
AC 2012-4437: AUTOMATED PROBLEM AND SOLUTION GENERATION
SOFTWARE FOR COMPUTER-AIDED INSTRUCTION IN ELEMENTARY
LINEAR CIRCUIT ANALYSIS

Mr. Charles David Whitlatch, Arizona State University
Mr. Qiao Wang, Arizona State University
Dr. Brian J. Skromme, Arizona State University

Brian Skromme obtained a B.S. degree in electrical engineering with high honors from the University of
Wisconsin, Madison and M.S. and Ph.D. degrees in electrical engineering from the University of Illinois,
Urbana-Champaign. He was a member of technical staff at Bellcore from 1985-1989 when he joined Ari-
zona State University. He is currently professor in the School of Electrical, Computer, and Energy Engi-
neering and Assistant Dean in Academic and Student Affairs. He has more than 120 refereed publications
in solid state electronics and is active in freshman retention, computer-aided instruction, curriculum, and
academic integrity activities, as well as teaching and research.

c©American Society for Engineering Education, 2012

P
age 25.242.1

Automated Problem and Solution Generation Software for
Computer-Aided Instruction in Elementary Linear Circuit

Analysis

Abstract

Initial progress is described on the development of a software engine capable of generating and
solving textbook-like problems of randomly selected topologies and element values that are
suitable for use in courses on elementary linear circuit analysis. The circuit generation
algorithms are discussed in detail, including the criteria that define an “acceptable” circuit of the
type typically used for this purpose. The operation of the working prototype is illustrated,
showing automated problem generation, node and mesh analysis, and combination of series and
parallel elements. Various graphical features are available to support student understanding, and
an interactive exercise in identifying series and parallel elements is provided. When fully
developed this engine will be incorporated into a tutorial system designed to supplement
conventional instructional approaches.

1. Introduction

1.1. Motivation

Basic linear circuit analysis is frequently a fundamental engineering core course requirement for
electrical engineering nonmajors, as well as for electrical engineering majors, and is therefore a
very widely taught subject. For electrical engineering majors, the skills learned in this course are
essential for their success in subsequent courses. A bad or unsuccessful learning experience may
cause students to change their major or drop out of engineering altogether. Traditional lecture-
based instruction uses a “one size fits all” approach that fails to adapt to the widely varying
learning styles and backgrounds of the students. The goal of this project is to develop computer-
aided instruction tools to increase the student success rate in this course by adapting to the needs
of individual students. Such tools could be used in a wide variety of ways to supplement either
traditional lecture methods or various interactive learning strategies.

The difficulties students encounter while mastering basic linear circuit analysis, in our opinion,
often result from a failure to incorporate sufficient active and/or cooperative learning activities in
the course, a lack of immediate and effective feedback in homework assignments, and an
insufficient number of textbook examples designed to gradually increase in difficulty. Also,
errors are sometimes present in textbooks in the worked examples, the problem answers, and the
worked solutions, in our experience, as a result of the complexity of generating and solving
linear circuit problems by tedious manual methods. Such errors can be very frustrating to
students who depend on the correctness of their textbooks, causing them to waste study time and
even give up trying to learn at times. Our computer-aided instruction tools are designed to
remediate these problems by instantly generating example linear circuit problems that are
tailored in size and complexity to an instructor’s requirements and preference, solving those
problems by the methods typically taught in elementary textbooks, automatically checking
student solutions, and displaying detailed solution steps with the correct numerical answers.

P
age 25.242.2

Another issue is that textbook solution manuals and old homework solutions are widely available
on the Internet, which can encourage students to merely “copy” their solutions from these
manuals. Computer-generated problems can be new and unique to every student, greatly
reducing incentives for behaviors that bypass the learning process.

Another key pedagogical issue is that most textbooks (and also perhaps, instructors) do not
recognize or address the typical misconceptions new engineering students have about electricity
and electrical circuits when they enter the course. The need for instructors to address pre- or
misconceptions has become broadly known in the physics education community,1,2 but remains
less familiar to most engineering faculty. Such faculty are often not familiar with the extensive
literature on student misconceptions related to electricity and circuit analysis,1,3-11 or else assume
(often incorrectly) that such ideas have been “rooted out” in the elementary physics classes. Our
own experience administering questions from concept inventories such as DIRECT1 to students
in circuit analysis classes, as well as that of others,3,4 strongly suggests otherwise. Our plan is to
use our computer-aided instruction tools to help remove a number of typical student
preconceptions by providing tutorial sequences that require students to correctly master selected
basic circuit concepts such as identifying whether circuit elements are in series or parallel,
without deriving circuit solutions.

1.2. Background

Various prior projects have used computer-aided instruction in courses on linear electrical circuit
analysis.12-41 The approaches have involved developing intelligent testers and/or tutors,
automated rapid grading of homework and/or quizzes, which are sometimes algorithmic in
nature (i.e., the numerical values are varied for each student); expert-based advice on selection
of optimal circuit-solving strategies; development of multi-media modules for circuit instruction;
visualization tools to illustrate circuit behavior; introduction of design topics; use of symbolic
circuit analysis programs; and creation of an interactive virtual classroom. The pioneering
CircuitTutor software developed by Oakley18,19,25 was even successfully commercialized for a
time through Addison-Wesley,42 but is now unfortunately obsolete and out of print. While all of
these contributions provide useful insights and ideas, many have been only partial prototypes,
have covered only limited topical areas, and have very rarely included a facility for automatic
problem generation.32,33 The impact on student learning has not been rigorously established in
most cases.

Sustained commercialization of computer-based tools used to teach basic linear circuit analysis
has only been achieved to date through textbook publishers, who frequently create elaborate
websites with software tools to support their textbooks. Typically, these sites include electronic
versions of the textbooks, banks of pre-defined problems from the textbook, (possibly) additional
problems, additional worked examples, and some algorithmic problems with the element values
varied for every student. The websites may also offer software modules to assign and grade
homework with an online grade book and an electronic version of the solution manual.
Sometimes, PowerPoint slides, artwork, animations, videos of textbook problems being worked,
and multi-part problems with hints and hyperlinks to relevant sections of the textbook are
available. Generally, however, detailed step-by-step interactive tutoring, automatic problem or
solution generation, and automated grading of responses other than numerical or multiple-choice

P
age 25.242.3

answers are not available. And, usually, there is no provision for students to enter circuit
diagrams or draw waveforms in a form that can be automatically graded or assessed.

