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Abstract 

 

The approach adopted in this work is an attempt to introduce students, in kinematics and 

dynamics of machinery course, to a complete design and analysis of function generation 

mechanisms via analytical methods. Although the approach implemented in this work is 

for function generation type of mechanisms, the concept is indeed extendable to the other 

types of mechanisms as well. As a project in the kinematics and dynamics of machinery 

class, students designed, and analyzed a four bar quick-return mechanism using 

MATLAB and SIMULINK as the primary software tools. One of the aims of this project 

was to abandon the traditional graphical synthesis and graphical analysis, covered in all 

the mechanisms textbooks, and to use the powerful combination of MATLAB and 

SIMULINK to implement the entire design and analysis process. The project, given to an 

undergraduate class, serves also as a prologue to future advanced courses in mechanical 

engineering, such as multi-body dynamics.  

 

In implementing the dimensional synthesis portion of the project, students employed 

complex number arithmetic to realize the design specifications. Once the design 

specifications were met, a known motor torque was applied to the crank to drive the 

mechanism. With the known geometric and inertial properties of each link, Lagrange’s 

equations for constraint motion were then utilized to arrive at the second order 

differential equations of motion. SIMULINK, as a user friendly graphical interface, was 

used to carry out the integration to obtain angular position, velocity, and acceleration of 

the designed mechanism.  

 

The project, though rigorous, is an excellent way to force students to practice their 

knowledge of dynamics and numerical methods. The project, certainly, meets the ABET 

criteria for implementing design in mechanical engineering curriculum. The author 

received positive feedbacks from his students with regard to this project. 

 

Problem Statement 

 

Students in kinematics and dynamics of machinery class were, first, asked to design a 

four bar quick-return mechanism to meet a certain design specifications. Once the 

mechanism was realized, students were then asked to analyze the synthesized 

mechanism- using Lagrange’s equations and Lagrange’s multipliers method for 
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constraint motion- to arrive at the positions, velocities and accelerations of the links. The 

approach, instructed to the students and utilized by them in implementing this project, is 

based on the methods presented by Erdman
1
 and Crespo da Silva

2
 in their respective 

books. The author believes that the employed approach is an excellent way to prepare 

students for future courses in multi-body dynamics and computational dynamics. It also 

makes students practice their knowledge of dynamics, numerical methods, and 

programming. Students’ feedback regarding this project was overwhelmingly positive.  

 

The project required students to design a, four bar, quick-return mechanism with a time 

ratio of 1.25 and a follower sweep angle of 50
o
. To check their work, students were asked 

to trace the paths of points on the crank, the coupler and the follower of their respective 

designs. A motor torque Mmotor = 1+2sin (1.5t) N.m was then assumed to be applied to 

the crank, and students were asked to find the angular positions, velocities, and 

accelerations of each link using MATLAB and SIMULINK. Students also built their 

model in the shop. 

 

Mechanism Synthesis 

 

The complex number approach of Standard Dyad Form
3, 4, 5

 is used to perform the 

dimensional synthesis. This would render the size and starting configuration of the four 

bar function generation mechanism.  

 

Figure 1 is a depiction of a typical function generation four bar mechanism. By applying 

the Loop-closure method to the vectors representing the links, in successive positions, a 

standard dyad form is resulted. Solution of the resulted vector equations then renders the 

size of each link of the mechanism and its starting configuration. 

 

 
Figure 1 depicts the complex number vectors, Z1, Z2, Z3, Z4, representing, the ground, the 

crank, the coupler and the follower links respectively, in the starting position. The red 

lines in the diagram are the depiction of the links in a different position as a result of the 

motion. The loop closure approach for position 1 (dark Vector lines) is: 

 

1432 ZZZZ ?/-         (1) 
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Z1 

Z2 
しj 

ねj 

 けj 

Figure 1 
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The loop closure equation written again for the position 2 (red lines), in terms of the 

original position vectors, results in: 

 

1432 ZeZeZeZ jjj iii ?/- {is
     (2) 

 

Subtracting Equation (1) from Equation (2) renders: 

 

)1()1()1( 432 /?/-/ jjj iii
eZeZeZ

{is
     (3) 

 

Equation (3) represents a Standard Dyad Form. This equation is used to implement the 

design specifications described in this project. 

