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Analysis of Online Robotics Challenge Submissions (Fundamental)

Introduction
Robotics competitions that bring students together to solve engineering challenges and engage in
robot battles have grown in popularity over the last 20 years [1]. With the increase in available
educational robotics technologies (such as LEGO robotics, VEX Robotics, micro:bit, and other
tools) robotics competitions have become ubiquitous in most school communities around the
world [2].

These competitions have been shown to have positive learning outcomes for those who
participate [3,4]. Specifically, research into robotics competitions has shown that they positively
impact the development of: (1) problem solving skills, (2) self efficacy, (3) computational
thinking, (4) creativity, (4) collaboration, and (5) motivation [1]. Additionally, online and in
person robotics challenges encourage students to think for themselves and come up with their
own ideas in the absence of the step-by-step instructions often provided in classroom settings.
Above all else, the literature indicates that robotics competitions provide students with exposure
to STEM fields and help increase their likelihood of pursuing a career in STEM [5,6].

The widespread success of many in-person educational robotics competitions combined with the
increasing capabilities of the digital world has led to the existence of several asynchronous
online robotics competitions [7]. These competitions provide a challenge prompt, deadlines, and
criteria by which each submission will be judged. Participants work on the challenge in teams or
as individuals and then electronically submit photos, videos, and other documentation of their
solution. Examples of such competitions include Hour of Code, CoderZ League, and Zero
Robotics [8-10]. As a result of the COVID-19 Pandemic, now more than ever, asynchronous
online robotics challenges are engaging a high number of students. Additionally, an online
format eliminates geographic and financial barriers often present with in-person robotics
competitions.

While online robotics competitions have surged in popularity, they are distinctly different from
in-person competitions. In-person competitions bring students together from different schools,
states, and even countries. The camaraderie and collaborative aspects of many of these
competitions are largely missing from online competitions. Another key difference between
in-person and online robotics competitions is the ability to capture and study student learning.
In-person robotics competitions allow researchers to collect data, observe students in action, and
conduct conventional educational research methods. Online robotics competitions often do not
afford this same type of analysis.



Motivation
While the benefits of robotics competitions are well documented and largely undisputed,
research into online educational robotics competitions, where students solve a problem
asynchronously and submit their robotic solution online, is sparse. We often assume that
participants in these online challenges reap many of the benefits of in-person robotics
competitions, but there is little research done to confirm this. Rarely are the submissions to these
online robotics competitions analyzed in an attempt to try and really understand more about what
students are learning. Our main goal in this project was to see what we could understand about
student creativity and learning from analyzing online submissions. Typically researchers
examine the entire journey of students as they complete a robotics challenge, but we wanted to
see how much we could surmise in a situation where we were not able to capture these journeys.
Our hope is that this analysis will inform future strategies for understanding student learning
when full journeys can’t be captured, as well as build a lens that can inform the development of
online robotics challenge prompts and supports.

Study Context
Dr. E’s Challenges is run by Professor Ethan Danahy from the Center for Engineering Education
and Outreach at Tufts University [11]. Dr. E’s Challenges provide community members with an
opportunity to design, build, and share creative solutions to challenges from anywhere in the
world. This online database has a variety of LEGO WeDo and LEGO MINDSTORMS
Challenges for students to create imaginative solutions to open-ended problems. Each challenge
provides a prompt, a goal, rules, and pictures of example solution ideas. Figure 1 below shows an
example of a Dr. E’s challenge prompt.

Figure 1: Example Dr. E’s Challenge Prompt



Students are asked to submit documentation of their final robot, including pictures, videos, and a
written description. There are 48 WeDo Challenges and 40 MINDSTORMS Challenges.
Community members submitted nearly 1000 solutions for 88 challenges from 57 countries
between 2014 and 2019. We chose to analyze Dr. E’s Challenges because of the huge existing
database of robotics challenges, the diverse audience of community members, and the original,
open-ended LEGO engineering challenges. Figure 2 below shows an example student
submission to a Dr. E’s WeDo challenge prompt.

