

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Session 2632

Assembly Language Curriculum
Realignment in Computer Engineering at UCSC

Stephen C. Petersen, Alexandra Carey, Richard Hughey, David Meek

Department of Computer Engineering, University of California, Santa Cruz
petersen@soe.ucsc.edu

Introduction

Introduction to Computer Organization, numbered CMPE12C is the first lower-division
computer-related course taken by most undergraduate students majoring in Computer Science
(CS), Computer Information Systems (CIS), Electrical Engineering (EE) or Computer
Engineering (CMPE) at the University of California, Santa Cruz. It teaches the functions and
interrelations between the basic parts of computers and introduces assembly language to all
students within the School of Engineering (except bioinformatics majors). Hence, effectively
teaching the foundations of computer organization is important at this early stage for several
reasons. First, students frequently solidify attitudes about whether or not to pursue fields
requiring further study involving computers. Secondly, our experience in the classroom reveals
that many of them find the hurdle of bridging the conceptual relationship between computer
hardware and low-level programming very difficult to leap. This is not too surprising if we
pause for a moment to gaze back at how computers have developed historically and note that a
viable abstraction of the actual hardware is necessary and heuristic to real insightful
understanding. Basic topics like assembly-language programming, registers as ports or memory,
interrupts and virtual machines require a solid foundation built on simple initial ideas that later
on can be understood with more depth and subtlety. Students need to form their own way of
intuiting these things based on empirical knowledge formed as a consequence of programming
real hardware they can interact with – not merely abstractions of computer-simulated hardware
presented only as virtual machines or found opaquely within a complex workstation.

This paper discusses our attempt to address this problem by focusing on one critical aspect of
how computer organization is taught; namely, on the way assembly language is discussed and
intuitively understood by trying to make the relationship between a central processing unit
(CPU) and its associated organized hardware tangibly and lucidly transparent to students. Prior
to the revisions discussed below, the programming component of CMPE12C was taught on
simulators and Personal Computers (PC’s), a situation affording no satisfying view of the real
underlying hardware inside. More often than not, students pondered the concrete more than the
abstract – they wanted to know what was really going on “under the hood”. Thus, our agreed
upon primary goal was to essentially bring the hardware conceptually closer to students by
showing them the excitement of programming hardware they could readily see, feel and

P
age 7.228.1

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

controllably understand by interacting with simple things, such as ports interfaced to light
emitting diodes and input switches, interrupt buttons and liquid crystal displays. Feedback from
students in the form of written course evaluations and instructor-student dialogs over the past
several years have confirmed we were successful in meeting this goal.

A secondary goal was to revise the course curriculum to better serve the needs of later courses in
microprocessor systems, computer architecture, compiler design, and operating systems. These
subsequent classes have a broad range of needs. Computer Architecture focuses on pipelining
and memory systems for RISC (“reduced instruction set computer”) processors1. For this class,
students need to know about memory, data types, low-level computer operations, and RISC
assembly language (MIPS, in this case). Compiler Design requires essentially the same
background but presently uses SPARC assembly language. Our Operating Systems course
requires that students have a preliminary conceptual understanding of virtual memory and a
strong understanding of interrupts. In Microprocessor System Design, we survey the engineering
design of different classical bus architectures, and discuss various CPU’s and peripherals. In the
laboratory students’s design and build their own custom microprocessor projects using the
popular and versatile 68HC11, an embedded CISC (“complex instruction set computer”) CPU.
This laboratory particularly needs an adroit understanding of the HC11’s software architecture,
i.e. its unique assembly language. Giving students a better introduction to HC11 assembly
language would allow us to concentrate more on hardware system architecture and advanced
software programming techniques like mixed assembly and C, which has routinely been taught
in the laboratory since 1995.

