

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

Argumentative Design Rationale and the Object-Oriented Development Process:
better analysis, better design

LeeRoy Bronner, Ph.D., P.E., Jerry-Daryl Fletcher

Morgan State University

Introduction

Many analysis and modeling problems done today for information technology applications lead
to the solution of system problems. In the development of these solutions, reasoning is a major
component. The reasoning component which is normally neglected can be captured in Rationale
Models. Rationale Models represent the reasoning that lead to the system solution. This
reasoning is defined as Design Rational (DR). There have been a number of research studies into
DR, however, in this research, it was found that industry has neglected DR in their system
analysis because of the increased time and effort required to capture and implement DR. Some of
the benefits of DR are: 1) maintenance is more efficient and effective, 2) system scalability is
increased, and 3) training of users and developers is easier. This paper proposes a systematic
approach to the capture of argumentative DR and an integration of argumentative DR with the
Object-Oriented system development lifecycle. Change is a constant in the implementation and
use of systems, hence, this paper also raises the issue of “how should argumentative DR be
stored and integrated with the system to maximize its utility to the system.

What is Rationale?

Rationale is an explanation of controlling principles of opinion, belief, practice, or phenomena;
or an underlying reason or basis. From these two definitions we gather that rationale is the actual
brain work that is done behind everything that is done. When we are encountered with a new
problem or phenomenon, after we make our observations, we rationalize the problem/situation in
order to formulate a hypothesis, use these hypotheses to predict the existence of other
phenomenon and then conduct experiments based on our hypotheses and then we draw final
conclusions, according to the scientific research method [13]. Thus rationale is the intellectual
foundation on which systems are made. For the purposes of this paper, a system, is defined as a
regularly interacting or interdependent group of items forming a unified whole. Thus when the
word system is used, it not only refers to a software system, but to any activities that fit the
aforementioned definition.

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

What is DR?

Design rationale (DR) is the reasoning that goes into determining the design of the artifact. It can
include not only direct discussion of artifact properties but also any other reasoning influencing
design of the artifact [7]. DR can be characterized by the approaches that are taken to it, namely
descriptive or prescriptive, and intrusiveness into the design process [7].

Descriptive approaches to rationale refer to processes in which the goal of the DR is to describe
the thinking process that the system designer(s) utilize. Alternatively, prescriptive approaches are
aimed at improving the design process by improving the reasoning process of the system
designers [1]. Also, the extent to which the method of DR capture intrudes in the design process is
a characterizing feature. Most of the DR approaches are of the intrusive nature, though over the
past 15 years there has been extensive research done to find less intrusive ways of capturing and
formalizing DR [7]. This work in reducing the intrusiveness of DR is being done in an attempt
reduce the overhead involved with capturing and utilizing DR, and make it much more intuitive
to designers.

What are the benefits of Design Rationale?

Because of the constant change in virtually every industry, any system not built from solid
rationale is at a disadvantage to systems built with solid rationale. By effectively and efficiently
capturing and integrating the rationale of a system with that system, the overall quality of the
system is increased. This increased system quality is evidenced by improved system
maintenance, scalability, training, reuse and documentation. Dutoit et al. lists collaboration
support, reuse and change support, quality improvement and knowledge transfer support as the
four broad areas of utilization for DR and DR capture methods.

What is the state of the art of DR in the industry?

There are many tools that are currently used to capture DR. The latest and most widely utilized
tool is Compendium [12], which is an open-source tool with an international developer and user
community. It is essentially an extension of IBIS and gIBIS, and QuestMap, an older tool.
Compendium offers an ever-expanding set of functionalities, and looks destined to be the tool of
choice for the future. According to Buckingham Shum et al. Compendium is understood when
analyzed through the following three dimensions: (1) its functionality for hypermedia concept
mapping, (2) how it uses IBIS to support collaborative modeling of a problem using any
conceptual framework, and (3) in the context of mapping ideas in real-time during a meeting [3].

Argumentative DR

Argumentative DR is the expression of DR as largely, semi-formal arguments. The notion that
DR should be represented as semi-formal arguments can be traced back to wider research into

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

3

the development of computational support for reasoning [1], [2]. There are several approaches to
argumentative DR, namely, Issue Bases Information System (IBIS), Graphical IBIS (gIBIS),
Procedural hierarchy of issues (PHI), Decision Representation Language (DRL) and Questions,
Options, and Criteria (QOC).

