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Abstract 

 

New analytical and the speedup models for evaluating the performance of a generic reconfigurable 

coprocessor (RC) system are presented. We present a generic performance model for the speedup of a 

generic RC system. We demonstrate how different parameters of speedup model can affect the 

performance of reconfigurable system (RS). In addition, we implement our pre-developed speedup model 

for a system that permits preloading functional blocks (FB) into the reconfigurable hardware (RH). The 

redevelopment of speedup model with the consideration of preloading demonstrates some interesting 

results that can be used to improve the performance of RH with a coprocessor. Our experiments show that 

the minimum and the maximum speedup mainly depend on the probabilities of miss and hit for the FB 

resides in the RH of coprocessor. 

 

Index Terms—Field programmable gate array, reconfigurable coprocessors, reconfigurable hardware.  

   

1. Introduction 

 

Reconfigure systems have provided significant performance improvements by adapting to computations 

not well served with current processor architectures [5]. A programmable processor ceaselessly follow a 

three-phase implementation, where an instruction is first fetched from memory, after which it is decoded, 

then to be passed on to the final execution phase. The third phase of this implementation may require 

several clock cycles. This process is then repeated for the next instruction, and so on. An RC, on the other 

hand, can be regarded as non-iterative fetch phase. One of the main advantages of this approach is that the 

configuration string that fetches from memory requires no further interpretation and is directly used to 

configure the hardware. No further phases or iterations are needed as the processor is now configured for 

the task at hand [9]. The primary strength of a RC or functional unit is the ability to customize hardware 

for a specific program’s requirements [5]. In order to efficiently use RC, one of the ways is to treat the 

reconfigurable logic not as a fixed resource but instead as a cache for the reconfigurable FB instructions. 

Those instructions that have recently been executed, or that we can otherwise predict might be needed 

soon, are kept in the reconfigurable logic. For instance, if an instruction is needed, it is brought into the 

FB by preloading it in or before the cycle in which it is required. In this way, the system uses partial run-

time reconfiguration techniques to manage the reconfigurable logic. Since the reconfigurable logic is 

somewhat symmetric, a given instruction may be placed into the FB wherever there is space available. 

This way the RC gives quite significant speedup over the conventional core processor. 

 

The goal of this paper is to compare the performance of a generic RC system with the performance of 

conventional core processors that use software implementation (SI). Further motivating our study is the 

large role of FB organization in the RH that may limit overall performance. We observe that most of the 

applications now a days demand not only sufficient quality of service (QoS) data transmission but also a 
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high-bandwidth host bus. If these demands persist, the conventional implementation of RC systems would 

limit the achievable performance.  

 

2. Related work 

 

Recently, computer architectures that connect a RC to a general-purpose processor have been proposed 

[1, 4]. The advantage of this approach is that the coprocessor can be reconfigured to improve the 

performance of a particular application. All of these proposed architectures use field programmable gate 

arrays (FPGAs) for the RH. The FPGA architecture, such as the small width of the programmable logic 

blocks and the programmable interconnection network, provides a great flexibility for the systems [7].By 

combining the computational density of the spatial computing paradigm and the flexibility of 

programmable platforms, a delicate tradeoff can be achieved. The GARP [3] architecture combines a 

reconfigurable array with a standard MIPS processor. The host processor executes the MIPS-II instruction 

set extended with instructions for the reconfigurable array of LUT-based two bit processing elements. 

Significant speedup for certain applications has been reported. MorphoSys [2] was targeted at 

applications with inherent data-parallelism, high regularity and high throughput requirements. The 

architecture comprises a RISC processor, a reconfigurable cell array and a high bandwidth memory 

interface. Each reconfigurable cell is a coarse grain unit with an ALU multiplier and a register file. Each 

of the above mentioned approaches have its benefits and limitations. RS integrates a high performance 

processor with a reconfigurable functional unit into the same chip (Garp [3], Remarc [8], PipeRench I-

COP [4] etc.). 