While these web sites are useful adjuncts in teaching the course, they do not offer instruction that
can be tailored to the needs of individual students, directly address student misconceptions, or
permit significant tutorial interactions. Their principal advantage is that they are supported by the
publishers while the relevant book remains in print (typically through many editions), and are
therefore sustainable. Moreover, they benefit from the extensive marketing and distribution
systems of the publishers. The relevance of such software appears to be increasing steadily. The
goal of the present project is therefore to produce software tools that can eventually be integrated
into publisher-based systems, providing more in-depth instruction.

1.3. Project Overview

The initial phase of this project is focused on the development of a circuit problem and solution
generation engine, which will later be incorporated into a full tutorial system with a variety of
interface modules to accept and analyze various forms of student input. The engine is designed
to provide an unlimited supply on demand of circuit problems of specified complexity, where
both the topology and circuit element values are randomly selected. Further, the system will
generate fully illustrated, step-by-step solutions (not just answers) to these problems, which are
free of the errors that frequently plague human-generated solutions. The solution methods will
include the heuristics typically taught in elementary circuit analysis courses, which distinguishes
our approach from the numerical modified nodal analysis approach taken by programs such as
SPICE. This engine can be used in many ways, such as providing problems and solutions to an
interactive tutorial interface, generating worked examples for students, providing both examples
and problems (with solutions) for possible incorporation into textbooks, providing exercises for
use in collaborative learning sessions, generating unique homework sets of uniform difficulty
that can be automatically graded for every student in a class, creating examination and quiz
problems, and so forth. A programmatic interface is provided so that either a graphical user
interface or some other program can request and receive problems (including graphics) from the
generation engine.

The initial phase of the project has focused on DC circuits, but the same basic algorithms will
later be adapted to transient circuits, steady-state AC (phasor) analysis, and Laplace domain
analysis. The existing prototype generates random circuits of specified types to solve and draws
them (using a PowerPoint interface for the time being), and performs node and/or mesh analysis,
with or without pre-simplifications involving the combination of series and parallel circuit
elements. For simplicity, we lay out all of our circuits on a square grid, where the circuit
elements lie on the edges of the grid squares (no diagonals). This approach is actually quite
general as it can be used to draw any planar circuit, which is the type almost always encountered
in textbook problems.

In the following, we describe the basic algorithms underlying our circuit generation and solution
engine in some detail, as this problem is rarely discussed in the literature. We are aware of only
one other project that has developed automated circuit generation routines, which however do
not appear to be guaranteed to provide planar circuits suitable for mesh analysis and which have
not been demonstrated to generate actual circuit diagrams.32,33 We subsequently discuss the

P
age 25.242.4

graphical features provided to enhance student learning and illustrate an example of a tutorial
approach to help students learn to recognize when elements are (or are not) in series and parallel.
This issue is at the root of many typical student errors, in the authors’ experience.

2. Circuit and Solution Generation Engine

2.1. Circuit Generation Algorithm

Two general approaches could be taken to randomly create circuits of a desired nature. One can
create a layout of a circuit and from that extract the circuit “netlist,” which is the abstraction
typically used in nodal or modified nodal analysis. The latter consists of a list of the circuit
elements, the nodes to which they are connected (where the order of the nodes specifies polarity
if applicable), their values, and the specification of control variables in the case of dependent
sources. Alternatively, one could create circuits abstractly in the form of netlists or circuit
graphs, followed by a procedure to generate corresponding layouts. In this project we selected
the former approach. Our rationale is in part that circuits that are topologically equivalent may
not always be recognized as such by beginning students, and can therefore be considered distinct
for pedagogical purposes. Furthermore, our approach guarantees planar circuits that are suitable
for mesh analysis, which may be difficult to ensure in a graph-oriented approach. Also, it is
easier to program netlist extraction than a layout algorithm.

As noted above our circuits are always laid out on a square grid of points for simplicity. The
grid is defined to consist of a rectangular array of m × n squares, whose (m+1)(n+1) corners are
connection (grid) points and whose 2mn+m+n edges (which we denote as segments) may be
short circuits (wires), open circuits (blanks), or ideal circuit elements chosen from resistors,
capacitors, inductors, independent voltage and current sources, dependent voltage or current
sources, or single-pole single-throw switches. (Ideal operational amplifiers and transformers will
be added later, along with mutual inductances, but those cases require special approaches not
discussed here.) Neglecting switches for the moment (needed only for transient circuits), there
are therefore nine possible items that can be placed on each of the segment (including shorts and
opens). Note that a node can consist of multiple grid points connected by shorts, and meshes
may consist of one or more adjacent squares (due to segments that are open circuits).

It might well be thought (by those who have not actually tried to do it) that one could generate
circuits simply by randomly “throwing” such items onto the grid, and then examine the resulting
circuits and throw away those that are not “valid” problems for students (based on criteria that
are defined below). The problem is that for all but the very smallest circuits, the number of
possibilities that must be examined becomes incredibly large and only a tiny fraction is valid,
rendering this approach completely unworkable (even if problems are generated in advance and
stored). The problem is much like waiting for the proverbial monkey to type one of
Shakespeare’s plays by random chance. Even for a very small case with m=2 and n=1 and
therefore 7 segments, 79 ≈ 4.8x106 circuits are possible (where element values are not yet
selected).

P
age 25.242.5

2.2. Stepwise Approach to Circuit Generation

To make this problem more tractable, we use two basic strategies. First, we generate circuits by
a series of three successive steps. (The second strategy, discussed in later sections, involves
using techniques to ensure that the results of each generation step are automatically valid to the
extent possible.) In the first circuit generation step, we place only open and short circuit
elements on the grid, with the understanding that open circuits will always remain open, but
short circuits may either remain as such or be replaced by other circuit elements (but not opens).
We call the resulting grid of lines [illustrated in Fig. 1(a)] a circuit topology. This topology
defines the ultimate number of meshes in the circuit, the number of “active” points in the grid
(that have one or more connection to them), and the number of “active” segments (that are not
merely open circuits). For m=2 and n=1, there are now only 72 =49 such possible topologies.
“Invalid” topologies are rejected, and only valid ones
can be used in the second step (validity is discussed
below).