Based on these diverse needs, we took the unusual step of deciding to teach two assembly
languages, MIPS and HC11, in the computer organization course. These would be treated in a
newly created separate laboratory, thereby allowing us to meet both our primary and secondary
goals. The work to design this laboratory divided naturally into two major tasks: development of
the actual tutorial hardware to be used, and writing an accompanying lab manual to support both
assembly languages, HC11 and MIPS. Thus, the hardware would employ the 68HC11 and be
designed to meet the primary goal of bringing the hardware closer to the students while the lab
manual meets both goals. The following two sections discuss details about changes we made to
the course, and how and why the necessary hardware was designed and built here at UCSC.
Although this was formally dubbed the Microcontroller Kit, it colloquially came to be known
more widely as the “12C Microkit” or just “Microkit.”

Making the Class and Laboratories

We should first note that CMPE12C additionally teaches critical skills needed to gain facility
with arbitrary number bases and number representations, familiarity with bit-wise operations,
understanding of memory layouts, the use of arrays and interrupts. Consequently, as part of this
revision, we also changed the programming prerequisite from one quarter of C to two quarters of
programming (now primarily in Java) to ensure that students coming into the class would have a
more uniform background.

P
age 7.228.2

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Based on the considerations noted above, our ideal textbook for the class would be one that
discusses number and data representations, basic assembly language programming, interrupts,
and introductory computer organization using as examples both the MIPS and the HC11
processors. It comes as no surprise that we were unable to find a text with this mixture, and
routinely draw upon several resources throughout the intense 10-week quarter (with 3.5 hours of
lecture and 2-4 hours of laboratory for week).

We begin the class using the SPIM simulator and the MIPS assembly language. We are
presently using the text by Miller and Goodman2, a relatively gentle introduction to computer
organization and assembly language. This text, designed for a complete course, begins with a
simplified assembly language which we don’t use simply to avoid the unnecessary confusion
learning three assembly languages would engender; two is quite enough. Using the simulator,
students write the typical number conversion and data structure programs (static, queue, multi-
dimensional array) or MIPS assembly language examples. The most important parts of this
include becoming familiar with decomposing high-level concepts into individual machine
instructions, and becoming completely familiar with binary and hexadecimal number
representations. We frequently also discuss trinary and other bases in the class, just to ensure
that everyone fully understands the underlying concepts.

About five weeks into the quarter, the lab and class change over to using and discussing the
HC11-based Microkits, with the assistance of Motorola’s donated manuals3 and our own home-
grown comprehensive laboratory manual4. This change in assembly language is coordinated
with the class discussing procedure calls. Thus, students first see the MIPS calling conventions,
in which the stack must be maintained by hand, and then seeing the more convenient (from the
assembly language programmer’s point of view) system of automatically placing the return
address on the stack. The class then turns to interrupts, a topic that cannot effectively be taught
with simulators. While the lectures study interrupt processing, storing registers and the like,
students integrate multiple functions on the Microkit and use the external interrupt button to
switch between them (Fig. 2). In the past, these simple exercises have been fraught with
difficulty for many students, but now with the Microkit they have become a particularly effective
learning tool; students quickly grasp the importance of enabling and disabling interrupts at
appropriate times as well as understanding the inherent asynchronous nature of interrupts.

The laboratory in a course like this would generally be supervised and taught primarily by
traditional graduate teaching assistants (TA’s). We found experimentally that one of the most
important features of the reorganization were the benefits of hiring many undergraduates as
tutors to assist in teaching the laboratory, thereby lowering the student-to-instructor ratio. Under
tutor supervision, students are able to discuss and question topics covered in class and then learn
by discovering computer organization first-hand. Studying or developing low-level algorithms
in small groups or with excited undergraduate tutors creates an atmosphere of teamwork and
insight. Following these discussions, programming and debugging is done individually. The
tutor-student relationship is also synergistic: tutors solidify their own understanding while
benefiting their peers.

P
age 7.228.3

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

The first quarter using the new course layout quickly revealed the need for a good
comprehensive laboratory manual. We consequently spent considerable time and effort creating
a really good manual to be uniformly used in all laboratory sections. Obviously this enhances
better continuity and consistency of treatment. For TA’s, the manual also provides grading
guidelines and candidate topics for discussions to be used by tutors. More time was found
available to help students individually because the manual also provides tutorial help for
common topics. The manual unifies the curriculum and makes the course easier to teach and
administer, especially for new instructors. It was recently modified to reflect changes in the
course as we moved to an open-source assembler.