Figure 2: Example Student Submission to Dr. E’s Challenge

Data Analysis and Methodology
Our goal in this study was to analyze student learning by looking at the final artifacts that
students submitted to each Dr. E’s challenge. Artifact analysis as a tool for measuring student
learning is emerging as a new alternate method of educational assessment [12]. Most often,
student work (or portfolios) are analyzed by an instructor and the quality of the student work is
then combined with exam scores to assign students a final grade [13]. In our research, artifact
was the sole method through which we sought to understand the kind of learning in which
students were engaged when solving Dr. E’s challenges.



To analyze the student submissions, we created a coding scheme to classify several categories of
student learning and creativity for different metrics. For each submission, we assigned a
numerical value for each of the different metrics and provided qualitative descriptions for the
robots that students built. These metrics included complexity of code, complexity of build,
variance from instructions/examples, simplicity of solution, stability/reliability/functionality,
pride (based on quality of documentation), and materials usage. The qualitative descriptions were
to describe the motion of each robot, what triggered the motion, the overall build, and anything
particularly notable about the robot.

Quantitative Data
We used an open coding grounded theory strategy for analyzing all of the Dr. E’s challenge
submissions [14]. This allowed us to break down each submission into several key components
and then further categorize those components based on a variety of factors to identify meaningful
trends [15]. Table 1 below details the coding scheme that we used. Each individual submission in
the data set was then collaboratively coded by the two researchers who developed this codebook.

For each submission, we rated the final robot on 7 categories including complexity of code,
complexity of build, variance from instructions/examples, simplicity of solution,
stability/reliability/functionality, pride (based on quality of documentation), and materials usage.
Each robot was rated 0–3 for each category based on specified criteria for each numerical value.
A rating of 0 indicated that proper documentation was missing in order to accurately assess the
robot’s performance in that category. A rating of 1 indicated that the robot performed low in that
category. A rating of 2 indicated that the robot performed well in that category. A rating of 3
indicated that the robot performed particularly well and went above and beyond in comparison to
other submissions for the same challenge.

Table 1. Quantitative Codes for Analyzing Submissions
Metric 0 1 2 3

Complexity of
Code

No code
submitted or
could not
determine based
on submission

Code is single
thread, no
subroutines, no
comments, limited
coding structures

Code contained some:
while/for/if loops,
parallel threads,
subroutines, variables,
arrays, brick-to-brick
communication, and is
well-documented

Code was complex and
had a lot of: while/for/if
loops, parallel threads,
subroutines, variables,
arrays, brick-to-brick
communication, and
was well-documented

Complexity of
Build

No build
submitted or
could not
determine based

Basic construction
with simple build
techniques

Few iterations to final
product, mix of build
techniques

Many iterations to final
product, innovative use
of pieces



on submission

Variance from
examples

Could not
determine from
submission

Submission is the
same as example

Solution is based on
example/instructions
but has some
differences

Solution is significantly
different from any
examples given

Simplicity of
Solution

Could not
determine from
submission

Solution is very
basic and contains
minimal pieces

Solution contains
several pieces but has a
singular function. Uses
a motor or sensor but
not both

Solution uses lots of
LEGO pieces, motors,
and sensors and appears
to be a complicated way
of solving the challenge

Functionality Could not
determine from
submission

Submission
doesn’t appear
functional

Submission works in
video but doesn’t seem
like it would work
repeatedly or falls apart
after one test

Appears functional and
is shown working
repeatedly

Quality of
documentation

No
documentation
submitted

Minimal
documentation/lac
kluster photos

Some photos/videos but
no text explanations or
video narrations

Lots of carefully staged
photos, enthusiastic
video explanations and
write-ups

Materials
usage

Could not
determine from
submission

Used LEGO
robotics kit only

Used LEGO robotics kit
and other LEGO parts

Used LEGO and
non-LEGO parts

We also attempted to quantify the impact of providing examples on the student submissions for
all of Dr. E’s challenges. For each challenge that included example ideas, we computed what
percentage of submissions were a direct replica of the example(s) given in contrast to student
inventions.

