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Abstract—Image super-resolution (SR) refers to increasing the 
resolution of a low-resolution image to its corresponding high-
resolution version. In recent years, underwater images have 
become increasingly difficult to super-resolve due to various noise 
types, low contrast, uniform illumination, monotonous color, and 
complex underwater backgrounds. These challenges significantly 
affect the performance of SR models, making it difficult to 
extract accurate information. Data augmentation is a key strategy 
to address these issues, involving deliberate adjustments to a 
dataset to improve its diversity. Such adjustments include image 
rotation, flipping, s caling, b rightness, c ontrast, a nd saturation. 
Data augmentation plays a significant r ole, e specially i n deep 
learning applications with sparse training data, such as image 
classification a nd s uper-resolution, b y r educing o verfitting and 
enhancing model generalization. In this study, we evaluate the 
performance of various deep learning-based data augmentation 
techniques on underwater images, given that data augmenta-
tion has been widely used in deep learning applications to 
improve model generalizability and robustness. Using a variety 
of color and geometric augmentation approaches, the study aims 
to investigate the significance o f t hese s trategies i n t erms of 
image reconstruction quality and overall model training caliber. 
The results of this study demonstrate that data augmentation 
enhances the performance of super-resolution (SR) models in 
underwater conditions. The SR methods analyzed include Super-
Resolution Convolutional Neural Network (SRCNN), Super-
Resolution Deep Residual Multiplier (SRDRM), and Deep Self-
Attention Enhanced Super-Resolution (DEEP SESR), evaluated 
on the UFO-120 and USR-248 datasets. Notably, random flip 
augmentation achieved the highest PSNR of 26.3814 dB on 
the UFO-120 dataset using SRDRM and 26.3403 dB on the 
USR-248 dataset using SRCNN. Additionally, random saturation 
contributed to the highest SSIM values, reaching 0.7456 with 
SRCNN on UFO-120 and 0.7570 with DEEP SESR on USR-248.
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I. INTRODUCTION

Image super-resolution (SR) is a key challenge in computer
vision that reconstructs high-resolution (HR) images from their
equivalent low-resolution (LR) images [1].

Although SR has made great strides in recent years with the
emergence of deep learning, its application to underwater im-
ages is still a challenging problem. Underwater scenario imag-
ing is exposed to degradation like noise, uneven illumination,

less color variety, complex backgrounds, and low contrast,
which could affect downstream tasks such as object detection
[2]. Such conditions impede the ability of the SR models to
precisely reconstruct finer scale details, which, in turn, not
only degrades the reaching quality of the reconstructive images
but also the extraction of valuable data, as discussed by Islam
et al. [3], indicating how much SR performance underwater
can be impacted by these distortions.

Data augmentation (DA) has been proven as a successful
solution to these challenges. In other words, data augmentation
augments the robustness and potential of deep learning models,
which in turn increases the diversity of the training dataset
and converts it artificially using transformations like image
rotation, image flipping, image scaling, brightness, contrast,
and saturation changes. This approach has been especially
advantageous in such contexts with little or sparse training
data, as noted in the study of Shorten et al. [4], which trains
on the importance of the solution in mitigating overfitting for
several tasks in vision. The influence of data augmentation on
underwater image SR needs to be examined directly due to the
unique distortions in underwater environments. For instance,
the spatial relationship is important for SR tasks, which
suggests that augmentation strategies should be designed more
carefully, which is even more important in the underwater
environment, according to Yoo et al. [5].

A number of recent approaches have been proposed to
address this problem by gathering real-world datasets [6]–[8].
In many cases, acquiring such data on a large scale is often
time-consuming and expensive. However, that is where DA
can play an important role, but only a few studies have been
conducted [9], [10]. Radu et al. [10] investigated several meth-
ods for performance enhancement for example-based single-
image super-resolution (SISR), where one of them was data
augmentation. They found consistent improvements across
models and datasets, using rotation and flipping. However,
they only evaluated geometric distortions using traditional SR
models [11], [12]. Feng et al. [9] tested a method called
(Mixup [13]) on the example-based SISR problem. However,
the authors were only able to provide a general observation
employing a single U-Net-like architecture and evaluated the



method with the NTIRE2019 Real SR [7] dataset. In contrast,
our work is further distinguished through specific underwater
datasets (UFO-120 and USR-248), illustrating the various
degradation characteristics of aquatic environments, and by
evaluating different SR models. Unlike the narrow focus on
geometric augmentations in Radu et al. [10] or Feng et al.
[9] that functioned on the single model, we present color
augmentations (brightness, contrast, saturation) along with
a range of geometric (mainly flipping) methods aimed at
tackling the complex distortion behavior of underwater images
to provide a relatively wide picture of DA impacts on the
performance of SR.