Laboratory programming assignments are given electronically, typically once per week, over the
course of ten weeks. Students spend four hours in scheduled sessions per week, but are given the
option of working in the laboratory during other times as well. Assignments vary in difficulty
and complexity, from basic exercises in efficiency in MIPS to programming intricate routines to
handle external and internal interrupts with the Microkits. Each assignment also presents
students with opportunities to excel by electively choosing to attempt some of the more difficult
but otherwise optional features. Necessary algorithms and hints are provided both in the
description of the assignment and in the lab manual. Assignments are submitted and graded
electronically, but immediate feedback from tutors is also provided during students’ scheduled
laboratory sessions.

Typical laboratory assignments include MIPS efficiency, simple character I/O routines, self-
modifying code in MIPS (replacing a line of code with another), an RPN calculator, a ROT-13
converter on the HC11, and some programming exercises in procedure calls, recursion,
interrupts, and even binary search trees. All programs are written exclusively either in MIPS or
HC11 assembly language.

Making the Microkit

Work began in earnest after receiving funding from the Campus and the School of Engineering,
who initially split our $8,000 proposed budget for building 100 units. Of course, this was a true
engineering experience, and the final cost was about $12,000, supported in part by a generous
donation from Emeritus Professor Harwood Kolsky.

Initial discussions with faculty and technical staff quickly revealed that what we wanted
probably didn’t exist on the market, and a custom design was deemed too expensive. Rather
than try and rely exclusively on professional consulting services or purchase an existing system,
we decided, as a subordinate goal, to make the entire hardware phase of the project involve as
many students as possible. In other words, let engineering students drive the design. Hence, this
was subsequently offered as one of several candidate projects to the Fall Quarter session of
CMPE123, one of our upper division capstone engineering design classes.

A team of four students chose to collaborate on the project. They first created a timeline and
defined the usual industrial milestones to be met as the course progressed. Taught by Stephen

P
age 7.228.4

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Petersen, the instructor acted as project engineer and mentor with the students serving in various
engineering roles under him. The resulting division of labor had two students responsible for the
hardware design and two students for the software design. Everyone participated in hashing out
the overall system specification before beginning work on the prototype. This was an interesting
experience since the School of Engineering was the client, and the students needed periodic
consultations to confirm that what they were brainstorming was suitable, and affordable.

The team originally intended to base their design efforts on Motorola’s classic expanded bus
M68HC11EVB Evaluation Board.5 They began by reverse engineering both its assembly code
and circuit design, and quickly came to two conclusions: First, the EVB’s use of available
memory was insufficient as it implemented only a small portion of the available 64k. Since
undergraduates were making something for their colleagues, they wanted to give them the best
money could buy! Secondly, since the code was written exclusively in assembly language,
student’s found it primarily useful to understanding how the necessary context switch that would
be needed to run downloaded programs could be accomplished, but was considered inappropriate
for the ambitious and complex monitor program that was proposed. Thus, a decision was made
to develop an entirely new system utilizing the full 64k memory, wasting as little as possible, and
write the software primarily in C using assembly only where appropriate and necessary.

Basic features were then defined: the unit should have useful but intuitively simple I/O; a serial
interface to a laboratory host computer; LCD display; an external interrupt capability; must be
portable with SRAM battery backup; it should have an “open” hardware circuit board
architecture that would afford students a real open “touch and feel” without being fragile;
expansion bus capability for other possible uses than CMPE12C; it must be durable enough to
withstand toting about by undergraduates for 10 weeks, and should also have a realistic target
cost of about $100 for each unit. Initially the customer stated, “100 units would be sufficient”.
As a buffer for future attrition, 120 printed circuit boards were made during the printed circuit
board (PCB) production run, and eventually 120 Microkits were fully constructed. This was a
successful pilot project demonstrating the feasibility of student-designed printed circuit boards
using state-of-the art CAD tools that could be routinely included in project classes. A
commercial PCB house6 specializing in “quick-turn” or “rapid-prototype” engineering boards
was chosen for the first three prototype runs that produced boards in 24 hours at reasonable cost.
Two boards were made each time – a requirement of the PCB house. The final run of 120
finished boards used another vendor7 that best met our pricing goals. In each case, students were
exposed to using commercial vendors to render standard design output files as a professionally
prepared circuit board fully mimicking common industrial engineering practice. The final fully
assembled cost per unit was $118.