In the second step, some of the active segments in the
topology are replaced (“populated”) by generic circuit
elements (represented as boxes), as shown in Fig.
1(b). The number so replaced in this “populated
topology” is the desired number of nontrivial circuit
elements in the circuit (i.e., branches in the
terminology of network theory). The generic
elements are all later replaced by specific circuit
elements, but shorts that remain will stay as shorts.
The number of possibilities is now only the number
of active segments raised to the power of two, and
thus still modest. The populated topology now has
specific numbers of nodes and branches as well as the
set number of meshes established in the topology
generation step.

In the third step, the generic elements are all replaced
by specific circuit elements, based on the desired
number of each in the circuit. Each of those elements
is assigned a randomly chosen value (within a user-
specified range), and control variables are selected for
dependent sources as the currents or voltages of other
branches in the circuit. A sample result is shown in
Fig. 1(c). The detailed procedure is designed to
ensure circuit validity as discussed below.

2.3. Strict Requirements for Valid Circuits

Circuit problems are considered unacceptable if they
either 1) have no valid, unique solution (insoluble), or
2) are not of a type that is typically assigned to

(a)

(b)

(c)

5 Ω

+

–
Vo 4 Ω 9 A

Io

7 Ω

4Ix Ix

6 Ω

1 Ω

5 Ω

7 Ω
– +
6 V

Fig. 1. The three stages of the circuit
generation process. (a) Circuit
topology (line segments). (b) Topology
populated with generic circuit elements.
(c) Placement of actual circuit
elements. The student is asked to
compute Io in this problem.

P
age 25.242.6

students in an introductory linear circuit course, as exemplified by problems in the major
textbooks used in this area. Some exceptions may be made in the second case for occasional
problems assigned for specific pedagogical reasons, but not routinely. Criterion 1 is discussed in
this section and Criterion 2 in the next section.

Insoluble problems occur when either independent or dependent sources are arranged in an
inconsistent fashion, or circuits containing dependent sources have no valid solution (which
typically occurs for specific values of gains along with specific element values). An example of
the former (inconsistent) case is two or more current sources in series with different current
values, or two or more non-identical voltage sources in parallel. One of these sources might be a
dependent source, in which case the circuit is inconsistent unless the control variable is forced to
have some very specific value (which would be of purely pedantic interest). For this purpose, we
include short circuits as being ideal voltage sources whose voltage is zero, and open circuits as
ideal currents sources whose current is zero. I.e., a current source cannot be in series with an
open circuit or a voltage source in parallel with a short circuit, as Kirchoff’s current law (KCL)
or voltage law (KVL) would be violated, respectively. Furthermore, for DC or transient circuits
we must consider capacitors to be open circuits and inductors to be short circuits in this
prohibition (transient circuits must be consistent when they are in steady-state).

We must actually generalize the restrictions on series and parallel sources to ensure that neither
KCL nor KVL is violated and that all node voltage have uniquely determined values. No star
(set of elements all connected to a common node) should consist entirely of independent or
dependent current sources (which include open circuits, and capacitors in the DC case) whose
values result in a violation of KCL. This restriction generalizes the case of sources in series,
which involves one or more stars of only two elements. (Application of this rule will
automatically take care of elements that are in series with elements in a branch of the star, since
they introduce other nodes to which the same rule is separately applied.) Even if the sources
satisfy KCL, the central node in the star has an indeterminate voltage and the node equations are
therefore not uniquely solvable with a single reference node. Similarly, no loop in the circuit
should consist entirely of independent or dependent voltage sources (including short circuits and
inductors) whose values result in a violation of KVL. This rule generalizes the case of parallel
voltage sources, as each set of parallel sources forms a loop. Even if the sources satisfy KVL,
the mesh currents will not be uniquely determined in this case. To ensure that both node and
mesh equations have unique solutions we must never allow a star of current sources or a loop of
voltage sources (including capacitors or inductors in the DC/transient case and open or short
circuits in all cases in this prohibition).

A further generalization is actually necessary to guarantee solvability of node or mesh equations.
A “deactivated” or “dead” circuit (in which all independent voltage sources are replaced by short
circuits and all independent current sources are replaced by open circuits, i.e., turned off) must
be fully connected for the node equations to have a unique solution. This statement is proven
rigorously, e.g., by Davis.43 It generalizes the requirement on stars discussed above, since the
node at the center of the star will be isolated in the dead circuit if the star consists entirely of
current sources. Similarly, the mesh equations have a unique solution (unique set of mesh
currents) only if the corresponding dead circuit is “coupled,” meaning that one can pass from any
mesh (including the exterior mesh) to any other by passing over a shared resistor.43 Any loop
consisting only of shorts and voltage sources will cause this test to fail.

P
age 25.242.7

Unique solvability of both node and mesh equations is readily achieved by placing all inductors
and voltage sources on the twigs of some valid tree of the circuit, and all capacitors and current
sources on the links of that same tree. By definition, a tree is a set of branches (called twigs) that
connects all nodes but does not contain any loops.44 Deactivating all sources cannot leave a node
isolated and result in a disconnected circuit if the sources are placed as specified. Moreover, the
deactivated circuit consists only of twigs in this case, so there cannot be any decoupled meshes
(there are no loops at all!). For steady-state sinusoidal AC circuits, the placement of the
capacitors and inductors does not need to be restricted (as long as we avoid zero frequency), only
the current and voltage sources.

Situations where inconsistencies occur due to specific values of dependent source gains and
element values are more difficult to avoid. As this situation occurs rarely, we find that simply
rejecting circuits where the node equation matrix is singular and re-starting the circuit generation
routine in this case is an entirely satisfactory approach. The re-starting is performed a limited
number of times but very few re-starts are typically necessary.

2.4. Desired Optional Features for Most Circuits

The above approach guarantees a circuit that can be solved. Other optional criteria that we
usually wish to fulfill, to make the problems of a type that is typically assigned are as follows:

1. The graph of the circuit should be fully connected. (The existence of a valid tree as assumed
above is only valid for a connected circuit.) Circuit graphs consisting of multiple unconnected
sections usually reduce to multiple independent problems (unless they are linked by dependent
sources whose values in one circuit section depend on control variables in another section), and
there appears to be no point in creating such problems. This criterion can be applied in the
topology generation step; a connected topology cannot yield an unconnected circuit.