 

Given the follower sweep angle of 50
o
, one realizes that, at the two extreme range of the 

follower motion, the mechanism is in toggle condition. That is the crank is lined up with 

the coupler. Since this is the only given in the problem, one has a two precision points 

description of the mechanism. This translates itself into adopting some free choices in 

order to solve equation (3) for the desired links’ dimensions and orientations. Realizing 

that angle ねj for the follower in its sweeping motion is  ねj = 50
o
 and しj and けj angles are 

prescribed, once the applied time ratio (1.25) for the mechanism is implemented, one 

chooses vectors Z3 and Z4 freely to reduce the number of unknowns in equation (3) to one 

link only. The unknown (complex number) Z2 is obtained from equation (3). If the 

rotation angle of the crank in the forward motion of the follower is taken as g and in the 

backward motion of the follower is taken as く we have: 

 
o360?- dc       (4) 

 

The prescribed time ratio results in: 

 

25.1?
d
c

     (5) 

Solution of (4) and (5) results in: 
oo and 160200 ?? dc     (6) 

 

It can be easily shown that the angle, through which the coupler rotates when the 

mechanism moves from the first toggle condition to the next toggle condition is: 

 

o

j 20
2

?
/

?
dci    (7) 

 

This is achieved through crank rotation of: 

 
o

j 200??cs    (8) 
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With しj, けj, and ねj known as described in the above, one chooses vectors Z4 and Z3 in 

order to reduce the number of unknowns to one complex value for Z2 in equation (3). 

Choosing: 

 
oo ii eZeZ 2.26

3

65

4 43.1,1 ??     (9) 

 

Equation (3) after substitutions of the values renders: 

 

)1(1)1(43.1)1( 5065202.26200

2

0

/?/-/
oooo iiiii eeeeeZ      (10) 

 

Solution of the above equation results in:  

 

Z2 = 0.3463 m at o2.26  

 

With Z2, Z3, Z4, known, equation (1) is used to find the ground link Z1 to be: 

 

Z1 = 1.178 m 

 

A CAD drawing of the mechanism is shown in Figure 2: 

 

 
 

Figure 2 

 

Once the mechanism was realized students were asked to find the position of each link 

and trace the crank curve, the curve for a point on the coupler, and the follower rocking 
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curve. This was done numerically, through the application of Newton-Raphson method
6
 

to the scalar form of the loop-closure equation (1). The scalar form of equation (1) is: 

 

0sinsinsin

0coscoscos

443322

1443322

?/-
?//-

sss
sss

rrr

rrrr
       (11) 

 

Where r stands for length of each link and し2, し3, and し4 are the angles of links 2, 3, and 4 

respectively. 

 

Given し2 for the increments of motion of the crank shaft, nonlinear equations (11) are 

solved for the coupler and the follower angles. Appendix A includes the MATLAB 

program to fulfill this task. Figure 3 is the trace of the crank-tip, a coupler point (point C), 

and the follower tip of the mechanism. The program also confirms that the design meets 

the required specification and indicates that the follower sweeps a 50
o
 angle in its ensuing 

motion. 

 

 
 

Figure 3 

 

The next task was to find the angular velocities and accelerations of each link as part of 

the kinematics analysis of the mechanism. Differentiating equations (11) with respect to 

time renders equations for angular velocities of links 3 and 4, given the angular velocity 

of the link 2. These equations are: 
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Where の2, の3, の4 are angular velocities of links 2, 3, and 4 respectively. Solving 

equations (12) for の3, の4 in terms of の2 one obtains: 
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Equation (13) is solved for angular velocities of links 3 and 4, given the angular position 

of link 2 and its angular velocity 2y . This is accomplished in the MATLAB function of 

the SIMULINK model, presented later in the text. 

 

To arrive at angular acceleration of the links when the motor torque is applied to the 

crank, one adopts Lagrange’s approach to Figure (4) as follow: 

 
Figure 4 

 

The Kinetic energy of the motion is obtained as: 

 

2

33

2

4

2

33

2
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1
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1
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1
cmDA vmIIIT ---? yyy     (14) 

 

Where IA is the moment of inertia of link 2 about point A, ID is the moment of inertia of 

link 4 about point D, and I3 is the moment of inertia of link 3 about the center of mass of 

the link 3. Vcm3 is the velocity of the center of mass for link 3. In the Cartesian 

coordinates Vcm3 is: 

