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Abstract 
 
George Santayana is known for saying “Those who cannot remember the past are condemned to 

repeat it”. Throughout the development history of aerospace engineering conceptual design, 
much knowledge has been generated although, to the best of our knowledge, no efficient system 
has been developed to help aerospace communities keep and use such valuable inheritance. In 
this context, we do routinely witness events such: (i) the failure of aerospace projects, like Titan 
IV, whose explosion has been deemed the responsibility of a design defect; (ii) the losing of 
valuable aerospace specialists and their expertise, like at Boeing, “…more than half of the 

Boeing work force will be eligible for retirement within the next decade. That's roughly 80,000 

employees’ cumulative corporate wisdom walking out the door.”; (iii) the ostensibly well-kept 
but not easily accessible knowledge has seldom shown its value and contributed to activities, like 
the books and journals covered by dust in library. 
 
In order to efficiently use energy, time and money, and apply previous precious design 
knowledge to current aerospace design problems, the key requirements on which a modern 
knowledge-based system (KBS) have to be based reads as follows: (i) accumulate and maintain 
aggregate knowledge; (ii) supply information relevant to any particular design effort; (iii) predict 
unavailable information based on trends from available knowledge. 
 
To this end, a first of its kind aerospace conceptual design knowledge based system, AVDKBS, is 
introduced in this paper. It provides researchers with a convenient way of storing, applying and 
predicting knowledge in a total systems approach. The categories of the system are differentiated 
by knowledge collection, exhibition, application, innovation and update. The structure of 
AVDKBS is constructed according to the requirements of the AVD parametric sizing method - 
AVDSIZING, providing an integrated iterative conceptual design capability. All those concepts are 
demonstrated by a novel proof of concept case study, such like the re-engineering of Project 

Mercury. This case study seeks to showcase AVDKBS as a standalone system in addition to its 
integration into a multi-disciplinary parametric design environment. 
 

Background 
 
In the history of human society, the value of knowledge can never be over emphasized. Current 
human achievements, like exploring the Mars and moving at the hypersonic speed, are all based 
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on massive findings and subsequent applications. Moreover, current age is often referred as an 
Exponential Knowledge Explosion age, and it is estimated “a week’s worth of New York Time’s 
contains more information than a person was likely to come across in a lifetime in the 18th 

century”. Consequently, facing the already overwhelming and still exponentially growing 
amount of knowledge, a question comes into existence: how should we efficiently manage those 
valuable legacies and assets for future activities? 
 
Besides the traditional ways of knowledge retention, like textbooks, journals and encyclopedias, 
benefiting from the development of computer science, researchers all over the world propose 
various Knowledge-Based Systems (KBS) to proficiently capture, store and apply knowledge. 
The following table is a succinct summarization of the KBSs developed during the past decades: 
 
Table 1 Knowledge-Based Systems (KBS) Development 

Researchers Year Discipline Contribution 

John F Gilmore1 1984 Computer Science 
Discussion on system requirements of a 

KBS 

Kunio 

Murakami2 
1984 Computer Science 

Preliminary research on inference engine 

and knowledge base 

Fu Tong3 1985 Computer Science 
Investigate environment for building KBS 

supporting various knowledge functions 

Anton 

Bigelmaier4 
1986 Computer Science 

Discuss representation problems in CAD-

system KBS building 

Haruo Yokota5 1986 Computer Science 
Propose a model and architecture of a KBS 

with unification applications 

L. Marinos6 1989 Computer Science 
Propose an architectural framework for 

integrating database and knowledge base 

M.A. El-Kady7 1990 Electrical Engineering 
Build a knowledge-based system for power 

cable design 

O. Felix 

Offodile8 
1991 

Mechanical 

Engineering 

Build a KBS for choosing assembly robot 

for mechanical assembly. 

Stipe Fustar9 1992 Electrical Engineering 
Develop a knowledge-based system for 

weekly power system operation scheduling 

N. 