Qualitative Data
For each submission, we described the overall physical structure of the robot, the way the robot
moved, and what triggered the motion of the robot. The robot description included what the
robot looked like or resembled, what pieces were used, how the pieces were connected, the
relative size of the robot, and anything else that stood out to the researchers such as differing
significantly from other submissions for the same challenge or a unique use of the materials. The
motion description of the robot, including how well the robot physically functioned and how
smooth the motion and gait of the robot was. For different challenges, robots utilized different
types of motion such as rolling, driving, walking, shuffling, etc. Some robots moved smoothly
while others had mechanisms that caused more choppy or uneven motion. Additionally, uneven
motion in the robots was usually an indication that the robot was not fully functional. The trigger
description was used to categorize how a robot's motion was initiated.



We also documented the written descriptions that some students provided of their robot. For
example, the Waiterbot submission from the MINDSTORMS Cycle 1 Kitchen Helper challenge
described the robot as “Built using EV3 brick, a color sensor and a touch sensor to carry snacks
from kitchen to living room or any other place really as long as there is a black line for it to
follow. Programmed to move both wheels with one moving forward and another moving slightly
backward. When it detects black, it steers right and when it detects other color in comparison, it
moves left so it always stays on line.”

Results
After quantitatively and qualitatively analyzing all of the nearly 1,000 submissions to Dr. E’s
challenges, we looked for meaningful trends in the data. These various noteworthy relationships
are described below.

Notable Quantitative Trends
Our quantitative analysis brought forth a few notable trends and highlighted areas where there
was simply not enough information in the submissions to discern whether a trend was present.
First, we noticed that when students used non-LEGO materials in their solution, they had a
higher quality of documentation. Students had a tendency to take more pictures and submit
longer video explanations when their robot incorporated external materials and decorations.
Similarly, variance from examples and quality of documentation were also highly correlated,
indicating that when students feel like they have come up with something new and original they
are more willing to document. The correlation factors between these metrics are documented in
Table 2 below.

Table 2: Notable Correlation Coefficients between Quantitative Metrics

Quantitative Metrics
Correlation Coefficient

WeDo EV3

Materials Usage and Quality of
Documentation

0.78 0.70

Materials Usage and Variance from
Examples

0.65 0.73

Lastly, we noticed a correlation between the functionality metric and the quality of
documentation metric. This relationship was not present when analyzing the dataset as a whole,
but was high within certain challenges. We also noticed an absence of trends related to the
complexity of students' code. This was mostly because very few students included pictures of



their code in their final submission; therefore we have no way of knowing what the code written
by most students looked like.

Notable Qualitative Trends
We noticed two interesting trends as a result of our qualitative analysis. The first was focused on
the types of sensors/triggers students used to activate their robots. Most commonly, students
chose to use the motion sensor to trigger their robot to move, where the student would wave their
hand in front of the motion sensor to activate the robot. Students less commonly chose the
tilt/gyro sensor, where they would hold the sensor and move it to trigger their robot. The least
common type of trigger was pressing a key on the computer or a button on the robot to start the
code and activate the robot. For the MINDSTORMS challenges, 137 submissions used the
ultrasonic sensor and 95 submissions used the touch sensor. For the WeDo challenges, 241
submissions used the motion sensor and 38 submissions used the tilt/gyro sensor. These data are
shown in Figure 3 below.

Figure 3a(Left): WeDo Sensors Used in Submission, Figure 3b (Right): MINDSTORMS EV3
Sensors Used in Submissions

Another notable trend was the impact of provided example ideas on student submissions.
Example ideas and pictures were provided for the WeDo and MINDSTORMS EV3 challenges.
For example, the Bakery Bot challenge in Cycle 10 of the WeDo challenges asks students to
“Create a device to aid the busy bakers—a cake froster, a bread kneader, a dough mixer, a cookie
cutter, or some other tool to help make sweet treats.” These examples are meant to provide some
guidance to students who may be struggling to get started or come up with their own original
ideas to tackle the challenge. Some challenges, such as the Cycle 3 WeDo Challenge, were more
specific and asked students to build a burglar alarm; therefore there was only one example to
follow, and these challenges were not included in the example tracking analysis.

