted by (RC1, RP1).   Similarly, (RC3, RP2) and (RC4, RP3) are clusters. 
Refer to Figure 1. 
 P
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Figure 1.  Roller Coaster Problem 
 
 
The third step is to identify an appropriate global invariant for each cluster. The global invariant 
for the cluster implies the safety property for the cluster.  Most synchronization requirements 
found in exercise problems in OS textbooks are covered by our synchronization patterns. 
Therefore, programmers merely need to identify appropriate patterns for the clusters. For 
example, the synchronization requirement of cluster (RC1, RP1) is that one thread in RC1 and C 
threads in RP1 wait for each other’s arrival at their respective regions and leave their regions at 
the same time. This requirement is captured by synchronization pattern called Barrier.  After 
Barrier, the thread leaving RC1 is sure that C threads have arrived at RP1.  Similarly, each of the C 
threads leaving RP1 is sure that one thread has arrived at RC1. In the scenarios given in the first 
step, such informal assertions are added after the synchronization regions in {…} to give readers 
the feel for the safety properties. The synchronization requirement of cluster (RC3, RP2) is that C 
threads in region RP2 wait for arrival of one thread at region RC3.  This requirement is captured by 
pattern called AsymBarrier (Asymmetric Barrier). Similarly, the synchronization requirement 
of cluster (RC4, RP3) is captured by AsymBarrier.  For each synchronization pattern, we provide 
a solution invariant.  Therefore, this step, which is the most challenging step and the core process 
in the global invariant approach, is greatly simplified. 
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The fourth step is to develop a coarse-grained solution and fine-grained synchronization code 
for each invariant and weave the resulting synchronization code to the component sequential 
code developed from the scenarios.   This step is purely mechanical and can be automated.  We 
have developed supporting tools that (1) obtain a coarse-grained solution from a global invariant 
and that (2) translate a coarse-grained solution to Java code [4]. Other researchers have also 
developed similar tools [12]. 
 
 
 
3 Pattern-based approach  
 
 In this section, in order to give readers the feel for the patterns and their applications, we will 
present a few synchronization patterns and show two applications of the patterns. Since this is 
not a technical paper specifically targeting researchers of concurrent programming, we will not 
elaborate on the complete set of patterns. In fact, as we encounter challenging problems that 
cannot be solved using the current set of patterns, we add new patterns to the set; therefore, the 
set of patterns is still expanding as of today. Furthermore, we will not present solution invariants. 
Instead, only high-level description of the patterns will be given.   This high-level description, 
without concern about the technical and formal details of the invariants, is what ordinary 
programmers need to understand in order to develop concurrent programs using our pattern-
based approach. Our tools hide invariants and the translation process from programmers.  For 
interested readers, technical details of invariants and complete solution code for a large set of 
synchronization problems can be found elsewhere [8].    
   
3.1 Example synchronization patterns  
  
· Bound(R,n): A cluster consists of a single synchronization region R.  The synchronization 

specification is that at most n threads can be in region R at any point in time.  For example, if 
a thread comes to enter R while there are already n threads in R, the thread cannot enter and 
must wait until one thread leaves R. 

· Exclusion(R1,R2,…,Rn):  A cluster consists of n synchronization regions, R1,R2,…,Rn.  At any 
point in time, threads can be in at most one synchronization region out of the n regions. For 
example, if a thread comes to enter R1  while there are threads in R2, the thread cannot enter 
and must wait until all the threads in R2 leave. 

· k-MuTex(R1,R2,…,Rn, k) (k-Mutual Exclusion): A cluster consists of n synchronization 
regions, R1,R2,…,Rn.  At any point in time, at most k threads can be in (any) regions in the 
cluster. 