Sirilertworakul10 
1993 

Mechanical 

Engineering 

Establish a knowledge-based system for 

selecting casting alloys and process 
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Bojan Dolsak11 1994 
Mechanical 

Engineering 

Build a KBS  on deciding the appropriate 

mesh resolution 

A.M. Buis12 1996 Geodetic Engineering 
Develop a KBS to be combined with GIS 

to support parceling design task 

Stewart Long13 2003 Computer Science 
Build a knowledge-based system to 

automatically assess IT skills 

Nobuhide 

Nishiyama14 
2006 Computer Science Develop a KBS for QoS service 

Kihyeon Kim15 2007 
Information 

Technology 

Build a knowledge-based system for 

diagnosing ECG and heart disease 

Ali Malkawi16 2007 Civil Engineering 
Integrate KBS with a thermal simulation 

engine for replacement building features 

S. Guo17 2009 Power Engineering 
Build a KBS for Fault Diagnosis in Solar 

Power Tower plant 

Shaobin Chen18 2010 
Mechanical 

Engineering 

KBS working with remote sensing module 

for target recognition tasks 

Tomasz 

Kowalewski19 
2010 Naval Engineering 

Build KBS with hazard zone identification 

system for the ship power plants design 

Yannick 

Naudet20 
2011 

Illuminating 

Engineering 

Develop a knowledge-based system on 

daylighting performance in facade design 

 
In 1980s, based on the evolution of artificial intelligence technologies, researchers from 
Computer Science field try to apply those technologies into a new application area – the 
knowledge-based systems. Those systems are supposed to manage certain domain knowledge 
using reasoning techniques, so that they can provide advice aiding human activities.  
 
To build such systems, researchers first propose frameworks and models to clarify the problems 
like: what components the systems should possess in terms of both hardware and software and 
how they should work in order to perform the supposed functions. The aim of this effort is to 
point out a path to the functional knowledge-based systems, but no actual system is developed at 
this stage. In this era, John F. Gilmore1 discusses the system requirements of KBSs, their 
relevance with computer-aided technology and points out a potential application. Kunio 
Murakami et al2 do preliminary research on inference engine and the related knowledge base. 
Anton Bigelmaier4 investigates the representation problems for geometrical knowledge in CAD-
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system knowledge base building, including rule knowledge and method knowledge, and he 
suggests they can be represented by operations and structures of operations. 
 
After the initial theoretical preparations, researchers begin to build knowledge-based systems. 
Based on the development of operation systems and programming languages, like Prolog and 
Python, and more affordable and powerful computing hardware, many systems in a variety of 
fields are developed. Those systems are usually combined with the artificial intelligence 
techniques, such as Rule Based Reasoning and neural networks, so that they can perform the 
basic system functions, including interpretation, reasoning and retrieval. However, those systems 
can only provide advice to human users based on simple input and reasoning procedure, and the 
application and selection of those advices are performed by users, so the overall analysis process 
is still manual. That’s why those systems are often referred as Expert Systems. The selected 
examples in this kind of knowledge-based systems are: a power cable design knowledge-based 
system from M.A. El-Kady et al7 , it can both assist designers in design and educate fresh 
engineers; an assembly aiding knowledge-based system developed by O. Felix Offodile et al8 , 
which can receive user demand and layout specifications to choose the mechanical assembly 
robotic systems based on the information in the assembly robots knowledge base; a work 
scheduling knowledge-based system from Stipe Fustar et al9 , it can provide assistance for 
weekly power system operation scheduling including “load prediction, inflow prediction, 
possible run-of-river hydro production, storage hydro production, unit commitment, generator 
maintenance and power interchange between interconnected power systems”. 
 
Around the beginning of 1990s, researchers find the great potential of combining the newly 
developed knowledge-based systems with the existing systems, like databases or processing 
modules, so that they can work together to perform more complex tasks. L. Marinos et al6 start 
proposing a framework for integrating the knowledge base and database, focusing on the 
knowledge and data representation problems. However, the real functional systems of this kind 
come into existence around 2000s. A.M. Buis et al12 develop a knowledge-based system, which 
can work with the Geographical Information System to help finish more and more difficult 
parceling design work. Besides this, more systems in this kind are developed later on. Ali 
Malkawi et al16 combine their knowledge-based systems with a thermal simulation engine and a 
database to assist the decision making for choosing replacement building features. Shaobin Chen 
et al18 incorporate the knowledge-based system with a remote sensing module to conduct target 
recognition tasks. Because this kind of knowledge-based system are linked with either database 
or other functional modules, they can either use the collected data to enrich their knowledge 
source, or take advantage of past project experiences to make it as starting points for the new 
analysis, like Case-Based Reasoning (CBR). In this way, it saves human energy and time, but 
most of those systems are not totally automatic and they need human help to accomplish the 
analysis. 
 