2. In addition to being connected, circuits should normally not be “hinged.” A hinged circuit is
one that can be drawn in a way such that two or more sections are connected to each other by
only a single wire or circuit element.45 Since KCL implies that the current through such a wire
must be zero, the different portions are essentially isolated (except for a common potential
reference) and amount to multiple independent problems (except again when linked by
dependent sources). Simple transistor models (without external circuitry) are often hinged, so
that one might occasionally wish to allow such circuits, but not as a routine matter. Some
topologies are hinged [as in Fig. 2(a)], and are rejected, as they will always yield hinged circuits.
A special case of a hinged topology is one where a circuit element is “dangling,” or not
connected on both ends.

Other topologies become hinged only after they are populated in particular ways by generic
elements [Fig. 2(b)], so that one must inspect for hinging both before and after the generic
population step. Unhinged populated topologies cannot become hinged during element
placement. A hinged topology can be recognized by testing if it turns into an unconnected
circuit when a single grid point (and the segments attached to it) are removed. A hinged
populated topology is most easily tested by forming the associated netlist and determining if the
circuit so represented becomes disconnected after removing any node and the elements P

age 25.242.8

connected to it, or if any element is
connected on both ends to the same node
(shorted). Shorted elements obviously play
no useful role in the circuit.

3. Circuit elements that are redundant and
serve no useful purpose should normally be
avoided. Such elements occur whenever a
star has only one element that is not a
current source or a capacitor (the latter for
DC circuits). The current through this
element (whether it is a voltage source or a
passive element) is then fixed by KCL, so
that element itself has no useful function
(except possibly in practice, e.g., a series
resistor used to monitor the output of a
current source). A special case is a voltage
source in series with a current source, where
the voltage source serves no useful function.
Similarly, any element that is the only one
in a loop that is not a voltage source (or
inductor, for DC circuits) has a voltage
fixed by KVL and is also redundant,
whether it is a current source or a passive element. A special case is a current source in parallel
with a voltage source, where the current source serves no useful function.

In other words, all stars should have at least two elements that are not current sources or
capacitors, and all loops should contain at least two elements that are not voltage sources or
inductors. These conditions are more restrictive than the conditions stated above to avoid
inconsistencies (that at least one element of the specified type should be present in each star and
loop). We enforce this rule when placing circuit elements, by an algorithm that rules out
placements that would violate it. We provide user-selected options to avoid all redundant
elements, to avoid redundant sources but allow redundant passive elements, or to permit all
redundant elements. A fully rigorous test for redundancy would also disallow any situation
where the corresponding dead network is either unconnected or hinged (a generalization of the
test discussed above for the solvability of the node equations). Equivalently, any cutset
(including stars as a special case) would have to contain at least two resistors. To date we have
not enforced this additional restriction.

4. In general voltage sources in series with each other and current sources in parallel with each
other are allowed, but given that they could be combined to form a single equivalent source, we
provide an option to limit the maximum number of each to any value ≥ 1. These restrictions are
enforced when placing circuit elements.

5. We prohibit meshes in our layouts that consist entirely of wires (shorts), as they serve no
useful function. Moreover, allowing such a case would reduce the actual number of meshes in
the topology to a smaller number after populating it with generic elements, so that the desired

(a)

(b)

Fig. 2. Examples of (a) a hinged topology; and
(b) a topology that became hinged only after
population with generic elements. The two
elements at upper right are effectively isolated
from the remainder by a path of shorts (the
circuit could be re-drawn such that the two parts
are connected by a single wire).

P
age 25.242.9

number of meshes would no longer be achieved. This restriction is enforced during population
with generic elements by insisting that each mesh contain at least two circuit elements. A mesh
containing only one circuit element would automatically have a shorted element and therefore be
hinged. (Loops that consist entirely of shorts and that are not meshes are automatically
prohibited because they would make the circuit hinged by isolating the portion inside the loop
from that outside it.)

6. A circuit layout on a grid of m × n squares is not considered acceptable unless the topology
extends the full length and width of that grid. If it does not, it should be classified as a proper
layout only on a suitably smaller grid. We enforce this rule in our topology generation
algorithm. One could also reject populated topologies where two or more rows or columns
consist entirely of shorts, as they could be “collapsed” onto a smaller grid and are therefore
really of a smaller size than that desired. We have not yet enforced this restriction, however.

7. Typically we prohibit problems in which all node voltages are determined directly by voltage
sources, or in which all mesh currents are determined directly by current sources. Such problems
are relatively trivial for node or mesh analysis, respectively, and are therefore avoided. They can
be allowed in some cases for pedagogical purposes and there is a program switch to do so.

8. Many textbook problems are designed with the bottom row consisting entirely of wires, so
that it becomes a natural choice of ground. Such a feature could be incorporated but it does not
seem fundamentally important so we have not done so to date.

2.5. Restrictions on Control Variables for Dependent Sources

The vast majority of textbook problems (and practical applications) involve dependent sources
whose output is controlled by a current through or a voltage across a passive element rather than
by a current through or a voltage across another source, so we enforce that limitation. A
dependent current source should not be in series with the branch on which the control voltage or
current is defined, as it causes a fundamental inconsistency unless a specific gain is chosen (and
is equivalent to a short circuit if the required gain is chosen). Likewise, a dependent voltage
source should not be in parallel with a branch on which the control variable is defined, as it
would be either inconsistent or equivalent to an open circuit. These statements could be
generalized to stars whose branches are all current sources except for one passive element on
which the control variable defined, and where one of the sources is the dependent source in
question. However, we already prohibit such stars when redundant circuit elements are being
avoided as discussed above, so this generalization is generally unneeded. Similar comments
apply regarding generalization of the parallel case to loops of mostly voltage sources.

Furthermore, dependent voltage sources that are in series with resistors on which their control
variables are defined are equivalent to resistors of certain values (which might be negative), so
there seems to be little point in general to allowing such cases. The same comment applies to
dependent current sources that are in parallel with resistors on which their control variables are
defined. We therefore avoid using any branches that are in series or parallel with any dependent
source to provide the control variable for that source. This prohibition is enforced when
choosing control variables for dependent sources, which is done after placing all the elements

P
age 25.242.10

including those sources in the circuit. Each branch voltage (or those in parallel with it) and
branch current (or those in series with it) can be used only once as a control variable.

