Applying Systems Engineering Tools to Teach Systems Engineering in an Engineering Management Program

Dr. Sandra L. Furterer, University of Dayton

Dr. Sandy Furterer is an Associate Professor at the University of Dayton, in the Department of Engineering Management, Systems and Technology. She recently moved from industry as a VP of Process Transformation for a community bank in Columbus, Ohio. Dr. Furterer received her Ph.D. in Industrial Engineering with a specialization in Quality Engineering from the University of Central Florida in 2004. She received an MBA from Xavier University, and a Bachelor and Master of Science in Industrial and Systems Engineering from The Ohio State University.

Dr. Furterer has over 25 years of experience in business process and quality improvements. She is an ASQ Certified Six Sigma Black Belt, a Certified Quality Engineer, an ASQ fellow, and a certified Master Black Belt.

Dr. Furterer is an author or co-author of 4 reference textbooks on Lean Sigma, Design for Six Sigma and Lean Systems, including her latest book: Lean Six Sigma Case Studies in the Healthcare Enterprise by Springer publishing in 2014.
Applying Systems Engineering Tools to Teach Systems Engineering in an Engineering Management Program

Sandra L. Furterer, Ph.D., MBA
Associate Professor of Engineering Management, Systems, and Technology
University of Dayton
Email: sfurterer1@udayton.edu
University of Dayton
300 College Park,
Dayton, OH 45469
Phone: (937) 229-2475

Abstract

Engineers learn how to design engineered solutions by applying their specialty engineering disciplines, such as chemical, electrical, mechanical, aerospace, materials, and industrial engineering to name a few. Systems engineering tools and concepts help to integrate the specialty engineering designs together to better design and manage complex systems. These same systems engineering tools can be used to teach systems engineering to engineers. A graduate-level engineering management curriculum includes a Management of Engineering Systems course, whose key learning objective is for the students to be able to synthesize and apply the systems engineering methods and tools to a real-world system design project. This paper will describe how the instructor applied systems engineering tools to enhance learning of systems engineering tools and concepts in an engineering management course. The students applied the systems engineering tools in the course to design a system in teams of 4 to 5 students. The instructor assessed the students on their ability to apply the systems engineering tools through the team reports. The average students’ grades on their system design reports improved by 6% on the system engineering design reports assessments, from Fall 2016 to Fall 2017, and 5% from Spring 2017 to Fall 2017 (ANOVA alpha = 0.000181). However, the positive responses on the qualitative evaluation from the students’ perspectives on the Student Evaluation of Teaching question “I learned a great deal from this course” decreased from Fall 2016 to Spring and Fall 2017 semesters by 16% (94% to 78%).

Keywords: Systems Engineering, Case studies, engineering management, engineering education

Introduction:

Engineers learn how to design engineered solutions by applying their specialty engineering disciplines, such as chemical, electrical, mechanical, aerospace, materials, and industrial engineering to name a few. Systems engineering tools and concepts help to integrate the specialty engineering designs together to better design and manage complex systems. These same systems engineering tools can be used to teach systems engineering to engineers.
The university’s Department of Engineering Management, Systems, and Technology, in the
School of Engineering teaches their Management of Engineering Systems, modeled on the
Systems Engineering Body of Knowledge (SEBoK) (BKCASE Editorial Board, 2016). This
body of knowledge represents “… a widely accepted, community-based and regularly updated
baseline of systems engineering (SE) knowledge” (BKCASE Editorial Board, 2016).

A key learning objective of the course is to be able to synthesize and apply the systems
engineering methods and tools to a real-world system design project. The learning objectives
from the course include the following:

- Articulate what systems engineering (SE) is and explain the importance of maintaining
 SE rigor throughout a system’s life cycle
- Comprehend and incorporate different concepts, principles, and tools of systems
 engineering in solving problems and developing balanced system solutions
- Establish collaboration among all organizational functional areas necessary for effective
 systems engineering application
- Apply critical thinking to execute the SE process in realistic scenarios and projects and to
 defend your decisions and positions

This paper will describe how the instructor applied systems engineering tools to enhance
learning of systems engineering tools and concepts in an engineering management course. The
instructor developed a systems engineering framework that identified the systems engineering
design activities, the tools and principles to be covered in the course. This framework provided a
roadmap through the systems engineering design methodology for the students. An Excel-based
Systems Engineering Tools Template (SETT) that provided many of the systems engineering
tools for each phase of the system design methodology was developed that provides a standard
template for the systems engineering tools to define the system concept and requirements,
including a system project charter; risk, stakeholder, external, SWOT, internal, and value gap
analyses; customer and systems requirements; and a process scenario template.