· Barrier((R1,N1), (R2,N2),…, (Rn,Nn)): A cluster consists of n synchronization regions, 
R1,R2,…,Rn.  Ni threads entering Ri for i = 1,…, n meet, form a group, and leave the respective 
regions together. Recall that in the Roller Coaster Problem, we used Barrier((RC1,1),(RP1,C)), 
in which the car thread in RC1 and C passenger threads in RP1 needed to meet, form a group, 
and leave together. 
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As variations of the Barrier pattern, we have:  
· AsymBarrier([(Rs1,Ns1), (Rs2,Ns2),…, (Rsn,Nsn)], [(Rw1,Nw1), (Rw2,Nw2),…, (Rwm,Nwm)]) 

(Asymmetric Barrier), in which NSi threads entering  regions RSi for i = 1,…, n, triggers the 
departure of  NWj threads from regions RWj for i = 1,…,m. Recall that in the Roller Coaster 
problem, we used AsymBarrier([(RC3,1)],[(RP2,C)]), in which the arrival of the car thread at 
RC3 triggered the departures (getting out of the car) of C passenger threads from RP2. 
Similarly, we used AsymBarrier([(RP3,C)], [(RC4,1)]), in which the arrivals (completion of 
getting out of the car) of C passenger threads triggered the departure of the car thread from 
RC4. 

· Barrier with Information Exchange((R1,N1), (R2,N2),…, (Rn,Nn)):  in which Ni threads in 
regions Ri, for i = 1,…, n, forming  a group exchange information before leaving together.  

 
3.2 Applications of patterns 
 
As the names indicate, some patterns directly solve common synchronization problems, such as 
the critical section problem (k-MuTex (mutual exclusion) with  k equal to 1) and a simple barrier 
synchronization with two threads ( Barrier((R1,1),(R2,1)) ). We will show one example that is 
solved by composition of the invariants of two patterns and another example that is an extension 
of the Roller Coaster problem. 
 
3.1.1 Readers/Writers problem  
The problem description is   
 

There is a single buffer that is accessed by multiple reader threads and writer threads. 
Reader threads and writer threads cannot access the buffer at the same time. Any number 
of reader threads can access the buffer concurrently, but at most one writer thread can 
access the buffer at any point in time.  
 

Suppose that reader and writer threads access the buffer in synchronization regions RR and RW, 
respectively. The invariant for the cluster formed by RR and RW is given by composition of the 
invariants of two patterns as Exclusion(RR, RW) && Bound(RW,1), where && is a logical 
conjunction operator.   
 
3.3.1 Multiple Coaster Cars problem    
The problem is to extend the Roller Coaster Ride Problem to have M cars. 
 
If we try to solve this problem directly using low-level primitives (using an ad-hoc approach), 
the solution would be quite different from that for the single coaster problem. However, using 
our pattern-based approach,  the solution for the multiple coaster problem is obtained only by 
changing  the invariant for cluster (RC1,RP1) from Barrier to  Barrier with Information 
Exchange. The information to be exchanged in the cluster is the handle (or identifier) of the car 
thread. Later, passengers synchronize at clusters (RC3, RP2) and (RC4, RP3) with the particular car 
identified by the handle. 
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4 Evaluation 
 
4.1 Exams 
 
In CIS720 offered in Fall 2001, we covered the following topics: 
1 Review of processes, threads, and development of concurrent programs in a traditional 

manner (called an ad-hoc approach in this paper),   
2 Programming Logic and the global invariant approach to develop synchronization code,  
3 Development of Object-Oriented sequential programs using RUP, 
4 Our methodology to develop concurrent programs (discussed in Section 2), which combines 

RUP to develop sequential component code and the global invariant approach to develop 
synchronization code, 

5 The synchronization patterns and their solution invariants. 
 
We gave three exams.  The first exam covered the above 1 and 2. The exam included questions 
about (1) development of fairly simple synchronization code in monitors using  an ad-hoc 
approach, (2) verification of simple sequential programs using Programming Logic,  (3) 
identification of appropriate global invariants for two synchronization requirements; one being 
simple and another being reasonably challenging, and  (4) translation of a global invariant to 
semaphore code.  The second exam covered the above 3, and the third exam covered the above 4 
and 5.   The third exam consists of questions to develop synchronization code in active monitor 
and Java for two challenging problems using patterns.   On of these questions would not have 
been given in exams prior to 2001 (that is, before we developed the pattern-based approach), 
because it is too difficult. 
  