The above series/parallel restrictions must be relaxed when dependent sources are introduced in
single loop or single node-pair circuits, as they are in some textbooks. That case might be
considered useful for pedagogical purposes (to introduce the idea of dependent sources using
very simple circuits), but practical circuits would never be of this type.

2.6. Topology Generation Algorithm

The simplest strategy to generate a valid topology would be to place wire segments onto a grid at
random, and reject any resulting topologies that are disconnected, hinged (including a dangling
wire), or do not have the desired number of meshes. We have however designed a much more
efficient algorithm to guarantee circuits that are connected, have no dangling segments,
completely use the width and length of the pre-defined grid dimensions (m x n squares), and
have at least the required number of segments to accommodate the desired number of circuit
elements. This algorithm works by selecting the first point at random in the grid, then randomly
attaching a (shorted) segment to it in some direction. Then, a point having a connection is
picked at random (provided there is room to add another segment connected to it) and a new
segment is randomly attached to that point, building a branched structure that may contain loops.
This process is repeated until at least the required minimum number of segments has been
placed. Then, if there are any dangling segments (i.e., points with only one segment connected
to them), additional segments are randomly added by the same process until all dangling
segments are eliminated.

Next, if the network does not extend the full length and width of the grid, additional segments
are randomly added until it does. Throughout this process, points with only one existing
connection are given preferential weighting as the source for a new segment, to avoid creating
additional "branching" in the layout. Also, segments that would continue along a straight path
instead of turning are given preferential weighting to help “fill out” the topology on a larger grid
and create meshes more readily. The weighting factors were empirically optimized. The
resulting topologies are not guaranteed to have the correct number of meshes or to be unhinged,
but those requirements are checked and the process simply repeats if they are not. A small
number of attempts is typically needed.

2.7. Algorithm for Generic Population of a Topology

The second step in circuit generation is to replace some of the wire circuits in the topology with
generic circuit elements. We use an algorithm that is designed to minimize the probability that a
populated topology will become hinged after population. Any populated topology (layout)
having a path of shorts extending from one point on the exterior of the circuit to a different point
on the exterior (where the path cuts across the circuit and is not part of the exterior mesh) will
cause the layout to be hinged. Also, any mesh that does not contain at least two generic elements
(including the exterior “mesh” around the outside of the circuit) will result in either a mesh of
shorts if it has zero elements (which we wish to prohibit as explained above) or a single element
that is shorted by the remainder of the mesh (which constitutes a hinged circuit). Thus, every
circuit with M meshes requires at least M+1 generic elements, where M–1 of them are placed on

P
age 25.242.11

segments that are shared between two meshes and the remaining two are placed on exterior
segments (part of the exterior mesh and therefore unshared). Some topologies require more
elements than this to avoid being hinged (e.g., by a path of shorts), but this is a minimum.

The algorithm proceeds as follows. We first place an element on every segment that directly
connects two points on the exterior mesh (and that is not itself part of the exterior mesh). We
then randomly place elements on shared segments until M–1 total have been placed on such
segments (but with no more than two per mesh). Elements are then placed on two randomly
chosen exterior segments, but again placing no more than two per mesh. At this point, additional
elements are placed on any mesh that does not already have two elements. Finally, any
additional elements that need to be placed are placed randomly anywhere. A netlist is then
extracted for the resulting layout, and tested and rejected if it is found to be hinged (but this
happens very rarely using this approach). In case of rejection the process is repeated.

2.8. Algorithm for Element Placement

The populated topology is next examined to identify all elements in series and parallel, which
can be determined at this stage. As our element placement algorithm is based on trees and
cotrees of the circuit as discussed above, we use a recursive algorithm similar to that described
by Grimbleby46 to find all or many of the possible trees for the populated topology. One of these
trees is selected at random. The twigs of the tree are then populated randomly by the specified
numbers of both independent and dependent voltage sources and inductors, using a complicated
algorithm that limits the number of voltage sources in series to a specified value and avoids most
redundant sources and passive elements as discussed above (if the user so specifies). This
process converts formerly generic elements into the desired types. The links of the tree are then
populated by the specified numbers of independent and dependent current sources and capacitors
using a similar algorithm to limit the number of current sources in parallel and to again prevent
most redundant sources and passives if so desired. Next, the remaining generic elements are
converted to resistors. Element values and polarities are randomly chosen in user-specified
ranges. After all elements are placed, the control voltages or currents are randomly selected for
each dependent source, respecting the rules mentioned above. If the specified restrictions on
series/parallel sources and redundant elements cannot be satisfied for a given tree, a different tree
is picked until all available ones have been tried. If the placement algorithm still fails, new
generic populations of the topology are tried and failing that, new topologies.

2.9. Sought Quantity Selection

Most circuit problems ask the student to compute one (or a few) specified voltages, currents,
and/or powers in a circuit. The voltage (differences) are often voltages across a specific element
(other than an independent voltage source, of course!), which we term branch voltages.
Alternatively, they are sometimes voltages between nodes that are not directly connected by a
circuit element, which we call non-branch voltages. The currents may be either currents through
a specific branch that is not an independent current source (termed branch currents), or rarely,
currents through specific wires that are internal to a node (and are therefore dependent on a
specific layout), which we term non-branch currents. The power(s) may be that either absorbed
or supplied by an independent or dependent source or by a passive element. These unknown
values that the student is asked to find are termed the “sought quantities” here. In some

P
age 25.242.12

problems, some or all of the node voltages might instead be requested (referenced to a specified
ground), or some or all of the mesh currents. Further, some special types of problems ask
students to find the value of a circuit element that will cause some condition to be fulfilled, such
as causing a certain voltage or current to exist at some point, maximizing power dissipation in a
resistor, and so forth.

Our program randomly selects the sought quantities in the circuit based on user specifications of
how many variables of each type should be requested (though we do not currently support non-
branch currents). We however prohibit sought voltages from being those of an independent
voltage source or any element in parallel with one (which would have trivial answers) and
likewise prohibit sought currents that are those of an independent current source or are in series
with one. We also avoid specifying the power of an element that is in series or parallel with an
independent current or voltage source, respectively. Sought currents are not allowed to be in
series with any other sought or control currents for dependent sources, to avoid redundancy, and
sought voltages are not allowed to be in parallel with any other sought or control voltages.
Control currents and voltages can however be sought quantities. Element values are not yet
supported as unknowns but may be in the future.