Additional funding of $4,000 beyond the original $8000 mentioned earlier was sought to cover
additional expenses, such as those incurred with the University’s Machine Shop to cut and drill
the thick plastic mounting hardware, and also to buy AC adapters and serial cables to connect the
Microkit to the general purpose campus-wide (i.e. non-engineering) lab computers maintained
and operated by the Computer And Telecommunications Services (CATS) staff. Moreover, both
the CATS labs and our own undergraduate engineering labs use PC’s running MS NT. We

P
age 7.228.5

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

sought and found a cost-effective cross-development package8 that would run on Microsoft (MS)
NT, allowing students in CMPE12C to both simulate as well as fully assemble their programs
and download them over the serial link at 9600 bps in Motorola S19 format using MS NT’s
HyperTerminal. At the time of this writing we are also experimenting with an open-source
assembler mentioned earlier that would enable home use of Microkits without separate software
licenses.

Following is a specification summary of the resulting hardware.

• 68HC11A8, expanded bus with 8MHz crystal.
• 32kx8 of program and code space organized from 8000h to FFFFh. A single 128kx8

Flash EEPROM (in a PLCC-52 socket) is used and divided into four external jumper-
selected pages of 32k each. The monitor program used in CMPE12C resides in page 0.

• 24k of fixed on-board user accessible static ram.
• One set of 8 SPST slide switches (not DIP switches) tied to an input port.
• One set of 8 red high intensity LED’s driven by an output port.
• One 8-bit digital to analog port with two outputs: (1) drives an AC 500mW audio

amplifier with potentiometer amplitude control. Speaker must be connected separately
via a 2-pin header connection. (2) DC output extended from the DAC to a 2-pin header
connection.

• A single 16 character by 2 lines LCD with intensity control.
• Single 8-bit unipolar DC analog to digital input port, 0 to 5.0V full range.
• Single 8-bit AC analog to digital input port: 50k input impedance, 4.5Vpp max.
• Jumper-selected AC or DC power source capability: (1) +7 to +25 VDC with reverse

polarity protection, or (2) +7 to +25 VAC-RMS.
• Available on-board DC voltages: +5V(digital), +6V(analog), -12V(analog).
• Fully buffered expansion bus: –12V and +5V DC available; four partially decoded ports

with 128 addresses each; first four bits of the address bus; two unbuffered A/D input
ports, 0 to 4.5V full scale range; cpu embedded port-A (PA0-PA7) for access to input and
output capture functions

• Single 9600 bps RS232c serial communications port.

The printed circuit board was fitted to the case and measures 5.65 x 8.0 inches (see fig. 1 below).
All IC’s are surface mount except those that students might in any reasonable way be able to
electrically connect to. For example, this applies to the transceiver chips (74ACT244, 245) used
with the bus expansion option, or several operational amplifier that interface the A/D and D/A
features. All leaded through-hole components that could be wiggled, fatigued, and eventually
broken were placed on the bottom of the PCB; this meant students had tactile access only to the
top of the board, and was a specification of the design – make it “student proof”. The one
weakness here is the eight light emitting diodes driven by a memory-mapped output port that
could, only with deliberate intent, be wiggled and broken. So far this has not happened. A later
version of the PCB might use surface mount LED’s instead. This was considered, but rejected at
the time of design due to cost.