 

jriv
rrr

cm

EE
)coscos()sinsin( 3324444423323

343 sysysysy /-/?    (15) 

 

The virtual work on the system is simply: 

 

2fsf motorMW ?     (16) 
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Where Mmotor is the torque applied to the crank by the motor. The generalized coordinates 

し2, し3, and し4 are constrained by the loop closure equations (11). For the  ease of 

following those equations are rewritten here: 

 

0sinsinsin
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     (16) 

 

Defining the Lagrangian as L = T – V, where T is the kinetic energy and V is the 

potential energy for the system. Neglecting the weight of the links in comparison with 

their respective inertia forces, the potential energy of the system is set to zero.  With that 

in mind, the Lagrange’s equation for each generalized coordinate is then written as 

follows: 
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Where そ1, and そ2 are Lagrange multipliers, due to the constraint motion. Substituting the 

links’ moments of inertia in terms of their lengths and masses (IA = (1/3)m2r2
2
, ID = 

(1/3)m4r4
2
, I3 = (1/12)m3r3

2
) into the expression for the kinetic energy, performing the 

partial derivatives of the constraint equations (16) with respect to し2, し3, and し4,  and 

plugging the results into equations (17); one arrives at  the expressions for the angular 

accelerations of links 2, 3, and 4, namely 432 ,, sss %%%%%% and . The outcome of these 

mathematical operations would be 3 equations of (17) in terms of the 5 unknowns, 

21432 ,,,, nnsss and%%%%%% .  

 

In order to solve for the angular accelerations of the links 2, 3, and 4, one needs to 

supplement the reduced form of the equations (17) with two more equations. This is done 

by differentiating the equations of constraints, equations (16), twice with respect to time. 

The result of which is: 
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One should note that equations (18) are nonlinear and carry the angular positions and 

velocities of the links 2, 3, and 4 in them. This means that the angular positions and 

velocities of the links 3, and 4 need to be known prior to the solution for the angular 

accelerations of all the links. Solution of these equations (reduced form of equations (17) 

and (18)) would be implemented by SIMULINK as shown below. 

 

P
age 12.242.8



 
 

The MATLAB functions with foreground colors, blue, orange and red, seen in the 

SIMULINK model, are MATLAB .m files for finding positions, velocities and 

accelerations of the links respectively. The program also animates the mechanism. A 

snapshot of such an animation is shown below: 
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Appendix B contains the three MATLAB Functions used in the SIMULINK model. 

Figure 5 is the Auto-Scale Graph of the SIMULINK model, which is the plot of the 

angular position of link 4 ( 4s ) vs. time. Figure 5 confirms the rocking motion of the 

follower. It also shows that the follower sweeps an angle of 50
o
 in its rocking motion.  

 

 
 

Figure 5 

 

Conclusion 

 

The project significantly helped students understand the abstract concepts in dynamics. 

This was reflected in the result of the follow up exam. Majority of the students exhibited 

a very thorough understanding of Lagrange’s equations. Students enjoyed the animation 

part of the project and built their models in the shop. The author received positive 

feedback from the students regarding this exercise. 
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Appendix A 

 

 
%**************** 
% 
%   
%   Path Generation Program Using Loop Closure Method 
%    
% 
%**************** 
% FILENAME: path_loop_closure.m 
  
% CREATE MATRICES TO STORE X AND iY COMPONENTS OF POSITION OF PTS. A, 
B, 
% AND C AND THETA 3 AND 4 ESTIMATES 
Xa=[]; 
Ya=[]; 
Xb=[]; 
Yb=[]; 
Xc=[]; 
Yc=[]; 
thetabars=[]; 
  
% DEFINE CONSTANTS (LENGTHS IN INCHES, ANGLES IN RADIANS) 
r1=1.178;                   % "G" Ground Link Length, AoBo 
r2=0.3463;                   % "U" Input Link Length, AoA 
r3=1.43;                   % "Z" Coupler Link Length, AB 
r4=1;                   % "W" Follower Link Length, BoB 
r5=1.54;                % Length AC 
theta1=0;               % Angle of Ground Link 
psic=40.6*(pi/180);     % Angle BAC 
mu=-1;                  % Configuration of linkage 
  