In this study, we evaluate the impact of data augmentation
on underwater image SR by assessing three different deep
learning based models, such as Super-Resolution Convolu-
tional Neural Network (SRCNN) [14], Super-Resolution Deep
Residual Multiplier (SRDRM) [3], and Deep Self-Attention
Enhanced Super-Resolution (DEEP SESR) [15]. Dong et
al. [14] introduced SRCNN, a pioneering model leveraging
convolutional neural networks to map LR to HR images,
achieving superior performance over traditional methods by
learning end-to-end feature extraction. However, its simplicity
limits its ability to handle severe underwater degradation.
Extending residual learning by Islam et al. [3], the SRDRM
introduced deep residual multipliers for the enhancement of
feature recovery and showed a better performance for the
reconstruction of underwater images with the USR-248 dataset
but was still sensitive to noise and variance in illumination.
More recently, Islam et al. [15] proposed DEEP SESR, which
incorporates self-attention mechanisms to attend to critical
areas in the image, significantly enhancing detail recovery
in complex scenarios, though less investigated in underwater
settings.

We evaluate the effect of color-based and geometric aug-
mentation techniques on underwater SR tasks with an em-
phasis on reconstruction quality and training robustness. Our
results show that data augmentation is able to improve under-
water image super-resolution. The results emphasize that aug-
mentation can be a pragmatic preprocessing step to leverage
existing domain-independent SR models to make them tuned
for an underwater environment, opening new avenues for the
design of next-generation methods in this domain.

II. METHODOLOGY

This section focuses on the systematic methodology used to
analyze how data augmentation influences SR of underwater
images. We then describe the data enhancement techniques
used to increase the diversity and robustness of the data
sets, the models used, and the performance metrics used to
quantitatively capture the quality of the reconstructions and
the effectiveness of the models.

A. Data Augmentation Analysis

Our experimental dataset comes from underwater capturing
scenarios that have common problems like noise, low contrast,
and uneven illumination due to the wide variety of underwater

capturing environments, so data augmentation is an important
preprocessing step to enrich our dataset diversity. We will
detail our application specifics for each of these augmenta-
tion presets (brightness, contrast, saturation, random flip, and
combining all) to boost superficial performance in SRCNN,
SRDRM, and DEEP SESR.

1) Augmentation Techniques: We apply four different data
augmentation techniques to mimic real-world variations in
underwater images while keeping their meaningful content
intact. These methods include:

• Brightness Adjustment: In order to replicate the varied
lighting conditions typical of underwater scenes, bright-
ness modulation modifies the intensity of pixel values
in the image. Let I(x, y) represent the original pixel
intensity at coordinates (x, y), and let α be the brightness
scaling factor, where α ∈ [−1, 1]. The augmented pixel
intensity Ibright(x, y) is computed as [4]

Ibright(x, y) = I(x, y) · (1 + α) (1)

where α is randomly sampled from a uniform distribu-
tion as α ∼ U(−0.2, 0.2). This approach ensures that
the brightness variations remain within realistic bounds,
effectively simulating natural illumination changes.

• Contrast Enhancement: Contrast adjustment enhances the
difference between pixel intensities, helping to counteract
the low contrast commonly found in underwater images.
The adjusted pixel intensity Icontrast(x, y) is defined as
[16]

Icontrast(x, y) = I(x, y) · β + (1− β) · µ (2)

where µ represents the mean intensity of the image. β
is the contrast scaling factor, randomly sampled from
the uniform distribution expressed as β ∼ U(0.8, 1.2).
This ensures a balance between enhancement and detail
preservation, preventing excessive contrast distortions.

• Saturation Modification: Saturation adjustment modifies
the vibrancy of colors in an image, addressing the often
dull and monotonous color palettes found in underwater
environments. Given the saturation channel S and a
saturation scaling factor γ, the adjusted saturation Ssat
is computed as [16]

Ssat = S · γ (3)

where γ is randomly sampled from the uniform distri-
bution as γ ∼ U(0.8, 1.2). This ensures that satura-
tion adjustments remain within realistic bounds, avoiding
excessive color distortion while still enhancing visual
clarity.

• Random Flipping: Random horizontal or vertical flipping
introduces geometric diversity, helping to simulate differ-
ent underwater perspectives. This augmentation enhances
model robustness by allowing it to learn from varied
orientations of underwater objects. Given an image I of



size W×H , the flipping operations are defined as follows
[4]

HIflip(x,y)=I(W−x,y) (4)

VIflip(x,y)=I(x,H−y) (5)

Here, HIflip is Horizontal flip and VIflip is Vertical flip.
Each flip is applied with a 50% probability, ensuring that
the augmentation introduces sufficient variation without
over-distorting the training data.

• Combination of Techniques: To maximize dataset diver-
sity, we employ a combined augmentation strategy that
sequentially or concurrently applies brightness, contrast,
saturation, and random flipping. The overall transforma-
tion, denoted as Icombined(x, y), is expressed as

Icombined(x, y) = Tf (Ts(Tc(Tb(I(x, y))))) (6)

where Tb, Tc, Ts, Tf represent the brightness, contrast,
saturation, and flip transformations, respectively.

B. Model Analysis

This study examines how data augmentation affects under-
water image super-resolution (SR) on three popular models,
namely SCRNN, SRDRM, and DEEP SESR. SRCNN is
highly effective due to its simple and lightweight architec-
ture, making it an ideal choice for IoT-based devices. Its
efficiency enables rapid SR processing, particularly beneficial
for marine applications. SRDRM, a deep residual network-
based generative model, is specifically designed for underwater
image super-resolution, making it well-suited for autonomous
underwater robots. Unlike SRCNN, SRDRM employs ad-
versarial training and its objective function evaluates global
similarity, perceptual loss, and image content loss, enhancing
the quality of generated images. DEEP SESR is a residual-
in-residual network-based generative model designed for un-
derwater robotic vision, offering an efficient solution for near
real-time applications. It integrates residual dense blocks, a
feature extraction network, and an auxiliary attention network
to produce high-resolution images with enhanced perceptual
quality.

C. Experiment and Assessment

The proposed approach is evaluated on three state-of-the-
art (SOTA) SR models, namely SRCNN, SRDRM, and DEEP
SESR. Our models are trained and tested over two publicly
accessible underwater image datasets, UFO-120 and USR-
248. Islam et al. [15] provided a dataset named UFO-120
intended for Simultaneous Enhancement and Super-Resolution
(SESR) tasks, which comprises 120 synthetic test images and
1,500 synthetic training images. In contrast, the USR-248
dataset is designed for SISR tasks and consists of 560 low-
resolution images of multiple scales (80 × 60, 160 × 120,
and 320 × 240) along with 1,060 paired images for training
and 248 reference images for an extensive evaluation of the
model, as indicated by Islam et al. [3]. In this paper, we

focus only on 4X upsampling, where we upscale the low-
resolution USR-248 dataset (160 × 120) to 640 × 480 along
with the UFO-120 dataset, allowing us to directly visualize the
comparative performance of all three algorithms. The models
are trained separately on the training sets of UFO-120 (1,500
images) and USR-248 (1,060 paired images) for 130 epochs
using the Stochastic Gradient Descent (SGD) optimizer with
a learning rate of 0.0001, and tested on the respective testing
sets, which consist of 120 images from UFO-120 and 248
reference images from USR-248. For quantitative evaluation
of the upscaling performance, we follow the standard with
two full-reference metrics, Peak Signal-to-Noise Ratio (PSNR)
[17] and Structural Similarity Index (SSIM) [18]. Standard
practices for SR evaluation compute these metrics to determine
the fidelity between the super-resolved images and their high-
resolution ground truth, where larger values imply better
reconstruction quality.

III. RESULTS AND DISCUSSION

A. Quantitative Analysis

In the analysis of the UFO 120 and USR 248 datasets, data
augmentation is found to be effective in enhancing PSNR and
SSIM over models.

TABLE I
QUANTITATIVE EVALUATION OF DIFFERENT DATA AUGMENTATION

TECHNIQUES AT ×4 UPSCALING ON THE UFO-120 DATASET. THE BEST
VALUES ARE MARKED IN BOLD.

Augmentation Type SRCNN DEEP SESR SRDRM
PSNR SSIM PSNR SSIM PSNR SSIM

Without Data Augmentation 26.3444 0.7432 25.8940 0.7318 25.7659 0.7345
Random brightness 26.3730 0.7429 26.1144 0.7453 26.1361 0.7363
Random contrast 26.3811 0.7446 25.3001 0.7434 25.7867 0.7192
Random saturation 26.3627 0.7456 24.9079 0.7431 26.2387 0.7380
Random Flip 26.3746 0.7444 25.9431 0.7412 26.3814 0.7405
Combining ALL 26.3644 0.7440 25.7752 0.7456 26.1774 0.7374

TABLE II
QUANTITATIVE EVALUATION OF DIFFERENT DATA AUGMENTATION

TECHNIQUES AT ×4 UPSCALING ON THE USR-248 DATASET. THE BEST
VALUES ARE MARKED IN BOLD.