2.10. Circuit Specification Approaches

When specifying the desired type of circuit problem to generate, possible quantities to specify
are the number of squares in the grid (m × n), the number of each type of circuit element to use,
the number of nodes (N), and the number of meshes (M). However, these values cannot all be
specified independently. For a connected, unhinged circuit having B total circuit elements
(branches), the well known requirement43 is that

 N = B – M + 1. (1)

The number of twigs on a tree (T) is given by T = N – 1, so that the number of links L (i.e.,
branches that are not twigs) is L = B – T = M based on Eq. (1). A valid circuit must have at least
two nodes, so that M ≤ B – 1. We denote the numbers of (both independent and dependent)
voltage and current sources, resistors, capacitors, and inductors as NV, NI, NR, NC, and NL,
respectively, so that B = NV + NI + NR + NC + NL. To be able to place voltage sources and
inductors on twigs in DC and transient circuits, we need N ≥ NV + NL + 1 and therefore M ≤ B –
NV – NL based on Eq. (1). To place current sources and capacitors on links in DC and transient
circuits, we need M ≥ NI + NC and therefore N ≤ B + 1 – NI – NC based on Eq. (1). For steady-
state AC circuits the inductors and capacitors can be placed anywhere, so that the corresponding
constraints would instead be that N ≥ NV + 1, M ≤ B – NV, M ≥ NI, and N ≤ B + 1 – NI.

There are also practical constraints based on the size of the rectangular layout grid, which has m
× n squares, (m+1) (n+1) grid points, and at most 2mn + m + n segments where elements can be
placed. Since each mesh requires at least one square on the grid, we need M ≤ mn. Each node
requires at least one grid point, so that N ≤ (m+1) (n+1). Each branch requires at least one
segment, so that B ≤ 2mn + m + n. In practice we can satisfy these constraints by increasing m
and n as needed, but if the user wishes to restrict the grid size, or it is limited by program
constraints, then the numbers of nodes, meshes, and elements must be limited.

P
age 25.242.13

Some additional optional considerations are that first, there should be at least one independent
source in most problems (except those asking for an equivalent impedance or resistance), so NV +
NI ≥ 1. A useful circuit also has to have some way to dissipate the energy supplied by the
sources, so one would also usually require NR ≥ 1. Furthermore, if we wish to avoid having all
node voltages being directly determined by voltage sources, we need N ≥ NV + 2, and to avoid all
mesh currents being determined directly by current sources, we need M ≥ NI + 1.

The present user interface offers the user several different options for specifying circuits (with
more to be added later). The user can specify all of the numbers of different types of elements to
be used, the number of meshes, and the grid size, in which case the number of nodes is
automatically adjusted to satisfy Eq. (1) and the other constraints mentioned above.
Alternatively, the user can specify all of the numbers of elements to use, the number of nodes,
and the grid size, in which case the number of meshes is automatically adjusted to satisfy Eq. (1)
and the other constraints. A third option is to specify the numbers of sources and reactive
elements, the numbers of nodes and meshes, and the grid size, in which case the number of
resistors is automatically adjusted to satisfy Eq. (1) and the other constraints. In these three
options the grid size is increased automatically up to a limit of m = n = 5 as needed (though most
circuit problems will of course be much smaller). A variety of other options will be added at a
later date. Special procedures are of course needed for the case of circuits with switches, op-
amps, transformers, and mutual inductances, which will be added as the project progresses.

The tutorial system will include special code to ensure that feasible combinations of parameters
are specified when it requests problems from the circuit generation engine.

2.11. Solution Algorithms

Once valid problems have been created, the program is designed to generate fully worked
solutions to each problem using a variety of the techniques typically taught in introductory
circuit analysis courses, such as voltage and current division, node and mesh analysis (using
supernodes and supermeshes as needed), combination of elements in series and parallel as
appropriate (perhaps prior to node and mesh analysis or other techniques), superposition, source
transformation, and use of Thévenin and Norton equivalent circuits to represent part of the
circuit. The algorithms used for these solutions are just those described in common introductory
textbooks,43,47-52 and are therefore not discussed here in detail. The solutions include successive
re-drawings of the circuit diagram as needed, display of the relevant equations, the matrix form
of the equations where needed, and the actual numerical answers for the specified sought
quantities. Re-drawing the circuit diagrams in the case of wye-delta transformations and source
transformations may require expanding the original grid and/or “splitting” the original diagram
to provide room for the new elements. Automatically generated text provides an explanation of
what is being done at each step.

The actual procedures used for many of the above techniques depend on the particular quantities
being sought in the problem. An element whose voltage is sought should not be combined in
series with other elements, for example, and likewise an element whose current is needed should
not be combined in parallel with other elements. Wye-delta transformations must be prohibited
for elements used for sought quantities. We also avoid any combinations or transformations that

P
age 25.242.14

would eliminate a control variable used for a dependent source. Any transformation that
eliminates a node specified in a sought non-branch voltage is also prohibited.

To date, we have completed the code for node and mesh analysis and for combining series and
parallel elements (all for DC circuits lacking reactive elements). An example of a problem being
solved in successive steps and finally by nodal analysis (after presimplification) is shown in Fig.
3. Another example of a problem being solved by mesh analysis without presimplification is

Fig. 3. Automatically generated step-by-step solution of a circuit problem using
series and parallel combinations followed by nodal analysis. Steps (a)-(e) in the
process are each illustrated in a separate automatically annotated drawing.

(a) (b)

(c)
(d)

(e)

P
age 25.242.15

Fig. 4. Example of automatically generated mesh analysis without pre-simplification. Mesh
currents are labeled by colored loops and the supermesh path by a dashed loop.

shown in Fig. 4. As the project progresses we plan to add support for all of the other solution
methods as well as transient, steady-state AC (phasor), Laplace, and op-amp based circuits. We
also plan to add support to check solutions input by students against those generated by the
program (including circuit re-drawing, equations, and numerical answers).