% Grashof (s+l<p+q since r2+r1<r3+r4) and input is the shortest  
% link => Crank Rocker (Cranks can rotate 360 degrees) 
theta2min=0;                % Smallest input angle 
theta2max=2*pi;             % Largest input angle 
range=theta2max-theta2min;  % Range of input motion 
steps=100;                  % Number of positions that will be 
calculated 
  
% CALCULATE INITIAL POSITION OF C WITH COMPLEX NUMBERS 
theta2=theta2min;                           % Initial theta2 
r2v=r2*exp(i*theta2);                       % Position vector AoA 
r1v=r1*exp(i*theta1);                       % Position vector AoBo 
r7v=r2v-r1v;                                % Position vector BoA 
r7=abs(r7v);                                % Magnitude BoA 
psi=acos((r4^2+r7^2-r3^2)/(2*r4*r7));       % Angle ABoB 
theta4=imag(log(r7v/abs(r7v)))+mu*psi;      % Current theta4 
r4v=r4*exp(i*theta4);                       % Position vector BoB 
r3v=r1v-r2v+r4v;                            % Position vector AB 
theta3=imag(log(r3v/abs(r3v)));             % Angle of AoA to X axis 
  
% CALCULATE POSITION OF C AT ALL STEPS 
for q=1:(steps+1) 
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    theta2=theta2min+(q-1)*(range)/steps;   % Current theta2 
     
% CALL FUNCTION TO GET ESTIMATES OF THETAS 3 AND 4 
    thetabars=thetas(theta1,theta2,theta3,theta4,r1,r2,r3,r4); 
    theta3=thetabars(1);    % Set current theta3 to Newton-Raphson 
estimate 
    theta4=thetabars(2);    % Set current theta4 to Newton-Raphson 
estimate 
   thth(q)=theta4; 
    
    Xc(q)=r2*cos(theta2)+r5*cos(theta3+psic);  % Put current Xc in 
matrix 
    Yc(q)=r2*sin(theta2)+r5*sin(theta3+psic);  % Put current iYc in 
matrix 
    Xb(q)=r1*cos(theta1)+r4*cos(theta4);       % Put current Xb in 
matrix 
    Yb(q)=r1*sin(theta1)+r4*sin(theta4);       % Put current iYb in 
matrix 
    Xa(q)=r2*cos(theta2);                      % Put current Xa in 
matrix 
    Ya(q)=r2*sin(theta2);                      % Put current iYa in 
matrix 
end 
theta4max=max(thth); 
theta4min=min(thth); 
range1=(theta4max-theta4min)*180/pi 
  
% PLOT THE POSITIONS OF C, B, AND A 
plot(Xc,Yc,Xb,Yb,Xa,Ya); 
title('Plot of Positions Using Loop Closure and Newton-Raphson'); 
axis([-2,4,-2,4]); 
xlabel('X Coordinates'); 
ylabel('iY Coordinates'); 
legend('Pt. C','Follower- range = 50 degree','Input (Crank)'); 
animate_nbar 
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%**************** 
% 
%  
%   
%   Function for Path Generation Program Using Loop Closure Method 
%   2-12-06 
% 
%**************** 
% FILENAME: thetas.m 
  
% FUNCTION FINDS NEWTON-RAPHSON APPROXIMATION OF THETAS 3 AND 4 
% BASED ON PREVIOUS ANGLES AND BASED ON LINK MAGNITUDES 
function y=thetas(th1,th2,th3,th4,m1,m2,m3,m4) 
  
    % SET ESTIMATES EQUAL TO LAST THETAS 3 AND 4 
    theta3bar=th3; 
    theta4bar=th4; 
    %INITIALIZE MATRIX TO STORE X AND Y SUMS 
    F=[1;1]; 
     
    % LOOP UNTIL MAGNITUDE OF X AND Y SUMS IS VERY SMALL -- NEAR ZERO 
    while norm(F)>=1.0e-010 %if eps, program looped forever 
         
