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Automated Problem and Solution Generation Software for 
Computer-Aided Instruction in Elementary Linear Circuit 

Analysis 

 

Abstract 

Initial progress is described on the development of a software engine capable of generating and 
solving textbook-like problems of randomly selected topologies and element values that are 
suitable for use in courses on elementary linear circuit analysis.  The circuit generation 
algorithms are discussed in detail, including the criteria that define an “acceptable” circuit of the 
type typically used for this purpose.  The operation of the working prototype is illustrated, 
showing automated problem generation, node and mesh analysis, and combination of series and 
parallel elements.  Various graphical features are available to support student understanding, and 
an interactive exercise in identifying series and parallel elements is provided.  When fully 
developed this engine will be incorporated into a tutorial system designed to supplement 
conventional instructional approaches. 

1.  Introduction 

1.1.  Motivation 

Basic linear circuit analysis is frequently a fundamental engineering core course requirement for 
electrical engineering nonmajors, as well as for electrical engineering majors, and is therefore a 
very widely taught subject.  For electrical engineering majors, the skills learned in this course are 
essential for their success in subsequent courses. A bad or unsuccessful learning experience may 
cause students to change their major or drop out of engineering altogether. Traditional lecture-
based instruction uses a “one size fits all” approach that fails to adapt to the widely varying 
learning styles and backgrounds of the students.  The goal of this project is to develop computer-
aided instruction tools to increase the student success rate in this course by adapting to the needs 
of individual students.  Such tools could be used in a wide variety of ways to supplement either 
traditional lecture methods or various interactive learning strategies. 

The difficulties students encounter while mastering basic linear circuit analysis, in our opinion, 
often result from a failure to incorporate sufficient active and/or cooperative learning activities in 
the course, a lack of immediate and effective feedback in homework assignments, and an 
insufficient number of textbook examples designed to gradually increase in difficulty. Also, 
errors are sometimes present in textbooks in the worked examples, the problem answers, and the 
worked solutions, in our experience, as a result of the complexity of generating and solving 
linear circuit problems by tedious manual methods. Such errors can be very frustrating to 
students who depend on the correctness of their textbooks, causing them to waste study time and 
even give up trying to learn at times. Our computer-aided instruction tools are designed to 
remediate these problems by instantly generating example linear circuit problems that are 
tailored in size and complexity to an instructor’s requirements and preference, solving those 
problems by the methods typically taught in elementary textbooks, automatically checking 
student solutions, and displaying detailed solution steps with the correct numerical answers.  
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Another issue is that textbook solution manuals and old homework solutions are widely available 
on the Internet, which can encourage students to merely “copy” their solutions from these 
manuals.  Computer-generated problems can be new and unique to every student, greatly 
reducing incentives for behaviors that bypass the learning process. 

Another key pedagogical issue is that most textbooks (and also perhaps, instructors) do not 
recognize or address the typical misconceptions new engineering students have about electricity 
and electrical circuits when they enter the course. The need for instructors to address pre- or 
misconceptions has become broadly known in the physics education community,1,2 but remains 
less familiar to most engineering faculty.  Such faculty are often not familiar with the extensive 
literature on student misconceptions related to electricity and circuit analysis,1,3-11 or else assume 
(often incorrectly) that such ideas have been “rooted out” in the elementary physics classes.  Our 
own experience administering questions from concept inventories such as DIRECT1 to students 
in circuit analysis classes, as well as that of others,3,4 strongly suggests otherwise.  Our plan is to 
use our computer-aided instruction tools to help remove a number of typical student 
preconceptions by providing tutorial sequences that require students to correctly master selected 
basic circuit concepts such as identifying whether circuit elements are in series or parallel, 
without deriving circuit solutions.  

1.2.  Background 

Various prior projects have used computer-aided instruction in courses on linear electrical circuit 
analysis.12-41  The approaches have involved developing intelligent testers and/or tutors, 
automated rapid grading of homework and/or quizzes, which are sometimes algorithmic in 
nature (i.e., the numerical values are varied for each student);  expert-based advice on selection 
of optimal circuit-solving strategies; development of multi-media modules for circuit instruction; 
visualization tools to illustrate circuit behavior; introduction of design topics; use of symbolic 
circuit analysis programs; and creation of an interactive virtual classroom.  The pioneering 
CircuitTutor software developed by Oakley18,19,25 was even successfully commercialized for a 
time through Addison-Wesley,42 but is now unfortunately obsolete and out of print.  While all of 
these contributions provide useful insights and ideas, many have been only partial prototypes, 
have covered only limited topical areas, and have very rarely included a facility for automatic 
problem generation.32,33  The impact on student learning has not been rigorously established in 
most cases. 

Sustained commercialization of computer-based tools used to teach basic linear circuit analysis 
has only been achieved to date through textbook publishers, who frequently create elaborate 
websites with software tools to support their textbooks. Typically, these sites include electronic 
versions of the textbooks, banks of pre-defined problems from the textbook, (possibly) additional 
problems, additional worked examples, and some algorithmic problems with the element values 
varied for every student. The websites may also offer software modules to assign and grade 
homework with an online grade book and an electronic version of the solution manual. 
Sometimes, PowerPoint slides, artwork, animations, videos of textbook problems being worked, 
and multi-part problems with hints and hyperlinks to relevant sections of the textbook are 
available. Generally, however, detailed step-by-step interactive tutoring, automatic problem or 
solution generation, and automated grading of responses other than numerical or multiple-choice 
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answers are not available. And, usually, there is no provision for students to enter circuit 
diagrams or draw waveforms in a form that can be automatically graded or assessed. 