P
age 7.228.6

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

David Meek, a technical staff engineer associated within the Engineering School, provided
invaluable advice throughout. He was enlisted to participate in helping us make final
vendor/component selections and handle all purchasing. He also served as mechanical system
integrator for the final top and bottom assemblies and latching case. This included mounting the
PCB, working out details of how to “student-proof” the liquid crystal display (LCD) in the lid of
the Microkit and helping with some form factor design issues, such as a robust chassis mounted
into an aluminum case; these were incorporated into the layout of the final PCB revision so that a
two-line alphanumeric display, serial cable, AC adapter, and expansion daughter cards would
mesh nicely with the finished unit. Following completion of the class, several dedicated
undergraduate volunteers did final production assembly and system testing. The first 60 kits
were assembled, tested and ready for issue less than six months after the initial prototype design
was done following the completion of the project class.

A total of 56 workstations in three CATS labs were initially outfitted to accommodate first use of
the now christened “12C Microkit”. Since the Microkit was portable, students could then use
any of these workstations to conduct their labs. These were often shared with other courses and
so were not always available to students. As a consequence of this and other mundane
administrative and logistic issues, we deemed the periodic process of quarterly checkout and
retrievals to be inefficient and time-consuming. Consequently, one of the University CATS
computer labs located conveniently inside the Baskin Engineering building was selected for
permanent installation as fixtures and has been in use since. There are now 27 permanent
stations reserved exclusively for use by CMPE12C students in this lab. This has freed up the
bulk of the kits to be made available to design courses where novel expansion features, such as
Ethernet or wireless communications capability, can be incorporated into a standard reference
base unit.

Several photographs of the finished Microkit are shown in Figures 1 and 2 following.

P
age 7.228.7

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Fig.1. Finished Microkit showing significant features: LCD, slide switches, LED’s, serial interface cable with DB25
connector, and protective plastic assembly.

P
age 7.228.8

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Fig. 2. Top view of the final PCB showing components. The slide switches and LED’s are both mechanically and
binary weight aligned (MSB is on the left). The white momentary pushbutton immediately to the left of the slide
switches is a software debounced maskable external interrupt. The white momentary pushbutton on the far left edge
is the system reset. A Type-1 external power plug can be seen in the upper right corner mounted with its three
soldered through-holes. The two empty sockets house the ROM (PLCC) and DAC (DIP16).

Results

Prior to this revision, CMPE12C was relatively isolated in the curriculum; students learned Intel
assembly language, unused in any of the following courses. The transition between the old
curriculum and the new one was indeed bumpy, especially during creation of the new laboratory
when the lab manual was being written. Undergraduates are enthusiastic about the use of the
hardware, and now have far better preparation for courses that follow. Every quarter, several
students ask if they can buy or build them. Microprocessor Systems Design has especially
benefited since students now come into that class already knowing the tutorial processor’s
assembly language. Inclusion of the Microkit has also enabled advanced work in later project
classes. The creation of the Microkit was itself a senior design project, and the kits continue to
be used as the basis for new senior design projects. Last year, a student in CMPE123
successfully designed an Ethernet adapter that interfaced to the Microkit over its expansion bus.
The small-group assembly language programming laboratories with their extensive tutoring
support has also eased many students through the change from procedural C to Java - with its
new object-oriented programming paradigm, which has many new foreign concepts. Overall
CMPE12C now provides students a better more uniform background in the elements of computer
architecture.

P
age 7.228.9

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

Several ideas are being entertained for the future. We are considering reversing the order of
assembly languages in class. This would enable students to begin working immediately with the
HC11 Microkits, seeing the hardware and making the lights blink early in the quarter. This
would be followed by a transition to the RISC assembly language - so necessary for discussing
modern pipelining and memory systems. After grasping the relationship to real hardware, the
conceptual move to simulation of hardware becomes more understandable, albeit less interesting.
We are also thinking about creating a stand-alone embedded systems course that would use the
Microkits and associated peripherals for projects such as programming and audio synthesis. This
would be a class primarily targeting computer science majors who do not wish to both build and
program such a system.

Feedback from students and faculty confirm we were successful in realizing both our primary
and secondary goals. Based on end-of-the quarter written evaluations, students have expressed
an overall increased satisfaction with the course and its contents. Although certainly not
earthshaking, compared to what we had before, this curriculum realignment has overall been a
phenomenal success. Indeed, we consider this to be one of Computer Engineering's most
effective curricular changes in recent years.