 

3. Proposed performance models for a generic RC system 

 

Before going to present a performance model for the speedup of a RS, we discuss the main design 

methodology adopted behind the speedup model as well as some important assumptions common for both 

models present in this section. Model variables, along with their definition are listed in Table I. We start 

developing the first performance model for an ideal case where we assume that all the required FB are 

always present in the RH and no dependencies exist between the instructions etc. Based on the above 

assumptions, we can define the speedup as a ratio of execution time for a certain task using the SI to the 

execution time for the same task using the RH. The portion of enhancement for a complete application 

can be defined as a ratio of enhanced-time due to the RH to the normal time using the SI. This can be 

expressed as follows: 

           

 0  1P E N where P
e et t

= < <        (1) 

 

Therefore, (1) clearly indicates that the resultant speedup for the system should be the reciprocal of the 

portion of enhancement and must be greater that one. This leads us to the following mathematical 

expression for the speedup of a system where the probability of miss almost reaches to zero.  

 

1  1eSpeedup K P N E where K
t t

= = = >        (2)  

 

One common point that we can observe in both (1) and (2) is the fact that the enhanced-time should be 

less than the normal time processor takes to execute a certain amount of task.. Mathematically it can be 

expressed as follows: 

 

( ) ( )1E N P P Kt t e e
 

= − +  
        (3) 

 

Substituting K from (2) into (3), yields,  
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( )1 t

t

N
E N P P

t t e e E

   = − +  
   

         (4) 

 

After performing some simplification, we get 

 

( ) ( ) ( )
2 2 2

E N E N E N N
t t t t t t t

= + −        (5)  

 

Since K N E
t t

= , the final equation of the speedup can be written as: 

 

( ) ( ) ( )
2 2 2

Speedup K N E E N N
t t t t t

= = − +        (6) 

 

It should be noticed that (6) can not speedup the system more than the reciprocal of one minus the portion 

of enhancement (i.e. 1 1-K P
e

< ) as shown in Fig.1. Fig.1 shows the comparison of the required execution 

time between the RH and the SI with respect to specific values of speedup. A normal-execution time for a 

system that does not support RH should equal to the sum of normal-execution time between the FB and 

the time it takes to execute a FB on the processor in software. Mathematically, this simple relationship 

can be expressed as: 

 

N T T
T N B

= +         (7) 

 

TABLE I 

System Parameters Definition 
Parameter Definition 

ET Enhanced execution time for FB 

TC FB call time 

TP Reconfigurable programming time 

PE Portion of enhancement  

TRFB Execution time for a reconfigurable FB  

TPFB Time to preload the FB into RH 

T INI Time required to perform initialization  

TCL Cleanup time 

T I Preloading initiation time  

TBC Time required to perform basic computation 

TRD Time required to resolve dependencies  

C Constant value 

NA Ignored 

Pd Probability of dependency among N instructions 

N Given set of instructions 

Ph Probability of a hit 

K Speedup  

Pm Probability of a miss 

NT Normal execution time for FB 

TN Normal execution time between FB 

TB Normal FB execution time 
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Fig. 1.  Normal execution-time and enhanced-time versus 

the probability of hit 
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According to one of our assumptions, a miss in the RH yields a penalty of T
P

 cycles. This, therefore, 

implies that we should multiply the time required to call a FB in the RH with the probability of miss. The 

above assumptions lead us to the following mathematical expression: 

 

( )1 hT C RFB
E T T P T T

N P
= + − + +       (8) 

 

It can be seen in Fig. 2 that the best performance from the RH can be achieved with the probability of hit 

approaching its maximum value. On the other hand, the worst-case performance of the RH can also be 

noticed in Fig. 2 when the probability of miss approaching its maximum value. Once the probability of hit 

goes down by 50%, the SI outperforms the RC systems. The portion of enhancement and the speedup of a 

RH system for the real model can be expressed as follows:  

 

{ } ( )(1 )P T T P T T Te N C h P N B
 

= + − + +  
          (9)  

 

( ) (1 )N E T T T T P T
T T N B N C h P

= + + − +                                                (10)  

  

In order to derive the expression for the speedup, we implement the concept of (3) on (9) and (10). This 

combine implementation results (11) as follows: 

 

(1 )(1 )
1 1

(1 )

T T P T T TT P T T N C h P N BC h N PK
T T T T T T T PN B N B N P C h

  + − + +− + + 
  = − + ÷ +  + + + −     

                          (11) 

                                                                                           