While these web sites are useful adjuncts in teaching the course, they do not offer instruction that 
can be tailored to the needs of individual students, directly address student misconceptions, or 
permit significant tutorial interactions. Their principal advantage is that they are supported by the 
publishers while the relevant book remains in print (typically through many editions), and are 
therefore sustainable. Moreover, they benefit from the extensive marketing and distribution 
systems of the publishers. The relevance of such software appears to be increasing steadily.  The 
goal of the present project is therefore to produce software tools that can eventually be integrated 
into publisher-based systems, providing more in-depth instruction. 

1.3.  Project Overview 

The initial phase of this project is focused on the development of a circuit problem and solution 
generation engine, which will later be incorporated into a full tutorial system with a variety of 
interface modules to accept and analyze various forms of student input.  The engine is designed 
to provide an unlimited supply on demand of circuit problems of specified complexity, where 
both the topology and circuit element values are randomly selected.  Further, the system will 
generate fully illustrated, step-by-step solutions (not just answers) to these problems, which are 
free of the errors that frequently plague human-generated solutions.  The solution methods will 
include the heuristics typically taught in elementary circuit analysis courses, which distinguishes 
our approach from the numerical modified nodal analysis approach taken by programs such as 
SPICE.  This engine can be used in many ways, such as providing problems and solutions to an 
interactive tutorial interface, generating worked examples for students, providing both examples 
and problems (with solutions) for possible incorporation into textbooks, providing exercises for 
use in collaborative learning sessions, generating unique homework sets of uniform difficulty 
that can be automatically graded for every student in a class, creating examination and quiz 
problems, and so forth.  A programmatic interface is provided so that either a graphical user 
interface or some other program can request and receive problems (including graphics) from the 
generation engine. 

The initial phase of the project has focused on DC circuits, but the same basic algorithms will 
later be adapted to transient circuits, steady-state AC (phasor) analysis, and Laplace domain 
analysis.  The existing prototype generates random circuits of specified types to solve and draws 
them (using a PowerPoint interface for the time being), and performs node and/or mesh analysis, 
with or without pre-simplifications involving the combination of series and parallel circuit 
elements.  For simplicity, we lay out all of our circuits on a square grid, where the circuit 
elements lie on the edges of the grid squares (no diagonals).  This approach is actually quite 
general as it can be used to draw any planar circuit, which is the type almost always encountered 
in textbook problems. 

In the following, we describe the basic algorithms underlying our circuit generation and solution 
engine in some detail, as this problem is rarely discussed in the literature.  We are aware of only 
one other project that has developed automated circuit generation routines, which however do 
not appear to be guaranteed to provide planar circuits suitable for mesh analysis and which have 
not been demonstrated to generate actual circuit diagrams.32,33  We subsequently discuss the 

P
age 25.242.4



graphical features provided to enhance student learning and illustrate an example of a tutorial 
approach to help students learn to recognize when elements are (or are not) in series and parallel.  
This issue is at the root of many typical student errors, in the authors’ experience. 

2.  Circuit and Solution Generation Engine 

2.1.  Circuit Generation Algorithm 

Two general approaches could be taken to randomly create circuits of a desired nature.  One can 
create a layout of a circuit and from that extract the circuit “netlist,” which is the abstraction 
typically used in nodal or modified nodal analysis.  The latter consists of a list of the circuit 
elements, the nodes to which they are connected (where the order of the nodes specifies polarity 
if applicable), their values, and the specification of control variables in the case of dependent 
sources.  Alternatively, one could create circuits abstractly in the form of netlists or circuit 
graphs, followed by a procedure to generate corresponding layouts.  In this project we selected 
the former approach.  Our rationale is in part that circuits that are topologically equivalent may 
not always be recognized as such by beginning students, and can therefore be considered distinct 
for pedagogical purposes.  Furthermore, our approach guarantees planar circuits that are suitable 
for mesh analysis, which may be difficult to ensure in a graph-oriented approach.  Also, it is 
easier to program netlist extraction than a layout algorithm.    

As noted above our circuits are always laid out on a square grid of points for simplicity.  The 
grid is defined to consist of a rectangular array of m × n squares, whose (m+1)(n+1) corners are 
connection (grid) points and whose 2mn+m+n edges (which we denote as segments) may be 
short circuits (wires), open circuits (blanks), or ideal circuit elements chosen from resistors, 
capacitors, inductors, independent voltage and current sources, dependent voltage or current 
sources, or single-pole single-throw switches.  (Ideal operational amplifiers and transformers will 
be added later, along with mutual inductances, but those cases require special approaches not 
discussed here.)  Neglecting switches for the moment (needed only for transient circuits), there 
are therefore nine possible items that can be placed on each of the segment (including shorts and 
opens).  Note that a node can consist of multiple grid points connected by shorts, and meshes 
may consist of one or more adjacent squares (due to segments that are open circuits). 