In current age, based on the mature of the knowledge-based systems, its application area has 
greatly expanded. Besides their traditional applications in Engineering and Computer Science 
fields, they quickly show their excellence in other industry and academic fields, like medical 
care, agriculture, business management, textile and so on. Kihyeon Kim et al15 build a 
knowledge-based system for ECG and heart disease diagnosis. Yannick Naudet et al20 develop a 
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knowledge-based system to take both visual performance and visual comfort of the daylighting 
performance into the façade design. In some application field, the knowledge-based system can 
even automatically accomplish an analysis task. Stewart Long et al13 use a knowledge-based 
system to automatically assess candidates’ IT skills to check their qualification. To keep up with 
the internet developments, researchers also develop web-based knowledge-based systems, so that 
the application can serve remote customers. Nobuhide Nishiyama et al14 use semantic web 
language to build an online knowledge-based system for QoS services. 
 
However, until now, no effort has been spent on theoretically summarizing the development of 
the knowledge-based systems to offer a big picture of them, and few of the existing systems 
provides a knowledge update mechanism for updating purposes. Consequently, those systems 
easily become obsolete after a short amount of time.  
 

Motivation 
 
Due to the complexity and multi-disciplinary constraints in aerospace engineering conceptual 
design, the knowledge management methods are still traditional, consisting of textbooks, 
journals, engineering drawings, archives, report servers, lessons learned documents, etc. 
According to our literature search, there are only a few KBSs efforts proposed, none of them has 
produced a practical KBS for aerospace design application; see Table 2. 
 
Table 2 Knowledge-Based Systems Development in Aerospace Engineering Design 

Researchers Year Discipline Contribution 

Christian Freksa21 1986 
Aerospace 

Engineering 

Framework proposal of knowledge 

engineering for design expert systems. 

Stewart Baily22 1987 
Aerospace 

Engineering 

Proposal of knowledge-based aeronautical 

conceptual design system. 

W. A. Dos Santos23 2009 
Aerospace 

Engineering 
KBS for satellite conceptual design. 

C. Gong24 2010 
Aerospace 

Engineering 

Knowledge-based tactical missile intelligent 

conceptual design environment. 

 
For any KBS in engineering design, the first task is to collect the design knowledge, and then 
document and archive it. After that, some mechanism needs to be developed to utilize it. During 
the application process, if the current information available to the user is sparse, new knowledge 
needs to be generated to solve the unknown. Based on this, any successful KBS must be capable 
of (a) knowledge collection, (b) knowledge categorization, (c) knowledge application, (d) 
knowledge innovation and (e) knowledge update. This first-order KBS specification will be used 
as criteria to evaluate the KBS development in aerospace engineering design and decision-
making. 
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Besides the latest work from W.A. Dos Santos and C. Gong (WDCG) in Table 2, three other 
widely used aerospace engineering resources are also selected for comparison: Jane’s All the 

World’s Aircraft (JAWA), AIAA Electronic Library (AIAA) and CATIA V5 knowledge ware 
tools (CATIA). 
 
Table 3. Current Aerospace Engineering Design KBSs Comparison 
Item JAWA AIAA CATIA WDCG 

Knowledge Collection √ √ √ √ 

Knowledge Categorization × √ √ √ 

Knowledge Application × × √ √ 

Knowledge Innovation × × × × 

Knowledge Update × × × × 

 
From the comparison in Table 3, it is obvious to conclude that none of the listed KBS is capable 
of storing, categorizing, applying, inventing and updating knowledge. A truly practical aerospace 
KBS implementation is still absent in the current aerospace engineering design community. The 
AVD Laboratory at UTA makes the very first effort in developing an industry-relevant thus 
practical aerospace KBS dedicated to the strategic conceptual design phase. 
 