We found that over 40% of submissions on average for that challenge were a replica of one of
the examples provided. This percentage indicates that students had a significant tendency to



follow one of the given examples instead of coming up with their own unique solution or
attempting to generate original ideas for the challenge. There were, however, notable outliers.
For example, with the Cycle 8 WeDo Robochef challenge, no submissions followed an example
(0/7). The given examples included slicing bread, stirring a pot, and making a sandwich or ice
cream sundae. Instead, students came up with ideas such as a potato masher, dish dryer, meat
grinder, dough mixer, folding table, automatic mixer, and plate dryer. Some of these solutions are
shown in Figure 4 below. While this may be attributable to the small amount of submissions, it
may also be related to the creative and open nature of this particular challenge.

Figure 4a (left): Dish Dryer robot, Figure 4b (middle): Potato Masher, Figure 4c (right): Dough
Mixer

In addition, in the Cycle 10 Space Exploration WeDo challenge, all of the submissions followed
one of the examples given (7/7). In Figure 5 below, you can see how four of the submissions
were of a “space rover,” all of which featured a wheeled base with a front-mounted distance
sensor.

Figure 5: Four submitted solutions to the “Space Exploration” Challenge

Discussion
The data analysis across the WeDo and MINDSTORMS challenges showed that children have a
tendency to follow examples more closely when they are provided, rather than trying to come up
with a unique and original solution on their own. By giving text examples, some students may
have internalized these examples as being “correct” answers and therefore defaulted to building
them. This can be counterproductive in the classroom, as it does not allow students to think for



themselves since they are being influenced by what they perceive to be the right robot to solve
the challenge. This idea is more formally referred to in the learning sciences as functional
fixedness, which is the ”tendency to think about familiar objects in familiar ways that may
prevent the objects from being used in novel ways” [16]. We hypothesize that if students are
asked to complete robotics challenges without being given any example ideas, then they will
come up with more unique, creative, and original solutions on their own and gain a deeper level
of understanding and learning as a result. Furthermore, this would allow students to approach the
problem with a completely open mind about how to solve it. However, removing examples could
also make it more difficult for students to get started and come up with ideas which would hinder
participation.

Another clear trend was the relationship between quality of documentation and materials usage.
This indicates to us that when students built a robot that was unique and contained specific
components that they selected, it made them more eager and excited to share it with others and
made them more proud of what they made. Many students used external materials such as paper
and pipe cleaners to add features and details to their robot. For example, some students used
external materials to add faces or diorama backgrounds to their robots to elevate them. Students
who went a step further and made their robot more aesthetic or decorated had a tendency to take
more pictures and videos to document their submission. In addition, some students seemed to
incorporate external materials (like tape, string, or rubber bands) after they repeatedly struggled
to solve the challenge with just the LEGO kit. Thus, some submissions that demonstrated
exceptions to this trend in that the robots scored high for materials usage but lower for quality of
documentation can be explained by students using external materials in place of certain pieces in
the LEGO kit rather than using external materials to supplement the LEGO kit. There was also a
strong correlation between variance from given examples and the quality of student
documentation. This again indicates that when students feel that their ideas are unique they are
more willing and excited to share them and thus take more pictures and videos to submit. Lastly,
the correlation between the functionality metric and the quality of documentation may indicate
that when students produced a robot that didn’t work they were less inclined to document, or
perhaps to submit anything at all, despite the fact that they may have learned something in the
process of attempting the challenge.

Limitations
Our methodology had some inherent shortcomings due to a variety of uncontrollable factors and
variables in analyzing the submissions. The analysis was limited to the documentation provided
by each community member. Some users did not submit pictures, videos, or descriptions and
other users did not document the code used for the robot. With these elements missing, the
submission was more likely to score lower in most areas since there was no way of knowing how
the robot performed without documentation. Furthermore, being limited to the information
submitted, there was no way to account for the many variables implicit in the projects. For



example, most students worked alone but many worked in pairs or larger groups. In some
submissions where the students worked in pairs, a common recurrence was for one student to do
the coding and the other to build the robot. Additionally, while the majority of students built their
robots at home, some students completed their projects as part of a class assignment in school or
for a robotics program with more instruction and guidance. Outside assistance from parents,
teachers, or older siblings was also not accounted for, nor was the previous experience level of
students. We have no idea of knowing what students learned as a direct result of completing a Dr.
E’s challenge or what knowledge students already had as a result of other classes or robotics
competitions.