We always attempt to set the difficulty of questions such that the expected average score would 
be around 60 out of 100, and most of the time, average scores resulted in that score range. This 
time, the average scores of the first and the third exams were 62.1 and 87.2, respectively, in the 
class of 35 students.  Since questions were different and the maturity of the students on 
concurrent programming differed in the first and the third exams, it is difficult to analyze only 
from the average scores.  However, from the fact that 86% of the students, some of whom 
received very low scores in the first exam, obtained scores over 80 and 46% obtained over 90 in 
the third exam, we conclude that our pattern-based approach is very effective to teach concurrent 
programming. 
 
4.2 Students’ evaluation 
 
We conducted a survey on the subjects covered in the course, including the following questions:  

Give scores between 1 and 5 to the following methodologies in developing synchronization 
code in terms of the ease of use (1 is the most difficult and 5 is the easiest). 

Q1. ad-hoc approach 
Q2. global invariant approach without using patterns 
Q3. global invariant approach with patterns 
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Note that the survey was conducted before the third exam; that is, before many students knew 
that they would have been able to solve challenging synchronization problems using patterns in 
the third exam. 
 
25 students responded to the survey. The distribution and average score of each question are 
given in Table 1. 
 

 1  
(most 

difficult) 
2 3 4 5  

(easiest) Average 

1. Ad-hoc Approach 6 7 10 2 0 2.3 
2. Global invariant approach without 

using patterns 1 2 8 11 2 3.5 

3. Global invariant approach with 
patterns 0 1 3 7 13 4.3 

 
Table 1. Frequencies and average of students’ response 

 
Eleven students wrote comments, all positive about the pattern-based approach. Some of the 
comments were: 
· Pattern-based approach is very nice.  Using patterns, the global invariant approach, and RUP, 

I am confident that I can write many of the complex concurrent programs. Pattern-based 
approach has good features that I haven’t seen in any approach in developing concurrent 
programs. 

· It is absolutely wonderful approach. Specially [sic] the use of patterns [and] translations 
make concurrent programming really easy and very interesting. 

· This is the best method I have come to know to develop concurrent programs. 
· I really liked the pattern-based GI, RUP approach. It has made it easy to write concurrent 

programming. …. Pattern-based approach is really interesting and helpful. 
· It is an excellent approach and makes the programmers life a lot easier!!  Ad-hoc approach 

involved too much work. 
 
5 Conclusion 
 
Recent years, the importance of concurrent programming has increased.  However, there is 
reluctance among programmers to develop concurrent programs since bugs caused by erroneous 
synchronization code are difficult to detect and debug. In fact, most textbooks that teach 
concurrent programming introduce synchronization by showing solutions in terms of low-level 
primitives for some well-known synchronization problems. This approach would teach only ad-
hoc techniques for development of synchronization code, and as stated in [1], ad-hoc techniques 
are far too error-prone for solving complex synchronization problems.  
 
The global invariant approach developed by G. Andrews is much more formal and structured, 
and yields solutions that are “correct by construction” [1,2,3].  One possible drawback of the 
global invariant approach is the difficulty to identify an appropriate global invariant that 
correctly and accurately implies the safety property of a given synchronization requirement.  To P
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cope with this problem, we have developed a set of useful synchronization patterns and their 
solution global invariants [8,10].  We have successfully introduced the pattern-based approach in 
our advanced Operating Systems course in Fall 2001.  Most of the students could solve very 
challenging synchronization problems using patterns. 
 
We are currently trying to apply our pattern-based approach to real-life synchronization 
problems found in military applications through the support of a DARPA grant. 
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