IBIS, developed in the 1970’s by Horst Rittel as a medium to address wicked problems. Wicked
problems, according to Rittel have the following characteristics [5]:

• You don’t understand the problem until you have developed a solution: with each
proposed solution raising previously unforeseen issues to be addressed

• There is no stopping rule: lacking a definite problem, there is also no definite solution
• There is no absolute solution: solutions are all relative; better or worse, but never right

or wrong
• Every wicked problem is unique: hence the repository for a solution set for wicked

problems is rendered useless
• Every solution to a wicked problem is a “one-shot solution”: in order to learn about the

problem you must try a proposed solution, which incurs cost
• There are no given alternatives: the discovery and choice of alternatives is based on the

imagination and creativity of the designer, thus some alternatives are never even thought
of.

The key elements of IBIS are Issues, Positions and Arguments. The Issues (question/problem)
are given proposed Positions (alternatives) that are evaluated based on Arguments about their
relative strengths and weaknesses to each other. As Positions are explored, more Issues arise, and
hence the IBIS network is expanded to include this new Issue and its associated Positions and
Arguments. There are nine kinds of links in IBIS. For example, a Position Responds-to an Issue,
and this is the only place the Responds-to link can be used. Arguments must be linked to their
Positions with either Supports or Objects-to links. Issues may Generalize or Specialize other
Issues, and may also Question or Be-suggested-by other Issues, Positions, and Arguments [4]
(Figure 1).

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

4

Figure 1 showing the standard IBIS model with issue, position and argument nodes, and possible
relationships between them.

gIBIS is a hypertext tool that was developed by Jeff Conklin and Michael Begeman to support
the capture of DR, by applying IBIS [4].

PHI was developed by Raymond McCall as an extension of the IBIS ideology. The key to PHI is
the improving of design reasoning by raising subissues [7]; developing on the premise that
exploration of these relationships would strengthen design. PHI differs from IBIS in two
respects: it allows decomposition of issues, answers and arguments into hierarchies of subissues,
subanswers and subarguments; and it broadens the concept of issue to include all design
questions, not merely those deliberated [8].

DRL is essentially an extension of IBIS which has the capability to provide a finer level of
granularity than IBIS. It does not cover all aspects of design rationale, but rather focuses on
decision rationale, providing guidance on the generation of design alternatives [7]. The base
elements in DRL are Decision problems, Alternatives, Goals, Claims and Groups. The
relationships between these elements are very similar to those in IBIS, and are shown in (Figure
2) [1].

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

5

Figure 2 showing DRL structure [1].

QOC [9] comprises six major elements; Questions, Options, Criteria, Assessments, Arguments
and Decisions. The relationships between these elements are similar to the relationships used in
IBIS, and are shown in (Figure 3). However, unlike in IBIS where questions can deal with any
design topic, QOC’s questions deal exclusively with features of the artifact being designed [7].

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

6

Figure 3 showing the generic QOC structure, with line thickness denoting relative weights of
assessments [2].

DR Capture Issues

Even with the advent of tools such as Compendium, and research dating back over a quarter
century, there has been reluctance by many in industry to utilize DR. This underutilization is due
mainly to the problems associated with capturing DR. According to Dutoit et al. [7], some of the
problems associated with DR capture can be attributed to intrusiveness, political and legal issues,
fundamental problems with descriptive approaches, time and cognitive overhead.

The fact that most approaches to DR utilize their own schema, the intrusiveness of DR capture is
high, since system designers must not only design the system, they must also adhere to a given
DR schema. Also, designers do not always prefer to disclose their real reasons for design,
especially when it deals with political issues. In descriptive approaches, the beneficiaries of the
DR are not the designers themselves, and this leads to disinterest in DR capture [7]. In industry,
one of the most important resources is time, and by adding DR capture as part of the system
process, more time is required by designers. This leads to additional costs to offset this time, and
makes DR unattractive not just to designers, but to management as well. There is a cognitive
overhead associated with DR capture which not only slows down the physical output of
designers on design, but also slows down their mental output on design as well [10].

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

7

When and where is it necessary to capture DR?