3. User Interface Design and
Features

3.1. Problem Specification Interface

At present users specify the types of
problems and solutions to be
specified through an interface
implemented in Visual Basic for
Applications. One tab of the dialog
box is illustrated in Fig. 5. The first
tab is used to specify the type of
circuit (only DC at present) and the
manner in which the circuit is
specified (from a drop-down menu),
and the other boxes are used to
specify the numbers of elements,
nodes, meshes, and grid size (though Fig. 5. Screen shot of the user interface dialog box

(first tab shown).

P
age 25.242.16

not all can be set by the user in a given specification method as discussed in Section 2.10). Code
behind the dialog box is used to validate all entries and adjust other parameters (with appropriate
warnings) as needed. An advanced options box is used to specify the maximum number of
voltage sources in series, current sources in parallel, whether redundant sources and/or passive
elements are allowed as discussed in Section 2.4, and whether circuits whose node voltages are
all determined directly by voltage sources and circuits whose mesh currents are all determined
directly by current sources are allowed. The Sought Quantities tab (not shown) is used to specify
the types and number of variables for which the student will be asked to solve, as discussed in
Section 2.9.

3.2. Display Options and Features

Various display options have been developed to eventually support the use of the circuit
diagrams in a tutorial setting. For example, circuit elements can be labeled either with their
values (such as 4 Ω) or with their names (such as R2). The different nodes can be automatically
colored with different colors to help students recognize them [see Fig. 3(e)] and the actual
element symbols can even be blanked out, leaving just the wires and leads to emphasize the
nodes. Groups of elements that are in series or parallel can be highlighted red on request. The
choice of reference node can be changed to any specified node, in which case the node
numbering and all equations are automatically updated to match. Mesh currents can be labeled
automatically on arbitrarily-shaped meshes, as can the loops that constitute supermeshes (see
Fig. 4). Another feature is that the currents leaving a user-selected node or supernode can be
automatically labeled with colored arrows, to help students understand the origin of each term in
the KCL equation for that node or supernode. We plan to optionally color each term in a KCL
equation to match the color of the corresponding current arrow. A similar approach will be used
for each term in a KVL equation and the corresponding voltage drop around a loop. A close
graphical correspondence between the diagram and the equations can thus be achieved. We have
also implemented an interactive exercise in which students are asked to list all sets of elements in
a circuit diagram that are in series or parallel, providing feedback on their answers as well as
keeping “score.” This exercise has already been used successfully in an introduction to electrical
engineering class, where students were required to complete it a given number of times and until
they achieved a target score.

4. Conclusion

The progress to date in developing a circuit generation and solution engine has been described,
including details of the underlying algorithms. The criteria to use in generating “typical”
textbook-like problems have been considered in detail. Future work will focus on expanding the
capabilities to treat all common textbook solution methods and heuristics, and extension to
phasor analysis, transient circuits using a differential equation approach, Laplace domain
analysis, and various special cases including op-amp circuits. Additional software components
to accept and analyze student input in various forms, carry out scripted tutorial sequences that
make use of the generation and solution engine, and report student progress to the instructor are
planned for future work.

P
age 25.242.17

Acknowledgment

This work was supported by the National Science Foundation through the Transforming
Undergraduate Education in Science, Technology, Engineering and Mathematics Program under
Grant No. DUE-1044497.

References
1P. V. Engelhardt and R. J. Beichner, “Students' understanding of direct current resistive electrical circuits,” Am. J.
Phys. 72, 98 (2004).
2D. Hestenes, M. Wells, and G. Swackhamer, “Force Concept Inventory,” Phys. Teach. 30, 141 (1992).
3R. Streveler, M. Geist, R. Ammerman, C. Sulzbach, R. Miller, B. Olds, and M. Nelson, “Identifying and
investigating difficult concepts in engineering mechanics and electric circuits,” in Proc. 2006 Annual Mtg. Amer.
Soc. for Engineering Education (2006), p. 2006.
4D. Holton, A. Verma, and G. Biswas, “Assessing student difficulties in understanding the behavior of ac and dc
circuits,” in Proc. ASEE 2008 Ann. Conf. & Exposition (Amer. Soc. Engrg. Educat., Washington, DC, 2007), p.
AC2008.
5M. Caillot (ed.), Learning Electricity and Electronics with Advanced Educational Technology (Springer-Verlag,
Berlin, 1993).
6M. S. Steinberg and C. L. Wainwright, “Using models to teach electricity--The CASTLE project,” Phys. Teach. 31,
353 (1993).
7R. Duit, W. Jung, and C. von Rhoneck (ed.), Aspects of Understanding Electricity--Proceedings of an International
Workshop (Verlag, Schmidt, & Klaunig, Kiel, Germany, 1984).
8D. Sokoloff, The Electric Circuits Concept Evaluation (ECCE),
http://physics.dickinson.edu/~wp_web/wp_resources/wp_assessment.html#ECCE.
9R. Cohen, B. Eylon, and U. Ganiel, “Potential difference and current in simple electric circuits: A study of
students' concepts,” Am. J. Phys. 51, 407 (1983).
10M. S. Steinberg, “Reinventing electricity,” in Proc. Internat. Seminar on Misconceptions in Science &
Mathematics, edited by H. Helm and J. Novak (Cornell Univ., Ithaca, NY, 1983), p. 388.
11L. C. McDermott and E. H. van Zee, “Identifying and addressing student difficulties with electric circuits,” in
Aspects of Understanding Electricity, edited by R. Duit, W. Jung, and C. von Rhoneck (Verlag, Schmidt, & Klaunig,
Kiel, Germany, 1984).
12M. Nahvi, “Teaching introductory courses in electrical engineering to engineering majors, new tools and context,”
in Proc. 1988 Frontiers in Education Conf. (1988), p. 76.
13M. Nahvi, “A computer based intelligent synthetic tutor-tester for electrical engineering,” in Proc. IEEE Internat.
Conf. on Systems, Man, & Cybernetics (1990), p. 742.
14H. E. Hanrahan and S. S. Caetano, “A knowledge-based aid for dc circuit analysis,” IEEE Trans. Educ. 32, 448
(1989).
15J. S. Demetry, B. Black, D. Voltmer, M. Nahvi, and J. Jones, “Computer-assisted interactive instruction: Results
from a developmental effort,” in Proc. 1992 Frontiers in Education Conf. (1992), p. 662.
16A. Yoshikawa, M. Shintani, and Y. Ohba, “Intelligent tutoring system for electric circuit exercising,” IEEE Trans.
Educ. 35, 222 (1992).
17F. de Coulon, E. Forte, and J. M. Rivera, “KIRCHHOFF: An educational software for learning the basic principles
and methodology in electrical circuits modeling,” IEEE Trans. Educ. 1993, 19 (1993).
18B. Oakley II, “Use of the Internet in an introductory circuit analysis course,” in Proc. 1993 Frontiers in Education
Conf. (1993), p. 602.
19B. Oakley II and R. E. Roper, “Implementation of a virtual classroom for an introductory circuit analysis course,”
in Proc. 1994 Frontiers in Education Conf. (1994), p. 279.
20G. F. Shannon, “Multi-media computer based teaching--A case study,” in Proc. IEEE 1st Internat. Conf. on Multi-
Media Engineering Education (1994), p. 398.
21J. R. Jones and D. A. Conner, “The development of interactive tutorials for introductory circuits,” in Proc. IEEE
1st Internat. Conf. on Multi-media Engineering Education (1994), p. 108.