Teaching Methods and Instructional Strategies:

Teaching methods are techniques that help motivate students to do what they need to do to learn
course material. Gentile (2016) categorized teaching methods into the following types: 1) information-providing, 2) inquiry-oriented, 3) active or performance-based, 4) cooperative, 5) mastery-based and 6) creativity-inducing. Information–providing type of learning typically uses lecture and demonstrations to convey information (Gentile, 2016). Inquiry-oriented methods of learning encourage the student to examine and search the information to discover the truth. It includes using case studies to encourage the higher level learning (Gentile, 2016). Active or performance-based methods encourage the students to be actively involved with and participate in their learning. Active learning is designed to have the student practice the application of the material while they are coached and provided feedback from the instructor (Gentile, 2016). Cooperative methods are active learning techniques designed to teach collaborative skills (Gentile, 2016). Mastery-based methods are focused on providing a minimum mastery of the information. Finally, creativity-inducing methods include brainstorming and other techniques
that encourage the student to think differently to come up with different and creative ideas (Gentile, 2016). All of these methods are probably best applied when used with several or all of the methods together to enhance learning.

Case studies are descriptions of real-world examples that can be used in the classroom to help the students apply the principles, methods and tools of the course material (Carroll and Rosson, 2006). Developing and using case studies to enhance higher level learning in engineering education is part of the active learning pedagogy (Yin, 2009). Active learning engages students in higher order thinking assignments (Bonwell & Eison, 1991). The case study can help integrate practice with theory (Swart, 2009, 2010) (Hunt, 2012). Case studies promote critical thinking (Popil, 2011). They have the potential to reveal rich contextual findings of a personal, social, and pedagogical nature, that cannot easily be obtained by other methods (Miller, 1997).

Methodology and Educational Learning Strategies:

The following educational learning strategies were applied in the graduate-level engineering management systems engineering course: 1) information-providing lectures, 2) inquiry-oriented case studies, 3) active or performance-based active learning exercises, 4) cooperative team-based system design, 5) creativity-inducing methods based application of systems engineering tools. When initially developing and deploying the course in the Fall 2016 semester the instructor incorporated several learning strategies, including:

- Traditional lecture PowerPoint presentations provided via the online learning website.
- Inquiry-oriented case studies including a healthcare case study and a light rail system case study.
- Active learning exercises incorporated into each class session.
- A cooperative team-based system design project.
- Creativity-inducing methods based application of systems engineering tools.