It might well be thought (by those who have not actually tried to do it) that one could generate 
circuits simply by randomly “throwing” such items onto the grid, and then examine the resulting 
circuits and throw away those that are not “valid” problems for students (based on criteria that 
are defined below).  The problem is that for all but the very smallest circuits, the number of 
possibilities that must be examined becomes incredibly large and only a tiny fraction is valid, 
rendering this approach completely unworkable (even if problems are generated in advance and 
stored).  The problem is much like waiting for the proverbial monkey to type one of 
Shakespeare’s plays by random chance.  Even for a very small case with m=2 and n=1 and 
therefore 7 segments, 79 ≈ 4.8x106 circuits are possible (where element values are not yet 
selected).   
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2.2.  Stepwise Approach to Circuit Generation 

To make this problem more tractable, we use two basic strategies.  First, we generate circuits by 
a series of three successive steps.  (The second strategy, discussed in later sections, involves 
using techniques to ensure that the results of each generation step are automatically valid to the 
extent possible.)  In the first circuit generation step, we place only open and short circuit 
elements on the grid, with the understanding that open circuits will always remain open, but 
short circuits may either remain as such or be replaced by other circuit elements (but not opens).  
We call the resulting grid of lines [illustrated in Fig. 1(a)] a circuit topology.  This topology 
defines the ultimate number of meshes in the circuit, the number of “active” points in the grid 
(that have one or more connection to them), and the number of “active” segments (that are not 
merely open circuits).  For m=2 and n=1, there are now only 72 =49 such possible topologies.  
“Invalid” topologies are rejected, and only valid ones 
can be used in the second step (validity is discussed 
below). 

In the second step, some of the active segments in the 
topology are replaced (“populated”) by generic circuit 
elements (represented as boxes), as shown in Fig. 
1(b).  The number so replaced in this “populated 
topology” is the desired number of nontrivial circuit 
elements in the circuit (i.e., branches in the 
terminology of network theory).  The generic 
elements are all later replaced by specific circuit 
elements, but shorts that remain will stay as shorts.  
The number of possibilities is now only the number 
of active segments raised to the power of two, and 
thus still modest.  The populated topology now has 
specific numbers of nodes and branches as well as the 
set number of meshes established in the topology 
generation step. 

In the third step, the generic elements are all replaced 
by specific circuit elements, based on the desired 
number of each in the circuit.  Each of those elements 
is assigned a randomly chosen value (within a user-
specified range), and control variables are selected for 
dependent sources as the currents or voltages of other 
branches in the circuit.  A sample result is shown in 
Fig. 1(c).  The detailed procedure is designed to 
ensure circuit validity as discussed below. 

2.3.  Strict Requirements for Valid Circuits 

Circuit problems are considered unacceptable if they 
either 1) have no valid, unique solution (insoluble), or 
2) are not of a type that is typically assigned to 
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Fig. 1.  The three stages of the circuit 
generation process.  (a) Circuit 
topology (line segments).  (b) Topology 
populated with generic circuit elements.  
(c)  Placement of actual circuit 
elements.  The student is asked to 
compute Io in this problem. 
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students in an introductory linear circuit course, as exemplified by problems in the major 
textbooks used in this area.  Some exceptions may be made in the second case for occasional 
problems assigned for specific pedagogical reasons, but not routinely.  Criterion 1 is discussed in 
this section and Criterion 2 in the next section. 

Insoluble problems occur when either independent or dependent sources are arranged in an 
inconsistent fashion, or circuits containing dependent sources have no valid solution (which 
typically occurs for specific values of gains along with specific element values).  An example of 
the former (inconsistent) case is two or more current sources in series with different current 
values, or two or more non-identical voltage sources in parallel.  One of these sources might be a 
dependent source, in which case the circuit is inconsistent unless the control variable is forced to 
have some very specific value (which would be of purely pedantic interest).  For this purpose, we 
include short circuits as being ideal voltage sources whose voltage is zero, and open circuits as 
ideal currents sources whose current is zero.  I.e., a current source cannot be in series with an 
open circuit or a voltage source in parallel with a short circuit, as Kirchoff’s current law (KCL) 
or voltage law (KVL) would be violated, respectively.  Furthermore, for DC or transient circuits 
we must consider capacitors to be open circuits and inductors to be short circuits in this 
prohibition (transient circuits must be consistent when they are in steady-state). 

We must actually generalize the restrictions on series and parallel sources to ensure that neither 
KCL nor KVL is violated and that all node voltage have uniquely determined values.  No star 
(set of elements all connected to a common node) should consist entirely of independent or 
dependent current sources (which include open circuits, and capacitors in the DC case) whose 
values result in a violation of KCL.  This restriction generalizes the case of sources in series, 
which involves one or more stars of only two elements.  (Application of this rule will 
automatically take care of elements that are in series with elements in a branch of the star, since 
they introduce other nodes to which the same rule is separately applied.)  Even if the sources 
satisfy KCL, the central node in the star has an indeterminate voltage and the node equations are 
therefore not uniquely solvable with a single reference node.  Similarly, no loop in the circuit 
should consist entirely of independent or dependent voltage sources (including short circuits and 
inductors) whose values result in a violation of KVL.  This rule generalizes the case of parallel 
voltage sources, as each set of parallel sources forms a loop.  Even if the sources satisfy KVL, 
the mesh currents will not be uniquely determined in this case.  To ensure that both node and 
mesh equations have unique solutions we must never allow a star of current sources or a loop of 
voltage sources (including capacitors or inductors in the DC/transient case and open or short 
circuits in all cases in this prohibition).   