Methodology and Implementation 
 

Introduction 

 

AVDKBS is developed to function in two primary modes: (a) a standalone system for knowledge 
storage, education and reference, and (b) as an interactive system with other AVD methodology 

 

Figure 1.  AVDKBS Components and Logic Relationship to AVDDBS and AVDSIZING 

AVDDBS Knowledge 

Base

AVDSIZING

Data Flow 

Control

User 

Interface AVDKBS



 

 

Proceedings of the 2013 ASEE Gulf-Southwest Annual Conference,  

The University of Texas at Arlington, March 21 – 23, 2013. 

 Copyright � 2013, American Society for Engineering Education 

modules to complement the parametric aerospace sizing process. The general relationship of 
AVDKBS within the existing AVD design environment is: 
 
AVDKBS mainly contains three primary components: the (a) knowledge base, (b) data flow 
control unit, and (c) the user interface. The knowledge base resembles the actual knowledge 
pool. The data flow control unit consists of mechanisms which are designed to manipulate the 
data transfer between the knowledge base and the other logical modules, see Figure 1. This 
module is responsible for providing the system-logic to AVDKBS; it performs all the system 
functions to connect previously independent systems in order to make them work as an 
integrated unit. The user interface provides a software connection between the user and the 
system to perform system functions (knowledge entry, knowledge manipulation) without getting 
into details of MS Access and Matlab coding. 
 
System Level 
 
In order to implement the capabilities of knowledge storage, classification, application, creation 
and update, we propose a five-level KBS classification and organization scheme: 
 
1) Knowledge Collection: gather knowledge from various resources, which mainly contains the 

lessons learnt, design guidelines and past project experiences. 
2) Knowledge Categorization: sort collected knowledge according to certain criteria, and express 

them in a variety of forms for further applications (tabular, numerical, graphical, text, etc.). 
3) Knowledge Application: employ the categorized information in multiple tasks, including 

young engineer education, research reference and automatic parametric sizing process. 
4) Knowledge Innovation: generate new knowledge through reasoning mechanisms (AVDSIZING 

reasoning technique) to solve the unknowns. 
5) Knowledge Update: manual/automated knowledge updating (dynamic KBS). 

 

Figure 2.  AVDKBS Architecture and Hierarchy.  
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The prototype KBS implements the proposed concept by using the data and knowledge rich case 
study Project Mercury. The building process is introduced with the following sections. 
 
Knowledge Collection 
 
Knowledge collection is the first primary and non-trivial step in every KBS building process, and 
its aim is to identify and obtain all the required information. Its completeness and correctness 
directly influence the KBS quality and functions. This process lasts throughout the whole KBS 
life cycle, thus it resembles the notion of ‘life-long learning’. Any newly collected or generated 
knowledge has to update the system manually or automated. 
 
The knowledge base assembled for the Project Mercury launcher consists of conceptual design 
level methods, experiences and lessons learnt, all spanning Project Mercury from launch until 
completion. This information is valuable, because it contains the key points of how the problems 
have been solved during the conceptual design phase. It directly does mirror what mistakes can 
be avoided. 
 
The knowledge sources are mainly formally published project report. Project Mercury is an 
especially rich data, information and knowledge case study. The general Project Mercury 
information resources available can be divided into the following categories: 
1) NASA reports: such as NASA SP-4001, NASA SP-4201, contract report NAS 1-430, etc. 
2) NASA project conferences: such as Project Mercury presented at the Fourth Annual Meeting 

of the Human Factors Society and Press Conference at Washington D.C. on 9 April 1959. 
3) NASA news releases: such as Fact Sheet MA-8. 
4) Reports, papers and presentations from other institutions: such as the AIAA space flight 

testing conference. 
 
The knowledge needed for the parametric sizing process is first identified. Then it is searched 
and located in the resource. And after that, detailed information, like author, application field, 
descriptions and so on are extracted and documented in the our own format for following 
applications. 
 
Knowledge Categorization 
 
After gathering the main part of information available from all resources, the knowledge is 
classified according to the primary engineering disciplines of relevance. For each discipline, 

 

Figure 3. Project Mercury AVDKBS Disciplinary Sub-structure. 
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gross design variables are identified for numerical knowledge harvesting purposes, see Figure 3. 
The five knowledge-rich disciplines of relevance for early design of Project Mercury are: 
trajectory, geometry, aero-thermo-dynamics-heating, propulsion and weight estimation, see 
Figure 3. 
 