The instructor taught the course using the same learning strategies in the Spring 2017 semester. In Fall 2017, the instructor introduced an additional learning strategy developing an Excel-based Systems Engineering Tools Template (SETT) that provided many of the systems engineering tools for each phase of the system design methodology. This enhanced the active learning exercises, the case studies, and cooperative team-based system design project strategies. The instructor also developed examples of the systems engineering tools for the healthcare case study. Table 1 shows the Systems Engineering Methodology, Activities & Tools Framework (Furterer (2016a, 2017a)). This figure describes the systems engineering methodology and the activities performed in each phase. It also shows the tools taught in the class and applied by the students in their systems engineering research design case study. The principles applied in each phase are also shown. The tools incorporated into the SETT are bolded in Table 1. There were 34 students in the Spring 2017 course, and 31 students in the Fall 2017 course.
<table>
<thead>
<tr>
<th>Vee Phase</th>
<th>Activities</th>
<th>Tools</th>
<th>Principles</th>
</tr>
</thead>
</table>
| Phase 1: Concept of Operations | • Define strategic goals
• Define goals of mission (mission analysis)
• Perform stakeholder analysis
• Perform conceptual selection | Strategic goals:
• **Strategic mission**
• **Strategic goals**
• **Value gap analysis; External analysis; Internal analysis; SWOT analysis**
Mission analysis
• **Project charter with risk analysis**
• **SIPOC**
• **Stakeholder analysis**
• **Pugh Concept Selection Technique** | • Complexity
• Emergence (whole > sum of parts)
• System of system
• Hierarchy
• Boundary |
| Phase 2: Requirements & Architecture | • Develop Logical Architecture
• Develop Business requirements
• Develop system requirements | Logical Architecture:
• **Value Chain & Functional Decomposition**
• **Class Diagram**
Requirements:
• **Business requirements**
• **Process Scenarios**
• **System requirements**
• Use Case Diagram | • System dynamics (behavior, system elements)
• Cybernetics (information flow)
• Systems thinking
• Abstraction
• Views |
| Phase 3: Detailed Design | • Perform detailed design
• Perform systems analysis | Detailed Design:
• **Use cases**
• Process Architecture map
• Physical Architecture Model (Hierarchy)
• Physical Block Diagram; SysML Block Definition Diagram; SysML Internal Block Diagram
• **QFD** | • Systems analysis
• Wholeness and interactions |
<table>
<thead>
<tr>
<th>Vee Phase</th>
<th>Activities</th>
<th>Tools</th>
<th>Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Simulation Systems Analysis:</td>
<td>• System elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selection criteria</td>
<td>• Modularity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Trade off analysis; Effectiveness analysis; Cost analysis; technical</td>
<td>• Interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• risk analysis</td>
<td>• Networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Justification report</td>
<td>• Relationships</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Behavior</td>
</tr>
<tr>
<td>Phase 4:</td>
<td>• Perform system implementation</td>
<td>• Integration constraints</td>
<td></td>
</tr>
<tr>
<td>Integration, Test</td>
<td>• Perform system integration</td>
<td>• Implementation strategy</td>
<td></td>
</tr>
<tr>
<td>& Verification</td>
<td>• Perform system validation</td>
<td>• System elements supplied</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Perform system verification</td>
<td>• Initial operator training</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verification criteria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verification test cases and results</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N-squared diagram</td>
<td></td>
</tr>
<tr>
<td>Phase 5:</td>
<td>• Perform system verification</td>
<td></td>
<td>• Synthesis</td>
</tr>
<tr>
<td>System Verification</td>
<td>• Perform system validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 6:</td>
<td>• Perform training</td>
<td>• Training plan and materials</td>
<td>• Control behavior and feedback</td>
</tr>
<tr>
<td>Operation &</td>
<td>• Perform certification</td>
<td>• Certification plan and materials</td>
<td>• Encapsulation (hide internal workings of system)</td>
</tr>
<tr>
<td>Maintenance</td>
<td>• Perform risk assessment and planning for maintenance</td>
<td>• Operations Manuals</td>
<td>• Stability and Change</td>
</tr>
<tr>
<td></td>
<td>• Perform disposal and retirement activities</td>
<td>• Performance reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Maintenance and service plans; FMEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disposal and retirement plan</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Systems Engineering Methodology, Activities & Tools Framework (Furterer, 2016, 2017)
Excel-based Systems Engineering Tools Template (SETT) Examples:

A sample tool from the Excel-based Systems Engineering Tools Template (SETT) for the system design phases follows. The instructor developed healthcare case study was used for the tools template examples.

Phase 1: Concept of Operations

The Concept of Operations Phase is the first phase in the Systems Engineering Vee Life Cycle Model (SEBoK). The purpose of the phase is to perform an analysis of the mission and define its strategic goals.

One of the tools from the Excel-based Systems Engineering Tools Template (SETT) was a value gap analysis of the proposed internal functions that a system could provide, to identify the system’s mission. The healthcare system value gap analysis is shown in figure 2. The value gap analysis describes proposed internal functions to be included in the system, with an assessment of the function in the current state, and where the designers would like the system to be in the future. It also describes the gaps between the current and future state for each function. This example helped the students understand how to apply this tool.