In a perfect system setting, it would be possible and practical to capture the entire DR for all the
design decisions made in a system. However, in reality it is highly impossible and impractical to
attempt to capture a system’s entire DR. Considering that several options are often considered
before any one decision is made; the potential size of the system DR would astronomically
supersede the size of the system itself. Then consider a system as complex as Windows XP® that
involved hundreds of developers over a long period of time; the DR would become an
impenetrable fortress that would prevent the completion of the system. This is the concern of
many developers who do not perceive the practicality in applying DR because of the complex
nature of the systems that they construct, thus the conundrum, when should or should not DR be
captured?

A careful inspection of the system being developed is required in order to answer this question.
According to Dalrymple, the rationale model should be created for the major decisions [6].
However, what are the criteria for determining whether or not a decision should be deemed as
major for a system? The determination of major/critical decisions should be an iterative process
that begins in the conceptualization stage of a system. The starting point for DR capture should
be the motivations for the system itself, without looking at the components of the system. An
understanding of exactly why the system is being developed, what environment it is being
developed in, its perceived benefits and drawbacks, and its intended users should be captured.

DR Capture Theory in the Object-Oriented Paradigm

By utilizing the Object-Oriented (OO) paradigm (Figure 4), the DR capture can actually begin at
the initial problem definition stage. During use case analysis the system is developed and
expanded, and capturing argumentative DR at this point of system development will promote
healthy discussion between developers and clients during the Joint Application Design (JAD)
sessions. After the argumentative DR is used and captured to fully describe the system through
use case analysis, the use case analysis is used to drive other system analysis processes.

The major goals of all system analysis processes are system definition and requirements
elicitation and analysis. The requirements of a system describe the conditions or capabilities to
which a system must conform, and represent what the system should do, as opposed to how it
should be built [11]. The design of the system is done after the requirements elicitation and
analysis and is driven by their output. The analysis phase is the most essential phase in the
system since it defines the entire system. As such, the argumentative DR of the analysis stage
can be used as the over-arching system DR, since at each other phase of system development; the
decisions must positively support the system requirements and specifications.

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

8

Figure 4 showing the Object-Oriented Development Lifecycle.

During design, argumentative DR should be captured for design decisions that oppose or cause
modification to the DR captured at the analysis phase (Figure 5). These opposing decisions form
the iterative loops that create more complete correct systems. Intuitively, when we find
something that challenges the modus operandi and accepted norms, we revisit the modus
operandi and accepted norms to ensure their correctness. If they remain correct then we discard
the new notion, but if the new notion proves to be correct, then we modify the norms to include
it. In like manner DR can be measured against the system rationale captured at the analysis phase
to ensure that the system remains complete and correct.

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

9

Figure 5 showing the Object-Oriented Lifecycle with DR capture integrated.

How should the DR be captured?

“The capture problem is the spectre haunting all design rationale efforts (indeed, all knowledge
management efforts attempting to meaningfully capture elements of human reasoning and
discourse). How does one acquire quality input to a rationale management system, without
disrupting the very process it is designed to support, or without having to employ dedicated
scribes who do nothing but maintain rationale libraries?”[3]

The way in which DR is captured greatly affects its utility to the system. The issues that
developers have with DR revolve around finding a process that is both intuitive and efficient. If a
formal process is employed, then the artifacts generated by this process will be more readily
integrated with a computerized system than if a semiformal process. However, semiformal
processes are much more intuitive to developers than formal processes. The answer to the formal
versus semi-formal question lies in a delicate balance of the two. While there is no hard and fast
answer to this question, a system-specific approach must be employed. This means that the

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

10

environment, uses and users of the system must be taken into account, and then a corresponding
balance of formal and semi-formal processes and notations utilized. To this end the capture of
DR is a combination of art and a science.

With tools such as Compendium now allowing the capture of rationale in meetings, there is a
medium for beginning to formally capture the rationale that was previously almost exclusively
semi-formal at the analysis phase. Voice recorders and videotapes are now replaceable by
diagrams that can be much more easily integrated with a computerized system than their
predecessors. At the design phase, Compendium also allows for the capture or argumentative
DR, which can then be used to reason with the analysis/system rationale.

Conclusion

By increasing the support for the analysis of a system, we are able to increase the design of the
system since better analysis leads to better design. By integrating argumentative DR with the
Object-Oriented Development Lifecycle for a system, the rationale of the system can
theoretically be used to increase the completeness and correctness of the system. This is
accomplished by capturing the rationale at the analysis phase and then using it as a measure to
check the DR for consistency with the system. The approach to the argumentative DR is founded
in Rittel’s IBIS, and is accomplished by use of the Compendium tool.