A further generalization is actually necessary to guarantee solvability of node or mesh equations.  
A “deactivated” or “dead” circuit (in which all independent voltage sources are replaced by short 
circuits and all independent current sources are replaced by open circuits, i.e., turned off) must 
be fully connected for the node equations to have a unique solution.  This statement is proven 
rigorously, e.g., by Davis.43  It generalizes the requirement on stars discussed above, since the 
node at the center of the star will be isolated in the dead circuit if the star consists entirely of 
current sources.  Similarly, the mesh equations have a unique solution (unique set of mesh 
currents) only if the corresponding dead circuit is “coupled,” meaning that one can pass from any 
mesh (including the exterior mesh) to any other by passing over a shared resistor.43  Any loop 
consisting only of shorts and voltage sources will cause this test to fail.   
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Unique solvability of both node and mesh equations is readily achieved by placing all inductors 
and voltage sources on the twigs of some valid tree of the circuit, and all capacitors and current 
sources on the links of that same tree.  By definition, a tree is a set of branches (called twigs) that 
connects all nodes but does not contain any loops.44  Deactivating all sources cannot leave a node 
isolated and result in a disconnected circuit if the sources are placed as specified.  Moreover, the 
deactivated circuit consists only of twigs in this case, so there cannot be any decoupled meshes 
(there are no loops at all!).  For steady-state sinusoidal AC circuits, the placement of the 
capacitors and inductors does not need to be restricted (as long as we avoid zero frequency), only 
the current and voltage sources. 

Situations where inconsistencies occur due to specific values of dependent source gains and 
element values are more difficult to avoid.  As this situation occurs rarely, we find that simply 
rejecting circuits where the node equation matrix is singular and re-starting the circuit generation 
routine in this case is an entirely satisfactory approach.  The re-starting is performed a limited 
number of times but very few re-starts are typically necessary. 

2.4.  Desired Optional Features for Most Circuits  

The above approach guarantees a circuit that can be solved.  Other optional criteria that we 
usually wish to fulfill, to make the problems of a type that is typically assigned are as follows: 

1.  The graph of the circuit should be fully connected.  (The existence of a valid tree as assumed 
above is only valid for a connected circuit.)  Circuit graphs consisting of multiple unconnected 
sections usually reduce to multiple independent problems (unless they are linked by dependent 
sources whose values in one circuit section depend on control variables in another section), and 
there appears to be no point in creating such problems.  This criterion can be applied in the 
topology generation step; a connected topology cannot yield an unconnected circuit. 

2.  In addition to being connected, circuits should normally not be “hinged.”  A hinged circuit is 
one that can be drawn in a way such that two or more sections are connected to each other by 
only a single wire or circuit element.45  Since KCL implies that the current through such a wire 
must be zero, the different portions are essentially isolated (except for a common potential 
reference) and amount to multiple independent problems (except again when linked by 
dependent sources).  Simple transistor models (without external circuitry) are often hinged, so 
that one might occasionally wish to allow such circuits, but not as a routine matter.  Some 
topologies are hinged [as in Fig. 2(a)], and are rejected, as they will always yield hinged circuits.  
A special case of a hinged topology is one where a circuit element is “dangling,” or not 
connected on both ends.   

Other topologies become hinged only after they are populated in particular ways by generic 
elements [Fig. 2(b)], so that one must inspect for hinging both before and after the generic 
population step.  Unhinged populated topologies cannot become hinged during element 
placement.  A hinged topology can be recognized by testing if it turns into an unconnected 
circuit when a single grid point (and the segments attached to it) are removed.  A hinged 
populated topology is most easily tested by forming the associated netlist and determining if the 
circuit so represented becomes disconnected after removing any node and the elements P
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connected to it, or if any element is 
connected on both ends to the same node 
(shorted).  Shorted elements obviously play 
no useful role in the circuit. 

3.  Circuit elements that are redundant and 
serve no useful purpose should normally be 
avoided.  Such elements occur whenever a 
star has only one element that is not a 
current source or a capacitor (the latter for 
DC circuits).  The current through this 
element (whether it is a voltage source or a 
passive element) is then fixed by KCL, so 
that element itself has no useful function 
(except possibly in practice, e.g., a series 
resistor used to monitor the output of a 
current source).  A special case is a voltage 
source in series with a current source, where 
the voltage source serves no useful function.  
Similarly, any element that is the only one 
in a loop that is not a voltage source (or 
inductor, for DC circuits) has a voltage 
fixed by KVL and is also redundant, 
whether it is a current source or a passive element.  A special case is a current source in parallel 
with a voltage source, where the current source serves no useful function.   