More information on the PCB hardware with a complete set of engineering schematics can be
found at: http://www.soe.ucsc.edu/~petersen/microkit. The CMPE12C laboratory manual and
course information can be found at http://www.soe.ucsc.edu/classes/cmpe012c.

Acknowledgments

In addition to the people mentioned above, this project would not have been possible without the
support of the UCSC Committee on Teaching, the Baskin School of Engineering, a gift from
Professor Emeritus Harwood Kolsky, Former Chair Joel Ferguson and Former Dean Patrick
Mantey, graduate student and instructor Cliffton McIntire, graduate student David Dahle, and the
many dedicated undergraduate laboratory tutors who have made this all work. Several
undergraduate students, notably John Dempsey and Hugo Condeso responded to help us paint
Tom Sawyer’s Fence by volunteering to learn how to work with surface mount components and
do the eternal and largely thankless task of final board assembly and system testing. The quality
of the finished PCB’s is due to solely to them.

We also particularly thank Motorola for their periodic donations each academic quarter of
hundreds of HC11 manuals.

References

[1] John Hennessy and David Patterson, “Computer Organization and Design: The Hardware/Software Interface”,

second edition, Morgan Kaufmann, 1998
[2] Goodman and Miller, “A Programmer’s View of Computer Architecture”, Saunders College Publishing, 1993.
[3] M68HC11 Reference Manual, Rev 4, Motorola Inc. 2001 (supersedes older Rev3 which is no longer available);

P
age 7.228.10

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2002, American Society for Engineering Education

 M68HC11E Family Technical Data, Rev 3.
[4] A. Carey, C. McIntire, J. Ferguson, R. Hughey, “Computer Engineering 12C Lab Manual”, 2000;

http://www.soe.ucsc.edu/classes/cmpe012C
[5] M68HC11EVB/D1 Evaluation Board User’s Manual, Motorola Inc.1986.
[6] Alberta Printed Circuits, Alberta Canada. Their proto-1 service has a reasonable flat fee and low additional

cost/sq. inch; no silk-screen or solder mask; minimum of 2 panels per run; limited drill rack;
http://www.apcircuits.com

[7] Advanced Circuits, Denver Colorado. An excellent cost-effective board house; http://www.4pcb.com/
[8] P&E Microcomputer Systems, Inc.: WinIDE11NT Editor/6811 Assembler, SIM11A 68HC11Ax Simultor;

http://www.pemicro.com.

STEPHEN C. PETERSEN is a professional Consulting Electrical Engineer also teaching part-time as a Lecturer in
Computer and Electrical Engineering. He received the B.S. and M.S. degrees, both in Electrical Engineering, from
San Jose State University, and is a Registered Professional Engineer in the State of California. His consulting
services include RF, analog, digital, programming and general R&D. He enjoys Amateur Radio, and holds an
Amateur Extra Class license, call sign AC6P.

ALEXANDRA CAREY is an undergraduate majoring in computer engineering and mathematics. She has served as
head tutor and as course assistant for CMPE12C several times. She is the primary author of the CMPE12C
laboratory manual, which includes numerous examples on programming in assembly language. She is working
with the Kestrel Parallel Processor team. Her interests include parallel processing, poetry, and swing dancing.

RICHARD HUGHEY received the B.A. in Mathematics and B.S. in Engineering from Swarthmore College, and the
Sc.M. and Ph.D. in Computer Science from Brown University, and is Chair at the Department of Computer
Engineering. His interests include parallel processing, bioinformatics, and curriculum development. His Kestrel
Parallel Processor project has included over 20 undergraduate researchers.

DAVID MEEK is a Development Staff Engineer with the Engineering School. His primary job responsibility is to
maintain, support and help with all aspects of the undergraduate Engineering Laboratories. Prior to coming to UCSC
he worked 10 years as a senior engineering technician for Apple Computer in the Advanced Technology Group.

P
age 7.228.11