<table>
<thead>
<tr>
<th>Internal Functions</th>
<th>Current State</th>
<th>Future or Desired State</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule service</td>
<td>Excellent care, but long delays in getting an appointment</td>
<td>Excellent care, appointments in 3 days or less</td>
<td>Long delays in getting an appointment</td>
</tr>
<tr>
<td>Register Patient</td>
<td>Long delays in registration</td>
<td>Only wait 10 minutes for registration</td>
<td>Long delays in registration</td>
</tr>
<tr>
<td>Perform Service</td>
<td>Excellent care, but long delays for service</td>
<td>Excellent care, less than (\frac{1}{2}) delays</td>
<td>Long delays waiting for service</td>
</tr>
<tr>
<td>Provide Imaging results</td>
<td>Average 57 hours for results</td>
<td>Same day results</td>
<td>Average of 33 hours</td>
</tr>
<tr>
<td>Provide spiritual care</td>
<td>Spiritual care not available on site</td>
<td>Spiritual care on site</td>
<td>Lack of spiritual care resources</td>
</tr>
<tr>
<td>Connect to Cancer Center</td>
<td>No process or technology, process silos</td>
<td>Process & technology for seamless connectivity</td>
<td>Lack of process and technology to connect to cancer center</td>
</tr>
<tr>
<td>Perform Surgery</td>
<td>State of art surgery</td>
<td>State of art surgery</td>
<td>None</td>
</tr>
<tr>
<td>Process VIP Patient</td>
<td>Lack of technology to ID VIP patients</td>
<td>Technology to ID VIP patient</td>
<td>Information technology</td>
</tr>
</tbody>
</table>

Figure 2: Healthcare case study value gap analysis (Furterer, 2017)
Phase 2: Requirements and Architecture

The Requirements and Architecture phase of the lifecycle model is designed to gain information on the voice of the customer (VOC) to understand the needs of the customers and begin translating those customer requirements into the system’s technical elements.

One of the examples for the healthcare case study tools was the operational definitions of the system metrics used to assess system performance and alignment between the customers and systems requirements, as shown in Figure 3. The operational definitions describe how the designers expect to measure the system and the effectiveness of the system design.

Operational Definition

Define a clear and concise description of the measurement and the process by which it is collected.

<table>
<thead>
<tr>
<th>Operational Definition</th>
<th>Defining Measure</th>
<th>Purpose</th>
<th>Clear Way to Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time from when patient goes into procedure room to when they leave</td>
<td>Procedure times by procedure type.</td>
<td>Identify issues with resources, and process issues that affect procedure time.</td>
<td>From Medical information System report</td>
</tr>
<tr>
<td>Time from when the patient is registered to when they get into the procedure room</td>
<td>Tracking wait times from registration until received into the procedure room.</td>
<td>Identify capacity issues with procedure.</td>
<td>From medical information system report</td>
</tr>
<tr>
<td>Time from when patient arrives in the facility to when registration is complete</td>
<td>Tracking time from when patient is logged into the registration system until the registration is complete at the front desk</td>
<td>Identify issues with resources, and process issues with registration.</td>
<td>From registration system report</td>
</tr>
<tr>
<td>Time to receive results of exam, from when you finished the procedure</td>
<td>Time it takes the patient to receive the exam results from their physician after the exam is complete.</td>
<td>To understand how long it takes to get results, and identify radiologist capacity constraints.</td>
<td>From imaging system report</td>
</tr>
<tr>
<td>Time to wait until get an appointment</td>
<td>Time it takes a patient to be able to get in for an appointment from when they request the appointment.</td>
<td>Identify issues with resources, and process issues for the entire imaging systems and processes.</td>
<td>From scheduling system report, implementing new fields to capture desired appointment time compared to actual appointment time</td>
</tr>
</tbody>
</table>

Figure 3: Operational definition tool example
Phase 3: Detailed Design Phase 3

The main purpose of the Detailed Design phase is to develop the detailed system design. The phase is also focused on understanding the factors that contribute to an efficient process and the potential root causes of inefficiencies so they are reduced or eliminated.

An important tool used in the design phase is a risk analysis. The healthcare risk analysis for the case study is shown in figure 4. The Risk Prioritization Cube helps the designer to prioritize the potential system risks by their likelihood of occurrence and the impact of each risk, should they occur. This example prioritizes the number 2 risk of regulatory requirements possibly adding time to the schedule of the system design project.