Augmentation Type SRCNN DEEP SESR SRDRM
PSNR SSIM PSNR SSIM PSNR SSIM

Without Data Augmentation 26.2673 0.7411 24.6241 0.7391 22.6721 0.7108
Random brightness 26.3386 0.7432 25.8136 0.7469 25.7462 0.7224
Random contrast 26.3031 0.7411 26.0062 0.7449 25.1678 0.7255
Random saturation 26.2996 0.7421 26.2996 0.7570 26.2746 0.7410
Random Flip 26.3403 0.7439 26.1415 0.7488 26.2962 0.7419
Combining ALL 26.3194 0.7423 26.2082 0.7503 26.1341 0.7323

We employ random contrast in SRCNN for the UFO 120
and achieve a top PSNR of 26.3811 dB, and for random
saturation, we achieve a top SSIM value of 0.7456 dB. In
Table I, it is clearly shown that DEEP SESR obtains the
highest PSNR of 26.1144 dB by applying random brightness,
while using all augmentation simultaneously achieves the best
SSIM performance of 0.7456 dB. On the other hand, SRDRM
obtains the highest performance from Random Flip, leading
to the highest value of PSNR 26.3814 dB and SSIM 0.7405
dB.

For USR 248, Random Flip greatly favors SRCNN with
the best PSNR of 26.3403 dB and SSIM of 0.7439 dB, thus



Fig. 1. Visual Comparisons for ×4 upsampling on Underwater Image sampled from UFO-120 dataset.

Fig. 2. Visual Comparisons for ×4 upsampling on Underwater Image sampled from USR-248 dataset.

TABLE II showing that this data augmentation technique helps
in the case of this model. Among all the transformations,
random saturation works best in DEEP SESR as it obtains
the highest PSNR of 26.2996 and the SSIM of 0.7570 dB,
demonstrating that color changes contribute to feature extrac-
tion based on our experiments. In terms of SRDRM, Random
Flip yields the greatest PSNR of 26.2962 dB, whereas most
improvements in SSIM of 0.7255 dB instead come from using
random contrast (Buffer). In conclusion, Random Flip and
Random Saturation seem to be the most useful techniques,
increasing accuracy by a great margin for both SRCNN and
SRDRM, whereas random saturation additionally enhances
DEEP SESR performance. After consistent data augmentation,
the PSNR and SSIM values are improved in contrast to basic
training without data augmentation.

B. Qualitative Analysis

Figures 1 and 2 show a qualitative comparison of superres-
olution results in the UFO-120 and USR-248 datasets. Links
to each dataset are also accompanied by an original and
low-resolution image, its corresponding ground truth high-
resolution image, and the outputs from each of the SRCNN,
DEEP SESR, and SRDRM models without and with data

augmentation. Significantly, based on DA, the super-resolved
images have better-defined edges, finer texture features, and
more uniform colors compared to those of the outputs without
DA, in which the blurriness and distortions are more dominant.
Among the models, SRDRM and SRCNN (with DA) produce
better visually pleasing results, particularly in retaining intri-
cate textures and reducing artifacts and color contrast. The
most notable improvement across all datasets is USR-248, with
which complex texture details such as turtle shells are sharply
defined and structured where augmentation-free training is not.
This qualitative comparison indicates that data augmentation
is crucial to improving performance, preserving details, and
increasing perceived quality.

IV. CONCLUSION

In this work, we study the effect of data augmentation
on underwater image SR on three state-of-the-art models,
namely SRCNN, SRDRM, and DEEP SESR. Our approach
was to expand the diversity of the data set employing image
augmentation techniques that involved adjustments in bright-
ness, contrast, and saturation, along with random flipping
and multiple combinations of these methods. We demonstrate
both qualitatively and quantitatively that data augmentation



improves super-resolution performance to some extent. Our
augmentation methods have proven successful at improving
reconstruction quality and providing robustness for underwater
image models. We plan to investigate more sophisticated aug-
mentation techniques, such as generative adversarial networks
[19] and adaptive transformations [20], with the goal of ap-
plying these methods to underwater super-resolution systems
across various aquatic environments.
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