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Abstract 

In recent years, there has been significant growth in analytics programs at the undergraduate and 

masters’ levels in Industrial and Systems Engineering (ISE) departments at universities across the 

country.  When teaching analytics techniques, especially predictive analytics, instructors are always 

looking for datasets that contain statistical characteristics that we want to discuss including multi-

collinearity, interaction effects between variables, skewed distributions, and nonlinear relationships 

between predictor and response variables.  Instructors generally must either search for existing datasets 

that have these attributes or create them “manually” using programmatic techniques.  An academic 

toolset to permit instructors to specify the statistical properties desired in an analytic, to generate 

multiple, randomized versions of this dataset (using a newly developed Python library), to provide 

automation for creating individualized datasets for each student (to avoid inappropriate collaboration on 

assignments and take-home exams among students), and to provide for automated grading support for 

assignments and examinations.   

This work is supported by a gift from the USC-Meta Center for Research and Education in AI and 

Learning. 
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Introduction and Background 

The teaching of predictive analytics techniques involves instruction on different statistical 

patterns that frequently occur in real-world datasets and algorithmic techniques to model these 

patterns as accurately as possible.  This work addresses three interrelated needs of instructors 

when preparing lecture examples and assessment exercises: 

• Generating datasets that contain desired statistical patterns and relationships as specified 

in a high-level series of commands. 

• Randomizing the datasets so that each student can receive unique datasets for assessment 

purposes. 

• Integrating with a commercial grading platform to manage the distribution, collection, 

and automatic grading of individualized assessments. 



For purposes of this discussion, we use the matrix notation of James, et. al. to describe our 

datasets [1] with 𝑛 observations and 𝑝 predictor variables: 

• An  𝑛 × 𝑝 “predictor matrix” 𝑿  where each column is an 𝑛 × 1 individual predictor 

vector 𝑿𝟏, 𝑿𝟐, …, 𝑿𝒑, where 𝑿𝒊 = [𝑥1𝑖 , 𝑥2𝑖, … , 𝑥𝑛𝑖]
𝑇 with 𝑥𝑖𝑗 representing the value of 

the 𝑗𝑡ℎ predictor variable for the 𝑖𝑡ℎ observation. 

• An 𝑛 × 1 “response vector” 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛] 𝑇 with 𝑦𝑖 representing the value of the 𝑖𝑡ℎ 

observation of the response variable  

• A basic model structure of 𝑌 = 𝑓(𝑋) +  𝜀 where 𝑌 is an 𝑛 × 1 “response vector”, and 𝑓 

is a fixed but unknown function. 

For an initial capability, we have identified the following statistical patterns in the predictor 

variables that we wish to be able to generate: 

• Multivariate normal predictors with specified mean vector and covariance matrix. 

• Skewed predictor variables specified as normal random variables with mean, variance, 

and skewness parameters 

• Uniform random predictors with specified maximum and minimum values 

• Discrete random variables with specified fixed probabilities for each discrete value 

We have also identified the following relationships between the predictor matrix and the 

response vector for automatic generation (all with one-hot-encoding of discrete predictors): 

• Linear regression model (with one-hot-encoding of discrete predictors) 

• Polynomial regression model 

• Linear model with interactive (multiplicative) predictors 

• Nonlinear (exponential) relationships between predictors and response 

Related Work 

A review of this field indicates that there is recent work in “synthetic dataset generation” which 

focuses on creating new datasets that mimic the distributions of existing real-world datasets to 

produce larger quantities of training data for machine learning and to anonymize sensitive data 

but that also includes the generation of datasets from theoretical distributions.  An overview of 

this topic is presented in the books Practical Synthetic Data Generation [2] and Synthetic Data 

for Deep Learning [3] 

There are libraries in the Python scikit-learn package [4] for generating classification and 

regression synthetic datasets (sklearn.dataset.make_regression and 



sklearn.dataset.make_classification), but they do not allow the specification of an underlying 

deterministic function.  It has been suggested that combining these functions with the capabilities 

of another Python package for symbolic mathematics (SymPy) could form the basis for the 

functionality desired for this project.  

Significant academic research on the topic of synthetic data generation was done by the 

Synthetic Data Vault project within the MIT Data to AI Lab (https://dai.lids.mit.edu/) which was 

recently transferred to a private company, datacebo (https://datacebo.com/).  Their core product 

is described in the paper The Synthetic Data Vault.  [4] 

Dataset Specification System 

We have developed an initial capability in the form of a Python library named analyticsdf built 

“on top” of the Pandas package.  Full documentation is located in the github repository 

https://faye-yufan.github.io/analytics-dataset/ and is summarized below. 