Future Work

Though the capture of the DR has its benefits, work needs to be done in the area of the
integration of this captured rationale with the system itself. Though relational databases are the
most widely used throughout industry, object databases are growing in their popularity,
especially when the system under study is an Object-Oriented system. To this end, by utilizing
Compendium to capture the DR in an Object-Oriented system will need integration, since
Compendium utilizes a relational database and the system may employ an Object-Oriented
database.

Also, work needs to be done on the way that the rationale will be represented to the designers in
such a way that they will not have to switch back and forth between system models and
associated rationale models. This calls for an intuitive approach to integrating and representing
the rationale, so that it is not a separate entity to the system development process (Figure 5), but
that the system development process can more naturally resemble the regular OO development
lifecycle (Figure 4), but with the rationale integrated as part of the actual phases and processes.

Bibliography

[1] Buckingham Shum S, Hammond N (1994) Argumentation-Based Design Rationale: What Use at What Cost?

International Journal of Human-Computer Studies, 40 (4): 603-652
[2] Buckingham Shum S. (1996) Design Argumentation as Design Rationale. The Encyclopedia of Computer

Science And Technology (Marcel Dekker Inc: NY), Vol. 35 Supp. 20, 95-128

"Proceedings of the 2006 Mid-Atlantic Section Conference of the American Society for Engineering
Education"

11

[3] Buckingham Shum S.J, Selvin A.M, Sierhuis M, Conklin J, Haley C.B, Nuseibeh B (2005) Hypermedia
Support for Argumentation-Based Rationale: 15 Years on from gIBIS and QOC. In: Dutoit A, McCall R,
Mistrik I, Paech (eds.) Rationale Management in Software Engineering, Springer-Verlag, Berlin Heidelberg,
Germany, pp. 111-132

[4] Conklin J, Begeman M.L. (1988) gIBIS: A Hypertext Tool for Exploratory Policy Discussion. ACM Trans. on
Office Information Systems, 4(6), pp. 303-331

[5] Conklin J (2006) Dialogue Mapping: Building Shared Understanding of Wicked Problems. Wiley, UK, pp. 3-
40

[6] Dalrymple O (2005) Using Systems Engineering Methodology to Engineer Community Based Participatory
Research, Masters Thesis, Morgan State University, Dept. of Industrial Manufacturing & Information
Engineering

[7] Dutoit A, McCall R, Mistrik I, Paech B (2006) Rationale Management in Software Engineering: Concepts and
Techniques. In: Dutoit A, McCall R, Mistrik I, Paech (eds.) Rationale Management in Software Engineering,
Springer-Verlag, Berlin Heidelberg, Germany, pp.1-48

[8] Fischer G, McCall R, Morch A (1989) Design Environments for Constructive and Argumentative Design. In:
Proceedings of the SIGCHI conference on Human Factors in Computing Systems: Wings for the mind, New
York, NY, US, pp. 269-275

[9] MacLean A, Young RM, Bellotti VME, Moran T (1996) Questions, Options and Criteria. In: Moran TP,
Carroll JM (eds.) Design Rationale, Concepts, Techniques and Use, Lawrence Earlbaum Associates, Mahwah,
NJ, pp. 53-106

[10] Schön D (1983) The reflective practitioner. How professionals think in action. Temple Smith, London
[11] Tsang C, Lau C, Leung Y (2005) Object-Oriented Technology: from Diagram to Code with Visual Paradigm

for UML, McGraw-Hill Education, Asia
[12] http://www.compendiuminstitute.org/default.htm
[13] http://teacher.pas.rochester.edu/phy_labs/AppendixE/AppendixE.html

Biographical Data

LEEROY BRONNER is a Research Associate Professor at Morgan State University (MSU) in the department of
Industrial Manufacturing and Information Engineering. He has been an instructor at MSU for the past 7 years. Dr.
Bronner spent 25 years at IBM Corporation and brings to academia experience in systems, software engineering,
modeling, analysis, design, programming and systems implementation.

JERRY-DARYL FLETCHER is a Masters student at Morgan State University’s department of Industrial
Manufacturing and Information Engineering. He is doing research in the field of Design Rationale for his Masters
thesis. He also holds a B.S. degree in electrical engineering from Morgan State University.

Return to Main page