This early categorization of knowledge is providing a pragmatic structure to search, retrieve, 
document and utilize the knowledge available. Furthermore, the five disciplinary categories are 
directly interfacing with the needs of the ‘reasoning technique’ employed, the AVD sizing 
method and software AVDSIZING. Considering the system’s generic potential for any other project 
of interest, the AVDKBS storage structure facilitates both, the required disciplinary categories and 
the knowledge itself, overall providing a platform with growth potential for future expansion. 
 
Each knowledge entry is classified to consist of two parts: 
 
1) General Information: author, source and application area 
2) Detailed Information: application assumptions, input & output, and complete knowledge 

contents. 
 
For the knowledge general information, it summarizes who proposes the knowledge and in 
which publication. It also specifies its application area by differentiating the design phase, 
discipline, categories and applicability. 
 
For the knowledge detailed information, since the original expression can be mathematical 
equations, engineering drawings, or only experience descriptions, then the original description 
will be expanded into either of the following three expression forms: 
 
1) Verbal Expression: Engineering language employed to describe the details of the knowledge 

targeting the three primary user categories (a) decision-maker, (b) systems integrator, and (c) 
technologist. 

2) Mathematical Expressions: Mathematical formulas in the form of numerical guidelines are 
used to illustrate trend-patterns in the knowledge available, targeting the reasoning technique 
AVDSIZING by aiding the automatic parametric sizing process. Again, the knowledge contents 
is prepared for targeting the three primary user categories (a) decision-maker, (b) systems 
integrator, and (c) technologist 

3) Visual Expressions: Meaningful engineering drawings, figures and tables are used to express 
the knowledge contents at hand, targeting the three primary user categories (a) decision-
maker, (b) systems integrator, and (c) technologist. 
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The above specification has been translated into a MS Access knowledge overview card and 
template, see Figure 4. 

 
Knowledge Application 
 
Having prepared the available knowledge entries as described in the sections above, the 
knowledge application section builds mechanisms to pragmatically utilize the knowledge. This 
section provides two primary functions aimed at knowledge management: (a) knowledge 
searching and (b) knowledge retrieving. 

 
The knowledge searching function fulfills the research reference and education objectives. It 
facilitates the three primary user categories (a) decision-maker, (b) systems integrator, and (c) 

 

Figure 4. Knowledge Overview Card and Template for Project Mercury. 

 

 

Figure 5. Knowledge Searching Screen. 
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technologist to quickly find useful information and apply them to the problem at hand. Thus, it 
provides the learner relevant knowledge entries ‘at the fingertips’ in a filtered and clean format. 
A graphic searching window is created to identify relevant knowledge entries stored in the 
system. Figure 5 shows an example of knowledge entries related to a weight estimation method. 
 
The retrieving function serves the automatic parametric sizing process AVDSIZING. It 
automatically retrieves relevant knowledge entries from AVDKBS and directly feeds the 
parametric formulation into the parametric sizing process. During the analysis, if a necessary 
variable is missing, a search mechanism will first go through a lookup table. If the variable is 
found, the name of the sub-function able to solve for the missing variable will be retrieved. The 
function will be executed and feeds its result directly into the parametric sizing process. 

 
Knowledge Innovation 
 
The knowledge retrieving functions can solve most of the missing information in the automatic 
parametric sizing process. However, if some necessary variable cannot be found in the lookup 
table thus AVDKBS, the knowledge innovation mechanism has to be applied. It mainly conducts a 
Case Based Reasoning (CBR) process. The CBR will search the AVDDBS; if the variable is found 
as applied for a past project, data related with the variable will be retrieved. Then, a regression 

 

Figure 6. Retrieving Sub-function Programming. 

 

Figure 7.  Knowledge Innovation using CBR (a) Regression Line, and (b) Sub-function. 
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line will be drawn and an interpolation method will be used to identify a value for the unknown 
variable. Obviously, the user is tasked to determine if the starting point identified serves the 
problem at hand. 
 