In other words, all stars should have at least two elements that are not current sources or 
capacitors, and all loops should contain at least two elements that are not voltage sources or 
inductors.  These conditions are more restrictive than the conditions stated above to avoid 
inconsistencies (that at least one element of the specified type should be present in each star and 
loop).  We enforce this rule when placing circuit elements, by an algorithm that rules out 
placements that would violate it.  We provide user-selected options to avoid all redundant 
elements, to avoid redundant sources but allow redundant passive elements, or to permit all 
redundant elements.  A fully rigorous test for redundancy would also disallow any situation 
where the corresponding dead network is either unconnected or hinged (a generalization of the 
test discussed above for the solvability of the node equations).  Equivalently, any cutset 
(including stars as a special case) would have to contain at least two resistors.  To date we have 
not enforced this additional restriction. 

4.  In general voltage sources in series with each other and current sources in parallel with each 
other are allowed, but given that they could be combined to form a single equivalent source, we 
provide an option to limit the maximum number of each to any value ≥ 1.  These restrictions are 
enforced when placing circuit elements. 

5.  We prohibit meshes in our layouts that consist entirely of wires (shorts), as they serve no 
useful function. Moreover, allowing such a case would reduce the actual number of meshes in 
the topology to a smaller number after populating it with generic elements, so that the desired 

 
(a) 

 

      

 

(b) 

 

Fig. 2.  Examples of (a) a hinged topology; and 
(b) a topology that became hinged only after 
population with generic elements.  The two 
elements at upper right are effectively isolated 
from the remainder by a path of shorts (the 
circuit could be re-drawn such that the two parts 
are connected by a single wire). 
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number of meshes would no longer be achieved.  This restriction is enforced during population 
with generic elements by insisting that each mesh contain at least two circuit elements.  A mesh 
containing only one circuit element would automatically have a shorted element and therefore be 
hinged.  (Loops that consist entirely of shorts and that are not meshes are automatically 
prohibited because they would make the circuit hinged by isolating the portion inside the loop 
from that outside it.) 

6.  A circuit layout on a grid of m × n squares is not considered acceptable unless the topology 
extends the full length and width of that grid.  If it does not, it should be classified as a proper 
layout only on a suitably smaller grid.  We enforce this rule in our topology generation 
algorithm.  One could also reject populated topologies where two or more rows or columns 
consist entirely of shorts, as they could be “collapsed” onto a smaller grid and are therefore 
really of a smaller size than that desired.  We have not yet enforced this restriction, however. 

7.  Typically we prohibit problems in which all node voltages are determined directly by voltage 
sources, or in which all mesh currents are determined directly by current sources.  Such problems 
are relatively trivial for node or mesh analysis, respectively, and are therefore avoided.  They can 
be allowed in some cases for pedagogical purposes and there is a program switch to do so. 

8.  Many textbook problems are designed with the bottom row consisting entirely of wires, so 
that it becomes a natural choice of ground.  Such a feature could be incorporated but it does not 
seem fundamentally important so we have not done so to date. 

2.5.  Restrictions on Control Variables for Dependent Sources 

The vast majority of textbook problems (and practical applications) involve dependent sources 
whose output is controlled by a current through or a voltage across a passive element rather than 
by a current through or a voltage across another source, so we enforce that limitation.  A 
dependent current source should not be in series with the branch on which the control voltage or 
current is defined, as it causes a fundamental inconsistency unless a specific gain is chosen (and 
is equivalent to a short circuit if the required gain is chosen).  Likewise, a dependent voltage 
source should not be in parallel with a branch on which the control variable is defined, as it 
would be either inconsistent or equivalent to an open circuit.  These statements could be 
generalized to stars whose branches are all current sources except for one passive element on 
which the control variable defined, and where one of the sources is the dependent source in 
question.  However, we already prohibit such stars when redundant circuit elements are being 
avoided as discussed above, so this generalization is generally unneeded.  Similar comments 
apply regarding generalization of the parallel case to loops of mostly voltage sources.   

Furthermore, dependent voltage sources that are in series with resistors on which their control 
variables are defined are equivalent to resistors of certain values (which might be negative), so 
there seems to be little point in general to allowing such cases.  The same comment applies to 
dependent current sources that are in parallel with resistors on which their control variables are 
defined.  We therefore avoid using any branches that are in series or parallel with any dependent 
source to provide the control variable for that source.  This prohibition is enforced when 
choosing control variables for dependent sources, which is done after placing all the elements 
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including those sources in the circuit.  Each branch voltage (or those in parallel with it) and 
branch current (or those in series with it) can be used only once as a control variable. 

The above series/parallel restrictions must be relaxed when dependent sources are introduced in 
single loop or single node-pair circuits, as they are in some textbooks.  That case might be 
considered useful for pedagogical purposes (to introduce the idea of dependent sources using 
very simple circuits), but practical circuits would never be of this type. 