After performing some simplification, we get 

 

( ) ( )( ){ } ( )
2 2

(1 ) (1 )K T T T T P T T T T T P T
N B B C h P N B N C h P

= + − − − + + + − +                            (12)  

 

It can be seen in Fig. 3 that how much faster an FB executes on average in the RH over a SI through a 

core processor. In addition, Fig. 3 demonstrates the change in the performance of a RH with respect to the 

changes in the probability of hit. The implementation of the preloading with the RH does not fully utilize 

the normal-execution time between the FBs. The preloading of the FB into the RH is limited to the partial 

use of normal-execution time of a processor, since an instruction can not be called until it is clear that an 

FB is really required. This leads us to the following sequential implementation of the preloading: (1) a 

signal generates that indicates that an FB is required, (2) an instruction executes that initiates the 

preloading of the required FB, and (3) the loading of the required FB into the RH starts that may complete 

while another call for the FB initiates. This sequence of implementation implies that the preloading of FB 

into the RH does not make scene for the first cycle. In order to develop a realistic speedup model, one 

should also include the startup latency in computing the execution time for the RH. As the applications 

run, different portion of the running application may need a FB from a RH being determined and 

preloaded ahead of the actual FB-call. Since we assume that we have startup latency, we do not need to 

consider the time required to initiate the preloading of FBs.  

 

( ) ( ) ( ) ( )1 1
2 2N C P I RFB PFB CT

E T T P T T T T
m

 
= + + + + +  

    (13) 
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Equation (13) represents the enhanced-time for the worst case scenario where each system parameter may 

have non ideal values. Likewise, the enhanced-time for the best case can be expressed as: 

 

( ) ( ) ( )1 1   1  0,  0   
2 N RFB PFB C P mT I

E T T T where T and T when P and T NA
C

 
= + + + → → → →      (14) 

 

Equation (14) shows the enhanced-time computation for the best-case scenario where all system 

parameters may have ideal values. It should be noted that 
RFB

T in (13) represents a time required to execute 

a FB in the RH. This time is extremely short since we use dedicated hardware in a coprocessor that takes 

very short time compare to the SI. In addition, we should consider the fact that the RH does not have the 

first two phases of ordinary instruction execution through a conventional core processor. This fact, 

therefore, permits us to ignore the time required to execute an FB within a RH once a call to execute the 

required FB is initiated. Equation (13) can also be written as: 
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Fig. 2. RH and SI versus the probability of hit 
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Fig. 3. Speedup for the RH versus the probability of hit 
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Fig.  4. RH and SI versus the probability of miss 
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Fig. 5. RH and SI versus the probability of miss 
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( ) ( ) ( ) ( )1 1
2 2N C P I PFB CT

E T T P T T T
m

 
= + + + +  

   (15) 

 

Using (7) and (15) and, the mathematical expression for the speedup model can be expressed as follows: 

Since ( ) ( )
2

1 1 T T T TK E N E N= − +  

 

( ) ( ) ( ){ } ( )

( )

( ) ( ) ( ){ } ( )

( )

2

1

1 1 1 1
2 2 2 2

1
N C m P I RFB PFB N C m P I RFB PFBC C

N B N B

K

T T P T T T T T T P T T T T

T T T T

=
      + + + + + + + + + +
      

− +   + +
      

   (16) 

 

 

Fig. 4 demonstrates the performance of both RH and the SI with respect to a varying amount of P
m

. The 

speedup model for preloading systems does not have any sever effects on the performance of the RH 

compare to its effects on the SI. This implies that an increase in 
N

T increases the total normal-execution 

time with a large magnitude compare to the RH. It can be seen in Fig. 5 that 
N

T  increases the SI time by a 

large magnitude (approximately 43%) compare to an increase in the RH implementation.  

 

4. Conclusion 

 

We presented variety of simulation and numerical results that compare the performance of RH 

coprocessor system with the conventional general purpose processors. Furthermore, we presented the 

performance model of a system which allows preloading FB into the RH. We explored various system 

parameters and studied their impact on the system performance. Numerical results suggest that the RH 

coprocessors will be able to achieve significant speedup when implement with a good FB management 

system that can ensure the availably of required FB into the RH. 
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