        % X COMPONENTS AT CURRENT ESTIMATE (MUST ADD UP TO ZERO) 
        f1=m2*cos(th2)+m3*cos(theta3bar)-m4*cos(theta4bar)-m1*cos(th1); 
        % Y COMPONENTS AT CURRENT ESTIMATE (MUST ADD UP TO ZERO) 
        f2=m2*sin(th2)+m3*sin(theta3bar)-m4*sin(theta4bar)-m1*sin(th1); 
        % JACOBIAN DETERMINATE IS CALCULATED 
        A=[(-m3*sin(theta3bar)) (m4*sin(theta4bar));(m3*cos(theta3bar)) 
(-m4*cos(theta4bar))]; 
        %THE X AND Y AT CURRENT ESTIMATE 
        b=[(-(f1));(-(f2))]; 
        % MATRIX "DIVISION" -- EQUIVALENT TO A^-1*b, BUT FASTER 
EXECUTION 
        x=A\b; 
        % NEW ESTIMATE OF THETAS 3 AND 4 
        theta3bar=theta3bar+x(1,1); 
        theta4bar=theta4bar+x(2,1); 
        % NEW SUM OF X AND Y COMPONENTS 
        f1=m2*cos(th2)+m3*cos(theta3bar)-m4*cos(theta4bar)-m1*cos(th1); 
        f2=m2*sin(th2)+m3*sin(theta3bar)-m4*sin(theta4bar)-m1*sin(th1); 
        % PUT X AND Y SUMS IN MATRIX SO NORM CAN BE COMPUTED 
        F=[f1;f2]; 
         
    end 
     
    % FINAL ESTIMATES ARE RETURNED AS A VECTOR 
    y=[theta3bar theta4bar]; 
     
end 
 

P
age 12.242.13



Appendix B 

 

The Blue MATLAB Function in the SIMULINK Model 

 

 
% This Function is the blue MATLAB Function in the SIMULINK model to 
% calculate the angular position of the links. It is based on the 
% Newton-Raphson method for solving system of nonlinear equations 
  
function [th]=Newton(u) 
factor=pi/180; 
theta2=u(5); 
theta3=45*factor; 
theta4=135*factor; 
f=[u(3)*cos(theta3)-u(4)*cos(theta4)+u(2)*cos(theta2)-u(1); 
u(3)*sin(theta3)-u(4)*sin(theta4)+u(2)*sin(theta2)]; 
while norm(f)>1.0E-6 
    Jacobian=[-u(3)*sin(theta3) u(4)*sin(theta4); u(3)*cos(theta3) -
u(4)*cos(theta4)]; 
    delta= inv(Jacobian)*-1*f; 
    theta3=theta3+delta(1); 
    theta4=theta4+delta(2); 
    f=[u(3)*cos(theta3)-u(4)*cos(theta4)+u(2)*cos(theta2)-u(1); 
u(3)*sin(theta3)-u(4)*sin(theta4)+u(2)*sin(theta2)]; 
norm(f); 
end; 
th(1)=theta3; 
th(2)=theta4; 
 

The Orange MATLAB Function in the SIMULINK Model 
 

Given the Angular Velocity of the Link 2, this Function Calculates the Angular 

Velocities of the Other Links 
 

 

P
age 12.242.14



 

The Red MATLAB Function in the SIMULINK Model 

 

 
% This Function is the red MATLAB Function in the SIMULINK model, used  
%           to find the angular accelerations of the links 
  
function [acc] = accel(u) 
A =[1/3*u(9)*u(2)^2 0 0 u(2)*sin(u(5)) -u(2)*cos(u(5));0 
1/3*u(10)*u(3)^2 -1/2*u(10)*u(3)*u(4)*cos(u(7)-u(6)) u(3)*sin(u(6)) -
u(3)*cos(u(6)); 
    0 -1/2*u(10)*u(3)*u(4)*cos(u(7)-u(6)) (1/3*u(11)+u(10))*u(4)^2 -
u(4)*sin(u(7)) u(4)*cos(u(7)); 
    u(2)*sin(u(5)) u(3)*sin(u(6)) -u(4)*sin(u(7)) 0 0; u(2)*cos(u(5)) 
u(3)*cos(u(6)) -u(4)*cos(u(7)) 0 0] 
  
B = [u(14); -1/2*u(10)*u(3)*u(4)*u(13)^2*sin(u(7)-u(6)); 
1/2*u(10)*u(3)*u(4)*u(12)^2*sin(u(7)-u(6)); 
     u(4)*u(13)^2*cos(u(7))-u(3)*u(12)^2*cos(u(6))-
u(2)*u(8)^2*cos(u(5)); 
     -
u(4)*u(13)^2*sin(u(7))+u(3)*u(12)^2*sin(u(6))+u(2)*u(8)^2*sin(u(5))] 
 acc = (A^-1)*B 
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