2.6.  Topology Generation Algorithm 

The simplest strategy to generate a valid topology would be to place wire segments onto a grid at 
random, and reject any resulting topologies that are disconnected, hinged (including a dangling 
wire), or do not have the desired number of meshes.  We have however designed a much more 
efficient algorithm to guarantee circuits that are connected, have no dangling segments, 
completely use the width and length of the pre-defined grid dimensions (m x n squares), and 
have at least the required number of segments to accommodate the desired number of circuit 
elements.  This algorithm works by selecting the first point at random in the grid, then randomly 
attaching a (shorted) segment to it in some direction.  Then, a point having a connection is 
picked at random (provided there is room to add another segment connected to it) and a new 
segment is randomly attached to that point, building a branched structure that may contain loops.  
This process is repeated until at least the required minimum number of segments has been 
placed.  Then, if there are any dangling segments (i.e., points with only one segment connected 
to them), additional segments are randomly added by the same process until all dangling 
segments are eliminated.   

Next, if the network does not extend the full length and width of the grid, additional segments 
are randomly added until it does.  Throughout this process, points with only one existing 
connection are given preferential weighting as the source for a new segment, to avoid creating 
additional "branching" in the layout.  Also, segments that would continue along a straight path 
instead of turning are given preferential weighting to help “fill out” the topology on a larger grid 
and create meshes more readily. The weighting factors were empirically optimized.  The 
resulting topologies are not guaranteed to have the correct number of meshes or to be unhinged, 
but those requirements are checked and the process simply repeats if they are not.  A small 
number of attempts is typically needed.   

2.7.  Algorithm for Generic Population of a Topology 

The second step in circuit generation is to replace some of the wire circuits in the topology with 
generic circuit elements.  We use an algorithm that is designed to minimize the probability that a 
populated topology will become hinged after population.  Any populated topology (layout) 
having a path of shorts extending from one point on the exterior of the circuit to a different point 
on the exterior (where the path cuts across the circuit and is not part of the exterior mesh) will 
cause the layout to be hinged.  Also, any mesh that does not contain at least two generic elements 
(including the exterior “mesh” around the outside of the circuit) will result in either a mesh of 
shorts if it has zero elements (which we wish to prohibit as explained above) or a single element 
that is shorted by the remainder of the mesh (which constitutes a hinged circuit).  Thus, every 
circuit with M meshes requires at least M+1 generic elements, where M–1 of them are placed on 
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segments that are shared between two meshes and the remaining two are placed on exterior 
segments (part of the exterior mesh and therefore unshared).  Some topologies require more 
elements than this to avoid being hinged (e.g., by a path of shorts), but this is a minimum. 

The algorithm proceeds as follows.  We first place an element on every segment that directly 
connects two points on the exterior mesh (and that is not itself part of the exterior mesh).  We 
then randomly place elements on shared segments until M–1 total have been placed on such 
segments (but with no more than two per mesh).  Elements are then placed on two randomly 
chosen exterior segments, but again placing no more than two per mesh.  At this point, additional 
elements are placed on any mesh that does not already have two elements.  Finally, any 
additional elements that need to be placed are placed randomly anywhere.  A netlist is then 
extracted for the resulting layout, and tested and rejected if it is found to be hinged (but this 
happens very rarely using this approach).  In case of rejection the process is repeated. 

2.8.  Algorithm for Element Placement 

The populated topology is next examined to identify all elements in series and parallel, which 
can be determined at this stage.  As our element placement algorithm is based on trees and 
cotrees of the circuit as discussed above, we use a recursive algorithm similar to that described 
by Grimbleby46 to find all or many of the possible trees for the populated topology.  One of these 
trees is selected at random.  The twigs of the tree are then populated randomly by the specified 
numbers of both independent and dependent voltage sources and inductors, using a complicated 
algorithm that limits the number of voltage sources in series to a specified value and avoids most 
redundant sources and passive elements as discussed above (if the user so specifies).  This 
process converts formerly generic elements into the desired types.  The links of the tree are then 
populated by the specified numbers of independent and dependent current sources and capacitors 
using a similar algorithm to limit the number of current sources in parallel and to again prevent 
most redundant sources and passives if so desired.  Next, the remaining generic elements are 
converted to resistors.  Element values and polarities are randomly chosen in user-specified 
ranges.  After all elements are placed, the control voltages or currents are randomly selected for 
each dependent source, respecting the rules mentioned above.  If the specified restrictions on 
series/parallel sources and redundant elements cannot be satisfied for a given tree, a different tree 
is picked until all available ones have been tried.  If the placement algorithm still fails, new 
generic populations of the topology are tried and failing that, new topologies. 

2.9.  Sought Quantity Selection 

Most circuit problems ask the student to compute one (or a few) specified voltages, currents, 
and/or powers in a circuit.  The voltage (differences) are often voltages across a specific element 
(other than an independent voltage source, of course!), which we term branch voltages.  
Alternatively, they are sometimes voltages between nodes that are not directly connected by a 
circuit element, which we call non-branch voltages.  The currents may be either currents through 
a specific branch that is not an independent current source (termed branch currents), or rarely, 
currents through specific wires that are internal to a node (and are therefore dependent on a 
specific layout), which we term non-branch currents.  The power(s) may be that either absorbed 
or supplied by an independent or dependent source or by a passive element.  These unknown 
values that the student is asked to find are termed the “sought quantities” here.  In some 
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problems, some or all of the node voltages might instead be requested (referenced to a specified 
ground), or some or all of the mesh currents.  Further, some special types of problems ask 
students to find the value of a circuit element that will cause some condition to be fulfilled, such 
as causing a certain voltage or current to exist at some point, maximizing power dissipation in a 
resistor, and so forth.   