P
age 25.242.18

22J. Teng, J. Fidler, and Y. Sun, “Symbolic circuit analysis using Mathematica,” Int. J. Electr. Eng. Educ. 31, 324
(1994).
23E. R. Doering, “CircuitViz: A new method for visualizing the dynamic behavior of electric circuits,” IEEE Trans.
Educ. 39, 297 (1996).
24L. P. Huelsman, “Symbolic analysis--A tool for teaching undergraduate circuit theory,” IEEE Trans. Educ. 39, 243
(1996).
25B. Oakley II, “A virtual classroom approach to teaching circuit analysis,” IEEE Trans. Educ. 39, 287 (1996).
26E. C. Shaffer and F. J. Mabry, “A student designed, Web-based learning program for circuit analysis,” in Proc.
2000 Frontiers in Education Conf. (2000), p. T2D.
27A. Luchetta, S. Manetti, and A. Reatti, “SAPWIN-A symbolic simulator as a support in electrical engineering
education,” IEEE Trans. Educ. 44, CDROM (2001).
28L. Palma, R. F. Morrison, P. N. Enjeti, and J. W. Howze, “Use of Web-based materials to teach electric circuit
theory,” IEEE Trans. Educ. 48, 729 (2005).
29B. P. Butz, M. Duarte, and S. M. Miller, “An intelligent tutoring system for circuit analysis,” IEEE Trans. Educ.
49, 216 (2006).
30B. P. Butz and S. M. Miller, Evaluation of IMITS for the National Science Foundation,
http://www.temple.edu/imits/shock/Evaluation.pdf.
31L. Weyten, P. Rombouts, and J. De Maeyer, “Web-based trainer for electrical circuit analysis,” IEEE Trans. Educ.
52, 185 (2009).
32P. D. Cristea, R. I. Tuduce, and A. R. Tuduce, “Knowledge assessment in intelligent e-learning environments,” in
Internat. Conf. on Signals & Electronic Systems (Poznan, Poland, 2004), p. 573.
33P. Cristea and R. Tuduce, “Automatic generation of exercises for self-testing in adaptive e-learning systems:
Exercises on AC circuits,” in 3rd Workshop on Adaptive and Adaptable Educational Hypermedia at the AIED’05
conference (A3EH), edited by A. I. Cristea, R. Carro, and F. Garzotto (Amsterdam, 2005), p. 28.
http://hcs.science.uva.nl/AIED2005/W9proc.pdf.
34E. G. Torres, T. Iida, and S. Watanabe, “Measuring the student knowledge state in concept learning: An
approximate student model,” IEICE Trans. Inf. & Syst. E77-D, 1170 (1994).
35S. Watanabe, J. Miyamichi, and I. R. Katz, “Teaching circuit analysis: A mixed-initiative intelligent tutoring
system and its evaluation,” in Proc. IFIP TC3 Internat. Conf. on Advanced Research on Computers in Education
(ARCE'90), edited by R. Lewis and S. Otsuki (Tokyo, 1991), p. 19.
36T. Grabowiecki, “Expert system for teaching of problem solving in circuit theory,” in Europ. Conf. on Circuit
Theory & Design (Stresa, Italy, 1999), p. 1283.
37D. L. Millard, “Interactive learning modules for electrical engineering education,” in Electron. Compon. and
Technol. Conf. (2000), p. 1042.
38D. Millard and G. Burnham, “Interactive educational materials and technologies,” in Internat. Conf. Engrg.
Educat. (Manchester, U.K., 2002), p. 445.
39D. Millard and G. Burnham, “Increasing interactivity in electrical engineering,” in 33rd ASEE/IEEE Frontiers in
Educat. (IEEE, Boulder, CO, 2003), p. F3F8.
40A. Micarelli, F. Mungo, F. S. Nucci, and L. Aiello, “SAMPLE: An intelligent educational system for electrical
circuits,” J. Artific. Intell. Educat. 2, 83 (1991).
41Z. C. Zacharia, “Comparing and combining real and virtual experimentation: An effort to enhance students'
conceptual understanding of electric circuits,” J. Computer Assisted Learning 23, 120 (2007).
42B. Oakley II, CircuitTutor (Addison-Wesley, Reading, MA, 1992).
43A. M. Davis, Linear Circuit Analysis (PWS Publishing Co., Boston, 1998).
44A. Ioinovici, Computer-Aided Analysis of Active Circuits (Marcel Dekker, New York, 1990).
45R. W. Jensen and B. O. Watkins, Network Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1974).
46J. Grimbleby, Computer-Aided Analysis and Design of Electronic Networks (Pitman, London, 1990).
47J. D. Irwin and R. M. Nelms, Basic Engineering Circuit Analysis (Wiley, Hoboken, NJ, 2010).
48W. H. Hayt Jr., J. E. Kemmerly, and S. M. Durbin, Engineering Circuit Analysis (McGraw-Hill, New York, 2011).
49C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill, New York, 2008).
50R. C. Dorf and J. A. Svoboda, Introduction to Electric Circuits (Wiley, Hoboken, NJ, 2006).
51J. W. Nilsson and S. A. Riedel, Electric Circuits (Prentice-Hall, Boston, 2011).
52R. E. Thomas, A. J. Rosa, and G. J. Toussaint, The Analysis and Design of Linear Circuits (Wiley, Hoboken, NJ,
2009).

P
age 25.242.19