Throughout much of our analysis, a common theme was how much we were unable to infer or
analyze about the student experience due to a lack of information provided by the students. The
Dr. E’s challenges website contained a “Drawing Board” section where students could post flops
(failed designs) and work in progress robots. However, students rarely utilized these spaces to
document their process, and only two flops and ten works in progress were ever posted.  In their
submissions, students did not include documentation of their iterative process, screenshots of
their code, or any kind of explanation of their background experience with robotics, who they
worked with, for how long, and with how much help. This lack of available information on the
student process makes it difficult to understand and analyze some aspects of student learning.
Being able to interview students or have them answer specific questions about their build process
and design decisions would have allowed us to group submissions and infer more about patterns
and trends that arose. Similarly, if information was provided about students’ background this
would allow us to group submissions and analyze them based on common factors. Additionally,
when looking at the sensors used to trigger students robots, there was an overwhelming use of
the motion sensor in the WeDo challenges, while in the MINDSTORMS EV3 challenges most
submissions did not use a sensor, and not one submission leveraged the gyro sensor (which
comes in each kit). These aspects of the data remain somewhat of a mystery, and what we were
unable to discern from the data present in the Dr. E’s challenges data set opens up ideas for
additional information that robotics competitions may want to ask for to better facilitate student
learning and be able to judge students based not only on their final product but also on their
overall build and design process.

Implications and Future Work
Our findings have a few key implications. First, the insights gained through our example tracking
reinforce the notion that students tend to come up with more creative and original solutions when
they have more flexibility to think for themselves rather than relying on instructions and being
influenced by examples. In the future, a comparative analysis of the robots students build for
LEGO engineering challenges where one group of students is asked to complete the challenge
and given examples while the other group of students is asked to complete the same challenge
but given no examples would be particularly insightful and could provide greater understanding



as to how increased guidance and instruction hinders student creativity and learning. We hope to
investigate and develop more ways to help students get started without implying that there is a
correct solution to the problem.

An ideal online robotics challenge would account for outside factors and use this information to
inform how the robots that students produce are analyzed. These outside factors include age;
type of collaboration; help from parents, teachers, or instructors; resources; time; and previous
robotics knowledge/experience. Students would also have clear requirements for their
submission, such as submitting pictures from different angles, copies of their code, a video of the
robot in action, and a video explanation. Requiring students to submit all of these materials
would make the documentation consistent for each robot and allow for more complete
comparisons and analysis. Additionally, students would be asked to fill out a questionnaire that
includes questions about background information such as the outside factors and a reflection
about what they learned from building their robot. Students would also be asked to fill out the
rubric with the coding metrics and score their robot in each of the areas. This would allow for the
analysis of the robots to potentially be broken down into different categories based on the
information provided by students. Correlation factors between the outside factors and coding
metrics would be analyzed and compared. In addition, being able to compare how students
scored themselves to how we scored the students for the coding metrics would allow us to see
how well a student's perception of their learning and understanding compared to our artifact
analysis of their robot. However, adding more requirements for submission may raise barriers to
entry and ultimately lead to fewer submissions.

Moving forward, we hope to apply the insights gained as a result of the example tracking and
artifact analysis of the Dr. E’s MINDSTORMS and WeDo challenges to improve future
engineering robotics competitions. The implications of our findings are particularly relevant to
enhancing student learning through online educational robotics competitions given how the
world is adapting to online learning amidst the coronavirus pandemic. Virtual engineering design
challenges provide the opportunity for students to continue engaging in hands-on learning
throughout online school. However, changing online robotics competitions to feature the student
process as well as the end product may allow for a better window into what they are actually
learning, and privilege engineering practices like iteration.
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