Our program randomly selects the sought quantities in the circuit based on user specifications of 
how many variables of each type should be requested (though we do not currently support non-
branch currents).  We however prohibit sought voltages from being those of an independent 
voltage source or any element in parallel with one (which would have trivial answers) and 
likewise prohibit sought currents that are those of an independent current source or are in series 
with one.  We also avoid specifying the power of an element that is in series or parallel with an 
independent current or voltage source, respectively.  Sought currents are not allowed to be in 
series with any other sought or control currents for dependent sources, to avoid redundancy, and 
sought voltages are not allowed to be in parallel with any other sought or control voltages.  
Control currents and voltages can however be sought quantities.  Element values are not yet 
supported as unknowns but may be in the future. 

2.10.  Circuit Specification Approaches 

When specifying the desired type of circuit problem to generate, possible quantities to specify 
are the number of squares in the grid (m × n), the number of each type of circuit element to use, 
the number of nodes (N), and the number of meshes (M).  However, these values cannot all be 
specified independently.  For a connected, unhinged circuit having B total circuit elements 
(branches), the well known requirement43 is that 

 N = B – M + 1. (1) 

The number of twigs on a tree (T) is given by T = N – 1, so that the number of links L (i.e., 
branches that are not twigs) is L = B – T = M based on Eq. (1).  A valid circuit must have at least 
two nodes, so that M ≤ B – 1.  We denote the numbers of (both independent and dependent) 
voltage and current sources, resistors, capacitors, and inductors as NV, NI, NR, NC, and NL, 
respectively, so that B = NV + NI + NR + NC + NL.  To be able to place voltage sources and 
inductors on twigs in DC and transient circuits, we need N ≥ NV + NL + 1 and therefore M ≤ B – 
NV – NL based on Eq. (1).  To place current sources and capacitors on links in DC and transient 
circuits, we need M ≥ NI + NC and therefore N ≤ B + 1 – NI – NC based on Eq. (1).  For steady-
state AC circuits the inductors and capacitors can be placed anywhere, so that the corresponding 
constraints would instead be that N ≥ NV + 1, M ≤ B – NV, M ≥ NI, and N ≤ B + 1 – NI.   

There are also practical constraints based on the size of the rectangular layout grid, which has m 
× n squares, (m+1) (n+1) grid points, and at most 2mn + m + n segments where elements can be 
placed.  Since each mesh requires at least one square on the grid, we need M ≤ mn.  Each node 
requires at least one grid point, so that N ≤ (m+1) (n+1).  Each branch requires at least one 
segment, so that B ≤  2mn + m + n.  In practice we can satisfy these constraints by increasing m 
and n as needed, but if the user wishes to restrict the grid size, or it is limited by program 
constraints, then the numbers of nodes, meshes, and elements must be limited. 
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Some additional optional considerations are that first, there should be at least one independent 
source in most problems (except those asking for an equivalent impedance or resistance), so NV + 
NI ≥ 1.  A useful circuit also has to have some way to dissipate the energy supplied by the 
sources, so one would also usually require NR ≥ 1.  Furthermore, if we wish to avoid having all 
node voltages being directly determined by voltage sources, we need N ≥ NV + 2, and to avoid all 
mesh currents being determined directly by current sources, we need M ≥ NI + 1.   

The present user interface offers the user several different options for specifying circuits (with 
more to be added later).  The user can specify all of the numbers of different types of elements to 
be used, the number of meshes, and the grid size, in which case the number of nodes is 
automatically adjusted to satisfy Eq. (1) and the other constraints mentioned above.  
Alternatively, the user can specify all of the numbers of elements to use, the number of nodes, 
and the grid size, in which case the number of meshes is automatically adjusted to satisfy Eq. (1) 
and the other constraints.  A third option is to specify the numbers of sources and reactive 
elements, the numbers of nodes and meshes, and the grid size, in which case the number of 
resistors is automatically adjusted to satisfy Eq. (1) and the other constraints.  In these three 
options the grid size is increased automatically up to a limit of m = n = 5 as needed (though most 
circuit problems will of course be much smaller).  A variety of other options will be added at a 
later date.  Special procedures are of course needed for the case of circuits with switches, op-
amps, transformers, and mutual inductances, which will be added as the project progresses. 

The tutorial system will include special code to ensure that feasible combinations of parameters 
are specified when it requests problems from the circuit generation engine. 

2.11.  Solution Algorithms 

Once valid problems have been created, the program is designed to generate fully worked 
solutions to each problem using a variety of the techniques typically taught in introductory 
circuit analysis courses, such as voltage and current division, node and mesh analysis (using 
supernodes and supermeshes as needed), combination of elements in series and parallel as 
appropriate (perhaps prior to node and mesh analysis or other techniques), superposition, source 
transformation, and use of Thévenin and Norton equivalent circuits to represent part of the 
circuit.  The algorithms used for these solutions are just those described in common introductory 
textbooks,43,47-52 and are therefore not discussed here in detail.  The solutions include successive 
re-drawings of the circuit diagram as needed, display of the relevant equations, the matrix form 
of the equations where needed, and the actual numerical answers for the specified sought 
quantities.  Re-drawing the circuit diagrams in the case of wye-delta transformations and source 
transformations may require expanding the original grid and/or “splitting” the original diagram 
to provide room for the new elements.  Automatically generated text provides an explanation of 
what is being done at each step.   