Within the Project Mercury case study, the team identified a lack of understanding related to the 
capsule maximum (peak) temperature during re-entry. Consequently, past projects’ maximum 
temperatures and speeds have been retrieved from AVDDBS, a regression line has been 
constructed for review. The trend information provided educated the team on the subject. The 
relationship has been judged to adequately represent the physical phenomena as a starting point 
for the analysis of the capsule maximum (peak) temperature during re-entry. Consequently, the 
interaction between AVDKBS and AVDDBS resulted in a parametric approach delivering the input 
requested by AVDSIZING. A sub-function is written to perform this process. 
 
Knowledge Update 
 
For the Project Mercury case study, AVDKBS can be considered sufficiently proficient due to its 
rich legacy knowledge contents embedded for the parametric sizing analysis. However, even the 
execution of an independent reverse-engineering study results in the generation of never-before-
seen understanding. This new knowledge can be due to flawed knowledge identified in the past, 

different technology assumptions, difference in the integration approach, etc. Clearly, AVDKBS 
has to be a dynamic system capable of internalizing new entries while the project is in progress. 
An efficient knowledge update mechanism or learning function has been devised. In other words, 
AVDKBS is integrated in the iterative development cycle during the entire project forecasting life-
cycle. 
 

 

Figure 8. AVDKBS Manual or Hand-update Screen. 
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A graphic knowledge update window has been developed to enable the operator to manually 
update new knowledge into the AVDKBS; this sequence simply resembles ‘learning’. Detailed 
information related to the new knowledge entry can be directly entered via the GUI shown with 
Figure 8. The ‘Update’ button formally accepts the knowledge entry into AVDKBS. 
 
Other Interfaces and Mechanisms 
 
An important function of AVDKBS is to aid AVDSIZING to perform the automatic parametric 
sizing task. Thus, an interface is developed for the operator to specify the sizing mission 
requirements, see Figure 9. 

 
According to previous AVD Laboratory parametric sizing projects, the mission requirement 
inputs consist of seven key parameters: design payload (kg), range (m), velocity (m/s), initial 
cruise altitude (m), take-off field length (m), landing field length (m), and reserve mission 
duration (s). It is not required to completely fill in all of these parameters; the user is free to 
define the mission statement as practical. AVDKBS provides a ‘Traded’ option, see Figure 9. If 

specific mission parameters are not checked, the system will consider the parameter as a hard 
requirement, or it will be considered as a traded requirement in the vehicle selection process. 
This function is of significance since it enables the design team to explore the mission solution 
space resulting in the correct mission definition. 
 
Having defined the either ‘rigid or flexible’ mission requirement trade space, the system will go 
through a ranking or ‘Grading’ process with the aim to identify the baseline vehicle and mission 

 

Figure 9. Mission Input Screen. 

 

Figure 10. Two-step Grading Mechanism 
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combo. During the process, each vehicle documented in AVDDBS will be ranked (graded); the 
vehicle with superior ranking is going to be selected as the baseline vehicle for a given mission 
statement. 
 
The ‘Grading’ mechanism is a two-step process. For the first step, the parameter from 
documented vehicle will be compared with the users’ input value chosen; if they match within a 
tolerance, the vehicle receives one point for this parameter; if they don’t match, the vehicle will 
get zero points. For the second step, the point will be multiplied by a coefficient whose value is 
determined by the ‘Traded’ option. If it is untraded, the point will be multiplied by seven, which 
makes sure the vehicle satisfying the hard requirement always gets the most points. For the 
parameters with the ‘Traded’ option checked, any point will only be multiplied by one. The same 
process is repeated for the other six input parameters. The sum of those points is the vehicle’s 
total points. After all the vehicles are graded, the vehicle with the most points is selected as the 
baseline vehicle. 
 
After the baseline vehicle is selected, its technical representation will be drawn from AVDDBS; 
this input-deck then starts the sizing code AVDSIZING. 
 

Project Mercury Launcher Case Study 
 
The Project Mercury launcher case study serves to evaluate the performance of AVDKBS in 
cooperation with the other AVD system modules. Objective is to achieve an automatic 
parametric sizing process. Having already introduced the interplay between the individual 
modules AVDDBS, AVDKBS and AVDSIZING with preceding sections, we focus with the following 
on the automatic sizing process and the results. The process is automatic, thus the user is only 
required to input the mission requirements; the analysis result will be directly displayed in the 
analysis result window. The mission requirements of the Project Mercury launcher are defined as 
follows: 
 
Table 3. Project Mercury Launcher Mission Requirement 
Item Value 

Design Payload (Kg) 1995.8 

Range (m) 0 

Velocity (m/s) 2251.86 

Initial Cruise Altitude (m)  

Take-off Field Length (m) 0 

Landing Field Length (m)  

Reserve Mission (s)  
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The payload is defined by the gross weight of the Project Mercury capsule, which is 1,995.8 kg. 
Since we are concerned with only the launcher, the range is defined as zero; the velocity is 
chosen as the separation speed, which is 2,251.86 m/s; it is a vertical take-off launcher, the take-
off field length is chosen as zero. The rest of the mission requirement parameters are left blank, 
and none of the ‘Traded’ options is checked, see Figure 11. 

 
Having finished the input formulation, the analysis button is clicked and the sizing process 
begins. After the grading process is executed, the Project Mercury launcher will be selected as 
the baseline vehicle and its technical details are stored at AVDDBS, serving as the input deck for 
the execution of the sizing process. The unknown variables will be solved by the methods 
described in either Section 3.5 Knowledge Application or 3.6 Knowledge Innovation. Finally, the 
sizing result will be displayed in the analysis result window. 
 
Although much more design results can be retrieved from the analysis, the results selected in 
Table 4 aim to show the important AVD parametric sizing characteristic of concurrently 
converging both launcher volume and weight. The results presented in Table 4 show agreement 
with published Project Mercury launcher data and the chosen design point. This case study 
demonstrates the overall functioning of AVDKBS in concert with AVDDBS, both aiding the 
AVDSIZING code to complete an automatic parametric sizing analysis. 
 
Table 4.  Project Mercury Launcher Design Study Results 
Sizing Code 

Output 

Design 

Variable 
Unit Design Point Project Mercury Error (%) 

Geometry 

RLTWF Lbooster m 17.48 17.48 0 

RBD Dbooster m 1.78 1.78 0 

 

Figure 11. Parametric Sizing Result for Project Mercury Launcher. 
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RWA Swet m2 97.70 97.66 0.04 

RVF Vtank m3 27.11 26.96 0.005 

RLF Ltank m 10.91 10.86 0.005 

Performance 

FF FF  0.815 0.815 0 

OEW OEW Kg 3902.5 3875.49 0.007 

OWE OWE Kg 5557.57 5530.65 0.005 

PPLMASS Wfuel Kg 24568.4 24436.38 0.005 

TOGW TOGW Kg 30126 29967.03 0.005 

 

Summary and Future Work 

 
This paper introduces the motivation for the development of a dedicated aerospace knowledge-
based system. AVDKBS can work as both, a standalone system for knowledge storage, education 
and reference, and alternatively as an interactive system with other AVD system modules to 
complete an automatic parametric sizing process. Its main functions can be summarized by 
knowledge collection, categorization, application, innovation and update. Graphic interfaces are 
developed to aid the user to conveniently retrieve knowledge and conduct parametric sizing 
analysis without getting into the details of MS Access and Matlab coding. A case study is 
conducted to demonstrate the primary system functions and functionality. Consequently, 
AVDKBS provides us with an efficient tool to employ previous legacy knowledge such to making 
us stand on the shoulders of giants. 
 
Due to the characteristics of the sizing method employed at the AVD Lab, both new knowledge 
and new vehicles thus knowledge are generated during the analysis process. Consequently, a 
mechanism has been developed to document not just legacy but new knowledge with the system 
for future references. It is a requirement that this knowledge-updating mechanism should be 
ideally automatic since the generation of new knowledge and vehicles is fast when employing an 
automatic sizing process when compared to the interruptions caused due to hand manipulations. 
Since not all knowledge is of relevance nor appropriate for the problem at hand, a mechanism 
needs to be developed to appropriately select the correct knowledge-entry. 
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