![Risk Prioritization Cube](image)

<table>
<thead>
<tr>
<th>Risk #</th>
<th>Risk Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>May not get donations that cover cost of construction of women’s center</td>
</tr>
<tr>
<td>2</td>
<td>Regulatory requirements may add to schedule</td>
</tr>
<tr>
<td>3</td>
<td>Software technology may not be available within schedule</td>
</tr>
</tbody>
</table>

Figure 4: Healthcare case study risk prioritization cube
Phase 4: Implementation, Integration, Test & Verification Phase, Phase 5: System Validation

The purpose of the integration, test and verification and validation phases is to pilot and/or implement the new system and assess whether the system is capable of meeting the desired requirements.

A verification and validation test case example is shown in Figure 5. The test case provides detailed tasks that are performed to verify that the system works as it is designed and also validates that the system works as the users would like. The expected results are also identified so that the tests can ensure that the test cases pass or fail, and what actually occurs during the testing case.

![Figure 5: Healthcare case study verification test case](image)

<table>
<thead>
<tr>
<th>TASK #</th>
<th>TASK/STEPS</th>
<th>EXPECTED RESULT</th>
<th>PASS/FAIL</th>
<th>ACTUAL RESULT/DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Patient calls Central Scheduling and requests an imaging appointment</td>
<td>Central Scheduling answers phone and greets patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ask for name, social security number from patient</td>
<td>Obtain patient information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>If Medical information file exists, verify demographic and update if necessary, if doesn’t exist, create it.</td>
<td>Information verified or entered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ask patient which services would like to schedule for, could be multiple appointments</td>
<td>Patient provides list of services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ask patient if they have a preferred date and time of day</td>
<td>Patient provides preferred dates and times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Review central schedule database for preferred date and time</td>
<td>Obtain appointment times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Provide next available date and time</td>
<td>Obtain appointment times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Confirm with patient, if not repeat steps 6 through 7</td>
<td>Appointment time confirmed (or start at task 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Book appointments</td>
<td>Book appointment in system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Provide prep information for patient</td>
<td>Provide prep information for patient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ask questions on test, procedure, insurance, other information</td>
<td>Patient asks questions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Reconfirm date, time, remind patient to bring photo id, copay/deductible and script and provide any other instructions</td>
<td>Reconfirm appointment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: Healthcare case study verification test case

Phase 6: Implementation and Maintenance:

The purpose of Phase 6, Implementation and Maintenance, is to implement, deploy and maintain the system. The training plan is an important tool to plan how the operators will be trained to operate the system and perform the processes. A sample training plan for the healthcare case study is shown in Figure 6. The sample training plan provides a description of the training objectives, the training audience, and how the training will be performed.
Assessment of Learning:

Instructor Assessment of Learning:

The instructor assessed the students’ ability to apply the systems engineering tools through the evaluation of the systems design research reports. The average grades across the reports for the three semesters were 91% for Fall 2016 and Spring 2017, and 96% for Fall 2017. The students improved their ability to apply the systems engineering tools as evidenced by the instructor’s evaluation of the students systems engineering design project reports. The reports included the tools and a written report describing the tools and the findings from the tools. The Excel-based Systems Engineering Tools Template (SETT) was used by all of the students for the tools that were included in the SETT to design their systems in Fall 2017. Although there are always uncontrollable factors including student demographics, attitude and motivation, this was the main difference in instructional strategies that the instructor controlled and changed during the Fall 2017 semester. It appears to have contributed to a statistically significant improvement in the ability of the students to better apply the systems engineering tools. The Analysis of Variance (ANOVA) statistical test was significant at an alpha of 0.000181. The Tukey confidence interval comparison graph showing the statistical difference between the systems engineering design report grades between Fall 2016 and Fall 2017, and Spring 2017 and Fall 2017 is shown in Figure 7. However, there is not a significant difference between the grades for Fall 2016 and Spring 2017, both prior to when the SETT was implemented. The Tukey comparison chart shows when the confidence interval does not cross the zero at the x-axis, that there is a significant difference between the two means on the y-axis.
Exam Questions Assessment to Evaluate Student Learning:

The instructor also used 2 exam questions to evaluate whether the learning was enhanced for two tools that were part of the SETT tool deliverables. The project charter and the n-squared diagram for defining the system interfaces were questions on the exam in Spring 2017 and Fall 2017. A 2-sample proportion test was used to compare the score that was converted to a percentage, since the number of students and points differed for each semester. For the project charter question, the Spring 2017 students (average grade of 97%), prior to the new SETT performed better on this question, than after the new tools deliverable Excel sheet was implemented in Fall 2017 (average grade of 86%). The 2-proportion test was significant at a 95% confidence level.