The actual procedures used for many of the above techniques depend on the particular quantities 
being sought in the problem.  An element whose voltage is sought should not be combined in 
series with other elements, for example, and likewise an element whose current is needed should 
not be combined in parallel with other elements.  Wye-delta transformations must be prohibited 
for elements used for sought quantities.  We also avoid any combinations or transformations that 
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would eliminate a control variable used for a dependent source.  Any transformation that 
eliminates a node specified in a sought non-branch voltage is also prohibited. 

To date, we have completed the code for node and mesh analysis and for combining series and 
parallel elements (all for DC circuits lacking reactive elements).  An example of a problem being 
solved in successive steps and finally by nodal analysis (after presimplification) is shown in Fig. 
3.  Another example of a problem being solved by mesh analysis without presimplification is  
 

 

 

  

 

 
 

 

 
Fig. 3.  Automatically generated step-by-step solution of a circuit problem using 
series and parallel combinations followed by nodal analysis.  Steps (a)-(e) in the 
process are each illustrated in a separate automatically annotated drawing. 

(a) (b) 

(c) 
(d) 

(e) 
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Fig. 4.  Example of automatically generated mesh analysis without pre-simplification.  Mesh 
currents are labeled by colored loops and the supermesh path by a dashed loop.   
 
shown in Fig. 4.  As the project progresses we plan to add support for all of the other solution 
methods as well as transient, steady-state AC (phasor), Laplace, and op-amp based circuits.  We 
also plan to add support to check solutions input by students against those generated by the 
program (including circuit re-drawing, equations, and numerical answers). 

3.  User Interface Design and 
Features 

3.1.  Problem Specification Interface 

At present users specify the types of 
problems and solutions to be 
specified through an interface 
implemented in Visual Basic for 
Applications.  One tab of the dialog 
box is illustrated in Fig. 5.  The first 
tab is used to specify the type of 
circuit (only DC at present) and the 
manner in which the circuit is 
specified (from a drop-down menu), 
and the other boxes are used to 
specify the numbers of elements, 
nodes, meshes, and grid size (though Fig. 5.  Screen shot of the user interface dialog box 

(first tab shown). 
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not all can be set by the user in a given specification method as discussed in Section 2.10).  Code 
behind the dialog box is used to validate all entries and adjust other parameters (with appropriate 
warnings) as needed.  An advanced options box is used to specify the maximum number of 
voltage sources in series, current sources in parallel, whether redundant sources and/or passive 
elements are allowed as discussed in Section 2.4, and whether circuits whose node voltages are 
all determined directly by voltage sources and circuits whose mesh currents are all determined 
directly by current sources are allowed.  The Sought Quantities tab (not shown) is used to specify 
the types and number of variables for which the student will be asked to solve, as discussed in 
Section 2.9. 
 
3.2.  Display Options and Features 

Various display options have been developed to eventually support the use of the circuit 
diagrams in a tutorial setting.  For example, circuit elements can be labeled either with their 
values (such as 4 Ω) or with their names (such as R2).  The different nodes can be automatically 
colored with different colors to help students recognize them [see Fig. 3(e)] and the actual 
element symbols can even be blanked out, leaving just the wires and leads to emphasize the 
nodes.  Groups of elements that are in series or parallel can be highlighted red on request.  The 
choice of reference node can be changed to any specified node, in which case the node 
numbering and all equations are automatically updated to match.  Mesh currents can be labeled 
automatically on arbitrarily-shaped meshes, as can the loops that constitute supermeshes (see 
Fig. 4).  Another feature is that the currents leaving a user-selected node or supernode can be 
automatically labeled with colored arrows, to help students understand the origin of each term in 
the KCL equation for that node or supernode.  We plan to optionally color each term in a KCL 
equation to match the color of the corresponding current arrow.  A similar approach will be used 
for each term in a KVL equation and the corresponding voltage drop around a loop.  A close 
graphical correspondence between the diagram and the equations can thus be achieved.  We have 
also implemented an interactive exercise in which students are asked to list all sets of elements in 
a circuit diagram that are in series or parallel, providing feedback on their answers as well as 
keeping “score.”  This exercise has already been used successfully in an introduction to electrical 
engineering class, where students were required to complete it a given number of times and until 
they achieved a target score. 
 
4.  Conclusion 

The progress to date in developing a circuit generation and solution engine has been described, 
including details of the underlying algorithms.  The criteria to use in generating “typical” 
textbook-like problems have been considered in detail.  Future work will focus on expanding the 
capabilities to treat all common textbook solution methods and heuristics, and extension to 
phasor analysis, transient circuits using a differential equation approach, Laplace domain 
analysis, and various special cases including op-amp circuits.  Additional software components 
to accept and analyze student input in various forms, carry out scripted tutorial sequences that 
make use of the generation and solution engine, and report student progress to the instructor are 
planned for future work. 
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