The analyticsdf class implements a single object called AnalyticsDataframe which consists of 

two data structures, predictor_matrix, a Pandas dataframe that represents the predictors (𝑿) and 

response_vector, a Pandas series that represents the response variable (𝒀). 

The class is instantiated with the method AnalyticsDataframe that is called with two mandatory 

parameters representing the number of observations (𝒏), the number of predictor variables (𝒑), 

and optional parameters predictor_names and response_vector_names, and seed which permits 

the optional specification of a seed to be used for all randomized methods using this object.  The 

seed variable can be used to control the generation of individualized analytic datasets for 

distribution to students.    

This method returns an AnalyticsDataframe class object which can be queried with the two 

attributes predictor_matrix and response_vector implemented as a Pandas dataframe and series 

respectively.  Both of these Pandas structures are originally populated with NaN values. 

The methods that have been implemented to date for the purpose of defining the statistical 

patterns in the predictor matrix are summarized below: 

• update_predictor_normal:  generates a continuous predictor matrix using a multivariate 

normal distribution based on a specified mean vector and covariance matrix.  This 

predictor matrix can be used to populate any combination of variables in the 

predictor_matrix object.   

• update_predictor_uniform:  generates a continuous predictor vector using a uniform 

distribution based on a specified min and max that can be used to populate any specified 

variable in the predictor_matrix object.   

• update_predictor_beta:  generates a continuous predictor vector using a beta distribution 

based on a specified alpha and beta that can be used to populate any specified variable in 

the predictor_matrix object.   

https://dai.lids.mit.edu/
https://datacebo.com/


• update_predictor_categorical:  generates a categorical predictor vector based on 

specified category frequencies that can be used to populate any specified variable in the 

predictor_matrix object.   

The methods that have been implemented to date for the purpose of specifying the relationship 

between the predictor matrix and the response variable are summarized below: 

• generate_response_vector_linear:  the basic method that allows generation of a response 

vector based on a linear regression generative model with specifications for the model 

coefficients and the variance of the error term. 

• generate_response_vector_polynomial:  a more advanced method that allows for 

specification of polynomial models with interaction effects between predictors and 

nonlinear relationships between the predictors and the response. 

The following two examples illustrate the use of these methods to create analytic datasets: 

Example 1: 

• Predictor matrix has 1000 observations and six attributes (X1, X2, X3, X4, X5, X6) 

• All except X6 are uniformly distributed with a min of 0 and a max of 100 

• X6 is a categorical variable with values of Red (30%), Yellow (40%), or Blue (30%)  

• The response variable has the relationship: 

𝒀 = 𝟏𝟓𝑿𝟏 − 𝟑𝟎𝑿𝟐 + 𝟐𝑿𝟐𝟐 + 𝟓𝑿𝟒 − 𝟐𝟎𝟎𝟎𝑰(𝑿𝟔 = 𝑹𝒆𝒅) +   
𝟏𝟎𝟎𝟎 𝑰(𝑿𝟔 = 𝑩𝒍𝒖𝒆) + 𝜺,  𝜺~𝑵(𝟎, 𝟐𝟎𝟎𝟎) 

The dataset specification code to generate this dataset is provided in the figure below: 



 

Figure 1:  AnalyticsDataframe Code to Generate Example 1 Dataset 

 

A dataset visualization routine has been developed to provide the educator with visual feedback 

regarding the dataset that has been specified.  Sample outputs for example 1 are shown below: 

 

Figure 2:  Univariate and Bivariate Visualizations of Example 1 Dataset 

 

Example 2: 

• Predictor matrix has 1000 observations and six attributes (X1, X2, X3, X4, X5, X6) 



• X1 through X3 are correlated normal random variables with a mean vector of [100, 80, 

120] and a covariance matrix of [
𝟏𝟎 𝟗 𝟒
𝟗 𝟏𝟎 𝟔
𝟒 𝟔 𝟐𝟎

] 

• X5 is uniformly distributed with a min of 0 and a max of 100 

• X6 is a categorical variable with values of Red (30%), Yellow (40%), or Blue (30%)  

• X4 is dependent on X1 and X3 according to the formula (creating a multicollinearity) 

𝑿𝟒 = 𝑿𝟏 + 𝟏. 𝟓𝑿𝟐 +  𝜺,  𝜺~𝑵(𝟎, 𝟐𝟎) 

• The response variable has the relationship: 

𝒀 = 𝐞𝐱𝐩 (𝟎. 𝟎𝟎𝟏 ∗ (𝟏𝟎𝟎 + 𝜷𝑿𝟏 + 𝟏. 𝟓𝑿𝟑 +  𝜺,  𝜺~𝑵(𝟎, 𝟐𝟎) 

Where 𝜷 = 𝟓 𝒊𝒇 𝑿𝟔 = 𝑹𝒆𝒅 𝒂𝒏𝒅 𝜷 = 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆  

The dataset specification code to generate this dataset is provided in the figure below: 

 
 

Figure 3:  AnalyticsDataframe Code to Generate Example 1 Dataset 

Auto-grading for Individualized Datasets  

Practical implementation of individualized datasets for homework and exams requires integration 

into an auto-grading framework.  After review of candidate frameworks, we have selected the 

Gradescope system from the company Turnitin.  [5]   Gradescope provides a highly configurable 

and flexible platform for auto-grading programming assignments that is integrated into its 

popular grading system (www.gradescope.com).   

http://www.gradescope.com/


Before describing the architecture for integrating our automated dataset generation capability 

into the Gradescope platform, we first present at a very high level the architecture of the 

Gradescope platform when used to auto-grade Python programming assignments in Figure 1 and 

described below: 

• The teaching staff creates the assessment with three components:  the assignment in the 

form of a Jupyter Notebook template that includes instructions for the student on the 

naming of the gradable result objects (can be a simple numeric variable or a complex 

object such as an Sklearn predictive model object), a dataset to use for the assignment, 

and an “assignment autograder”. 

• The assignment autograder is a zip file that includes three files:  a file that specifies the 

Python libraries that must be loaded (assignment.txt), a data folder containing all required 

datasets, and a Jupyter notebook file that contains the Python code that implements the 

autograding algorithms (assignment.ipynb). 

• The student completes the assignment and submits the solutions as a completed version 

of the Jupyter notebook in accordance with the assignment template. 

• When ready to grade, the autograder is executed by the Gradescope platform and 

evaluates each submission in accordance with the logic programmed by the teaching 

staff.  The grading results are passed to the Gradescope grading database via a JSON file 

named results.json and in the format specified at https://gradescope-

autograders.readthedocs.io/en/latest/specs/#output-format. 

 

https://gradescope-autograders.readthedocs.io/en/latest/specs/#output-format
https://gradescope-autograders.readthedocs.io/en/latest/specs/#output-format


 

Figure 4:  Gradescope Auto-grading Architecture (Python) 

The architecture of the integration of our automated dataset generation objects into the 

Gradescope auto-grading platform is depicted in Figure 2 and described below: 

• As with basic Gradescope functionality, the teaching staff creates the assessment with 

three components, but instead of a dataset the assessment package consists of a dataset 

specification that is coded using the Analyticsdf dataset specification system. 

• The analytic dataset specification is encrypted and inserted into the assignment template 

along with code the prompts the student to enter their student ID number which then 

generates the dataset for use on the problem by making the appropriate calls to the 

Analyticsdf dataset specification system. 

• The autograder then queries the Gradescope submission metadata to retrieve the student 

ID for the submission being graded by importing and reading the JSON file  (see 



https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/ for 

documentation of the JSON format). 

• The autograder re-generates the dataset that was used by each specific student and 

completes the built-in Gradescope auto-grading process described above. 

 

 

Figure 5:  Auto-Grading Architecture with Individualized Datasets 

 

Next Steps 

The primary near-term objective of the team is to complete the functionality to provide 

autograding of individualized datasets and test it with a beta test team consisting of student 

volunteers.  Assuming successful completion of that testing, we plan to implement it “live” with 

a predictive analytics class in the fall semester of 2023 and then make it broadly available for use 

by other instructors. 

https://gradescope-autograders.readthedocs.io/en/latest/submission_metadata/


A major planned enhancement to the generation of individualized datasets involves expanding 

the randomization beyond the residuals term to the randomization of the generative model 

coefficients. 

Also planned is expanded dataset functionality to include categorical response vectors, 

generalized linear models (primarily Poisson regression), and the incorporation of additional 

correlated predictor matrices (beyond the current multivariate normal) utilizing copula functions. 

Finally, we would like to make the use of this functionality more accessible to other instructors.  

The current Gradescope autograding architecture allows complete flexibility in structuring 

autograding rubrics, but with that flexibility comes a fair amount of complexity that may be 

daunting for many potential users.  We have ideas for GUI-based dataset specification and 

autograding rubric setup that we hope to explore in the coming months. 
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