For the n-squared diagram, the Fall 2017 students (average grade of 100%) performed better after the SETT was implemented than the Spring 2017 students (average grade of 98%). The 2-proportion test was significant with a p-value of 0.024, for a 95% confidence level.

The assessment of just two exam questions may not accurately assess whether the entire SETT helped to enhance learning, so the instructor also used the student evaluation of teaching results described in the next section.

Student Evaluation of Teaching Results:

The Student Evaluation of Teaching (SET) Results demonstrate that the students rated the course highly, as shown in Figure 8. The following questions were asked in the SET survey.

Q1: The instructor seemed organized.
Q2: I knew what I was expected to accomplish in this course.
Q3: The instructor presented the subject matter clearly.
Q4: The instructor created an environment that supported my learning.
Q5: The instructor generated a genuine interest in my success.
Q6: The feedback I received from the instructor improved my learning.
Q7: This course stimulated my interest in the subject.
Q8: This course increased my understanding of the subject.
Q9: I learned a great deal from this course.
Q10: I would recommend this course to other students.
Q11: I would recommend this instructor to other students.

A Likert agreement rating scale was used, from 1 – Strongly Disagree, to 5- Strongly Agree. Question 9 best represented the students’ assessment of whether they learned a great deal in the course. Unfortunately, the percent of positive responses decreased from a high of 94% in the Fall 2016 semester to 78% in both the Spring 2017 and Fall 2017 semesters. The averages across all of the SET questions are provided for all three semesters from the SET data set, as shown in Figure 8.

Figure 8 Student Evaluation of Teaching Management of Engineering Systems Course Semesters Fall 2016, Spring 2017 and Fall 2017

Reflection and Conclusions:

The Excel-based Systems Engineering Tools Template (SETT) was successful in improving the learning of students, and their ability to apply the systems engineering tools to design a real-world system, as evaluated by the instructor. The average grades improved by 5% and 6% from Fall 2016 and Spring 2017, respectively compared to Fall 2017 when the tools template was implemented.

However, the students’ evaluation of teaching, decreased from the Fall 2016 to Spring 2017 and again in Fall 2017. The percentage of positive responses to the question “I learned a great deal from this course” decreased from a high of 94% to 78% in both the Spring and Fall 2017
semesters. The average scores across all of the questions also decreased from 4.5 in Fall 2016, to 4.3 in Spring 2017, to 3.9 in Fall 2017. These qualitative ratings by the students incorporate a broader spectrum of variables, including students’ attitude, motivation, demographics, as well as other factors regarding the course. A key complaint from the students in the Fall 2017 semester was that they felt that the homework and exams that were done individually, were too redundant with the team-based system design project, and that there was too much out-of-class work. The instructor had broken the system design project into multiple reports in the Spring and Fall 2017 semesters, versus one report, and this could have contributed to the students’ feeling overwhelmed and rated the course less favorably in the Spring and Fall 2017 semesters.

Future Work:
The instructor incorporated the feedback from the students from the Spring 2017 semester on the Student Evaluation of Teaching surveys into the course assessment strategy for the Spring 2018 semester. The instructor removed the homework assignments that were performed individually by the students to ensure that they were applying and learning all of the systems engineering tools, in the case that the teams divided up the work and tools on the systems design projects. The students will need to ensure that even if they aren’t responsible for each and every tool on the systems design project that they still learn and are able to apply these tools. The exams will continue to assess the students learning on the applicable and most important tools. It will be interesting to see if the Student Evaluation of Teaching responses improve after this semester. The instructor will continue to enhance the course with additional instructional strategies to further enhance the students’ learning and ability to apply the important systems engineering design tools.

References:

