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 Introduction 

 In a recent study, an effect entitled sectionality was probed to determine the effect of 
different course sections at various schools had on students’ grades.[1] A caveat of that study 
brought up numerous times in lectures and via private correspondence – one left out of the 
original paper – was the effect of class size (or sizeness) for the same introductory courses. 
While anecdotally, faculty from all over the country had discussed with the researchers in the 
past few years that course size either does or does not affect course grades, the researchers left 
this question unanswered in the literature. In order to address this question, we opened the 
question to present the answers to the community at large. 

 While the topic of engineering grades remains an important one to our community,[2-9]  it 
could be easily argued that the subject of the effect of class size on grades is even more 
universally debated – both outside [10-13] and within the sphere of higher education.[14, 15] Some 
studies actually shirk the question of the effect of class size on grades altogether and opt to probe 
class size’s effect on teacher evaluations![16] More general and historically-minded reviews of the 
subject in higher education are beyond the scope of this paper, but are easily accessible.[17]  The 
debate of many state legislatures, programs such as No Child Left Behind (NCLB), and even 
more recent ones such as the Common Core (CC) have all focused on average class size at one 
point or another. 

Multi-Level Models (MLM) or Hierarchical Linear Models (HLM) offer a solution to 
probing the question of grade disparity with respect to course size. We decided to use a simple 
null model due to its powerful and direct results in order to express the differences between 
variances of course grades as a result of being enrolled in the course itself and course grades as a 
result of being present in a particular course of one particular size. The null model provides the 
basics for what statisticians call the intraclass correlation coefficient (ICC). [18, 19] The ICC is a 
simple measurement of the intra- versus inter-group variance in a given quantity. If the ICC is 1, 
that means that all of the variance in a quantity – in this case, grades – lies within the domain of 
course size. If the ICC is 0, that means that the course itself is the sole arbiter of grade variance. 
In a perfect world, our null model would tell us that course size is indeterminate of course grade 
variance – that students could perform equally well in a given course at any given time based 
solely on their work and the potential distractions of pitfalls of course size do not affect their 
grades. 

Why Choose HLM? 

The use of HLMs in our field and elsewhere, a brief history, and more have been 
discussed at length in a previous work.[1] For those interested, the world of hierarchical linear 
models (HLMs) is an expansive space, and fundamental texts in the discipline describe it in a 
detail beyond this paper.[8, 20-31] If one is interested in starting a project in using HLM, two major 
pieces of advice can be offered. First, it would behoove the researcher to learn how to program 
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them from scratch as much as possible using an environment such as R or even a higher 
functioning one such as SAS. Specialized programs abound that offer easily-accessible results, 
but blind the researcher to important computational steps (and potential follies) along the way. 
Second, avoid the distraction of different names for HLMs. They can be called multi-level 
models, split plot models, null models (confusingly as this is a type of expression of a HLM), 
mixed models, mixed effects models, etc. 

 HLMs have a few features and assumptions that differ them from standard methods of 
analysis. First, that all data is organized into nested levels or sets. Second, the variance of the 
model itself is not endemic to one such level, but can lie in both. Third that the establishment of 
cross-parameterization links different levels together. This may be the most important feature of 
HLMs. We do not want to simply know the change in a second order variable, we want to know 
the change in a second order variable with respect to unit change of a first order variable. Fourth, 
empty data in one particular nested regime does not invalidate the analysis; and predictors at one 
level can be aggregated upwards. Essentially, this means that unlike linear regression techniques, 
HLM does not require complete data sets at all levels. Data can be missing. 

Do Changes in Course Size Affect Grades or Not? 

 Within our field, no papers have substantially probed a connection between course size 
and grade distribution, and there has been a lack of HLM papers in our field over the past few 
years, a few here are of note.[32] While Egan’s sample size appears large (N ~ 110,000), he only 
analyzed 349 response surveys. Furthermore, Egan makes a critical mistake in the fact his ratio 
of employees to supervisors is roughly 6:1. To the casual observer, this may seem acceptable, but 
to a statistician or one familiar with the limits of dimensional reduction, it is nearly impossible to 
dimensionally reduce with less than an 8:1 ratio. Similarly in HLM work, the community usually 
agrees on an 8:1 ratio given certain caveats that are explored in depth by the more 
mathematically inclined.[21] Strict tests of convergence must be performed when a data set for 
HLM analysis is so small, as canned methods cannot be relied upon under such circumstances. 
Finally, subsetting from 110,000 samples to 349 presents a stochastic concern in that the 349 
individuals probed are within the counting error for a data set of 110,000 when presented without 
a control group. 

Another of the early papers within our field that described the use of a HLM to analyze a 
multi-tiered arrangement of students, but is critically flawed because it did not actually analyze 
data.[33] Harper et al. performed a study of co-curricular activities, and the results indicated that 
faculty and institutional programs tend to outweigh the effects of gender and SAT on student 
participation in co-curricular events.[34] The 2005 paper by Padilla et al. elaborates the 
importance of careful data aggregation and delimitation in HLM.[35]  They make proper use of 
one of the best features of HLM – that variables have a representation at each level – while 
making use of first level variables and aggregates of them in a subsequent one. Padilla’s most 
important result is that 19% of the variance in student grades can be directly related to 
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differences in a student’s home institution. This runs analogously to Astin’s famous quote of the 
most important data point is the student’s institution.  

There are several key studies of the effect of course size on student performance, some of 
them analyzing grades and others analyzing standardized test scores. The various studies at both 
the pre-college and college levels are not without significant caveats – for instance, the work of 
Chingos,[12] while obviously a lightning rod for criticism, must be properly situated. Simply 
stating that smaller class sizes have no effect on achievement scores means nothing without 
specifics. Chingos, being aware of this minefield, even states in the title of his paper that this is a 
study of the net contention of public policy in Floridian schools, more specifically in this case, a 
universal mandate. While some may not agree, the Van der Hulsts[36] of the world understand 
that class size mandates are curricular changes. In the case of Floridian schools, the universal 
mandate is the largest-scale type of curricular change possible, one with many drawbacks, 
namely, the flexibility of individual school systems to customize them to their needs. Some 
school districts simply did not take funding that required them to abide by the mandate. Other 
schools already had the mandated level of students per classroom; therefore did not receive 
additional funding and their relative change in achievement per student remained 
(unsurprisingly) the same. 

At the college level (and specifically within our field), the literature is practically 
nonexistent for the effect of class size on grades, although decent analogues exist, especially in 
the field of economics.[37] For instance, there are papers such as Raimondo’s that study the 
variances in grades at the college level for specialized introductory courses.[14] In fact, one 
defining factor of Raimondo’s study is that it is one of few papers at the college level to 
specifically focus on college grades and differentiate itself from research focused on college 
achievement scores.[38] His work found that other than a somewhat different drop in grades 
between the introductory courses and intermediate courses in micro- to macro-economics, course 
size had a measureable effect on course grades if the students introductory course had fewer 
students. In other words, if students took a large introductory course at first, then their overall 
performance in later, more specialized courses, would be slightly lower than students taking 
smaller introductory courses. Of course, the pitfalls of even such a well-designed study lies in the 
details, and with Raimondo’s N of 146 over two sequences (micro- and macro-economics), his 
delimitations, in his own words, are preliminary. 

As an aside, many studies exist that study effects similar to class size, but indirectly 
measure outcomes related to size. For instance, while Vogt’s 2008 study used a metric of faculty 
distance or the degree to which faculty directly interact with students due to course size,[7] no 
scaled correlation between course size and individual course grades was made. 
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Methodology 

At the time of this data set being released, the MIDFIELD schools were all public 
institutions and mostly located in the southeastern United States, yet their size and diversity 
helped make the results generalizable. All of these partner institutions have larger overall 
enrollment and engineering programs than average compared to the more than 300 colleges with 
engineering programs. The partners include six of the fifty largest U.S. engineering programs in 
terms of undergraduate enrollment, resulting in a population that includes more than 1/10 of all 
engineering graduates of U.S. engineering programs. MIDFIELD’s female population comprises 
22.1 percent of students, which aligns with national averages of 20 percent from 1999-2003[39] 
and 22 percent in 2005.[40]   

A Note on Our Data Set and MIDFIELD in General 

In this iteration of MIDFIELD, we kept the number of students the same to keep the 
results as complimentary to the original study. Here, the MIDFIELD database contains records 
for 701,190 first-time-in-college students matriculating in any major at participating 
institutions.[41, 42] The first cut of data began with 137,071 first-time-in-college (FTIC) students 
who ever matriculated in engineering at one of nine of our MIDFIELD institutions in 1988 and 
later. The data for these students is complete, in other words we have everything that the registrar 
has for these students. The students were further delimited to a set of students who repeated a 
particular course (receiving zero credits at their home institution). We finally, we had 161,456 
grades for instances of where students who sometime in their careers declared an engineering 
major took one of three introductory courses. 

The students’ sections for each course are counted, and they are divided into different 
groups by the section they are in under the specific individual course for every term in a year. 
The courses chosen once again are equivalent courses – a fact we did not originally adequately 
define. Equivalent here means that for a course of Calculus I, this means that at a given 
institution, a student who is an engineer and wishes to graduate can take that particular Calculus 
I course and graduate. These equivalencies were tallied by examining each course number and 
what would count as a Calculus I requirement for a graduating engineer.  

The Basic Form of a Hierarchical Linear Model 

 A Hierarchical Linear Model (HLM) can begin with the construction of a linear 
regression formulae, such as that of a line,  

Yi =  β0 + β1Xi, + ei 

 Where Yi is the dependent variable (or criterion), β0 is the intercept, β1 is the slope, Xi is 
the predictor variable, and ei is the residual (or sometimes as it is colloquially called, the error). 
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In HLM, a standard model equation looks like, 

Yij =  β0j + β1jXi, + eij 

 The unit notation j here denotes our clustered unit factor that allows us to subset our data 
with this linear regression equation. Why this is important is that for every set of j, there is a 
subset of including an outcome (dependent variable), an intercept, a residual, and a slope.  

 When looking at course size, what this means is that for a given overall course, there are 
different course sizes with their own outcomes, intercepts, residuals, and slopes. 

   For our results presented within this paper, we utilized the simplest form of HLM, which 
is called the null model or the intercept only model, 

Yij =  β0j + eij 

 The intercept only model is also called the null model or the empty model or the fully 
unconditional model.[23]   

 The intra-class correlation (ICC) function must next be calculated.  As previously 
discussed, the ICC is a direct measure of where variance is distributed. The ICC is given by,	

	 	 	
1,1

1,1
 

 The factor τ  is the variability between levels and σ2 is the variability within levels. At 
the zeroth or null model level for HLM, σ2 is actually the residual of the fit of our model. 
Another way of looking at this is that it is all of the remaining variability left after calculating 
τ . So a value of 0.10 means that 10% of the variability in a course’s grades lies within the 
realm of the size of the course chosen.  

Results 

 We present the following results from an analysis of course sizes in calculus 1 (Table 1), 
chemistry 1 (Table 2) and Physics I (Table 3). The same random number that was chosen to mix 
institutions is used again for comparison of the same intercept (average course grade) to previous 
results. In SAS and many HLM notation systems, UN(1,1) is the standard notation for  τ , in 
this case, the variability between course size. The residual value here is eij or σ2, which is the 
variability within course sizes. The ρ value for all results was less than 0.005 – the threshold for 
statistical significance here. The highest value of the ICC for each table are highlighted in green 
and the lowest values in yellow. 
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Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.06619 0.00806 1.2416 0.00786 0.05061 2.3047 0.009864

1 0.1064 0.02979 1.6443 0.02502 0.06077 2.5309 0.01841
2 0.09529 0.03632 1.9132 0.05258 0.04744 1.9803 0.02991
3 0.01587 0.01008 1.7758 0.04644 0.00886 2.1321 0.02369
4 0.01279 0.00556 1.5109 0.02181 0.00839 2.4528 0.02274
5 0.1068 0.03210 2.0088 0.04829 0.05048 2.5186 0.02334
6 0.02384 0.00851 1.5395 0.02550 0.01525 2.3323 0.04033
7 0.03363 0.00831 1.3098 0.01910 0.02503 2.3486 0.02294
8 0.06339 0.02279 1.6661 0.02388 0.03665 2.0184 0.04819
9 0.05872 0.02420 1.7281 0.04470 0.03286 1.8378 0.03316

Table 1. Table of results from the first core calculus course  

 

Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.07077 0.00961 1.4505 0.00881 0.04652 2.3047 0.00986

1 0.2316 0.05447 1.0834 0.01507  0.17612 2.5309 0.01841
2 0.01725 0.01252 1.5906 0.03574 0.01072 1.9803 0.02991
3 0.1407 0.04098 1.7679 0.04350 0.07371 2.1321 0.02369
4 0.04289 0.01538 1.2470 0.02909 0.03325 2.4528 0.02274
5 0.1821 0.03159 1.3997 0.01917 0.11512 2.5186 0.02334
6 0.1407 0.04098 1.7679 0.04350 0.07371 2.3323 0.04033
7 0.06082 0.01610 0.9528 0.01807 0.06000 2.3486 0.02294
8 0.1163 0.04377 1.9506 0.06525 0.05626 2.0184 0.04819
9 0.04634 0.01555 1.6135 0.03875 0.02791 1.8378 0.03316

Table 2. Table of results from the first core chemistry course  

 

Institution UN(1,1) SE Residual SE ICC Intercept SE 
ALL 0.06629 0.00806 1.2416 0.007857 0.05068 2.4221 0.01405

1 0.07935 0.02679 1.0642 0.02030 0.06938 2.6287 0.02693
2 0.01425 0.0087 1.2524 0.03768 0.01125 2.3403 0.02883
3 0.1066 0.02 1.3811 0.0207 0.07165 2.1877 0.03016
4 0.07838 0.01634 1.2413 0.01989 0.05939 2.3778 0.0327
5 0.07410 0.01815 1.3186 0.01972 0.05320 2.3858 0.02867
6 0.1491 0.04401 1.6741 0.04909 0.08177 2.5402 0.05799
7 0.01501 0.00366 0.8358 0.01107 0.01764 2.7459 0.01902
8 0.2972 0.07042 1.3501 0.04031 0.18041 1.8588 0.07346
9 0.1800 0.08124 1.0337 0.08193 0.14830 2.5246 0.1132

Table 3. Table of results from the first core physics course  

 

 

P
age 26.280.8



Discussion and Conclusion 

Before directly discussing the results of this work, it is important to discuss some of the 
main points to critique at this juncture in any HLM analysis. The work of Coleman, Hoffer, and 
Kilgore significantly influenced the author and many other researchers in the world of HLM.[43, 

44] Two questions they would ask, and the researcher must also ask after a zeroth-order analysis 
of variance are: first, to what degree are the variances endemic to one group or another; and 
second, what are the limitations of this method of analysis. The second question is rarely 
discussed in many HLM papers, so we will address it here. The theoretical treatment of HLM 
teaches that below either the counting threshold for data and/or for a combination of other factors 
endemic to the system analyzed, that an extremely low or high ICC value can be indicative of a 
poor model choice.[21] In a system that is complete such as this one, where all data is available to 
the researchers, the N value is high, and the number of groups relative to subgroups is also high 
(aka more than two orders of magnitude relative to each other), the counting threshold error is 
not the issue at hand.  

The issue, though, of an ICC well below 3% of above 97% is a debated topic among 
researchers, and often means that another treatment may be more appropriate for isolating the 
variance parameters. Typically, the next method of choice for analysis is the structural equation 
model (SEM) technique. One reason SEMs are a natural second choice is because in a dataset 
with high enough N values and group/subgroups, the first stage in the SEM process – a factorial 
analysis - has a good chance of being dimensionally reduced to a suitable point. Second, when 
performing a cluster analysis on HLM-formatted data, one can glean a good idea of the 
representative delimitating factors for a SEM construction. Third, and a little more subtle, is that 
when constructing and analyzing a robust HLM of first, second, or even third order, one will be 
able to determine whether or not the cross parameters and variances are more indicative of a 
power law distribution analysis – a rare but important observation to make. The net contention of 
this analysis process for a complete data set for the researcher means he can, with mathematical 
rigour, determine the most appropriate technique. 

Beyond the low ICC values in the results that merit further study, a few striking 
conclusions can be made from the three tables presented. First, variability differs remarkably 
from school to school and from course to course. There are values as low as 0.83% in the case of 
calculus 1 for school 4 and as high as 18.0% for physics I at institution 8. Here, we find few 
relationships across the schools to indicate a systemic problem of grade variability in relation to 
course size – in itself a positive result. Schools such as 3 and 4 demonstrated extremely low 
variability in grades with respect to class size in calculus, maintained a low variability, but not as 
far below the average in physics and chemistry as they were for calculus.  

Second, we find that calculus has a consistently low variability in course grade variability 
with respect to course size, although chemistry is fairly similar if we throw out schools 5 and 1. 
There are a number of reasons for this that would lead to further study. First, the relative 
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consistency of varying course sizes for calculus may lead to a more consistent distribution of 
variances across course sizes. Second, as noted in previous work, there are schools that appear to 
have a curve instituted in across some courses.[1] An artificial curve across course sections would 
dramatically affect the variability of grades with respect to varying course size. 

Third, there are a few notable comparisons between variability of grades between course 
sections and grades between course sizes. Schools 8 and 9 had high rates of course section grade 
variability and also high size grade variability for physics. Institution 1 had a relatively high 
course section grade variability for chemistry and course size variability for chemistry. Schools 
2, 4, 5, and 7 maintained their relatively low variability for both course section and course size 
grades in physics. Schools 2 and 9 also maintained a relatively low variability for grade 
variability in chemistry for sections and sizes. 

Unlike the first study, it is much more difficult to determine if one course type that has a 
consistently high or low variability, although physics does appear to be more consistently higher 
than the others - the inverse of the results when probing course section variance. Previously for 
the effects of section size, we found that chemistry to have the greatest potential for a large 
variability of a course grade being determined by section. Here, we find that physics has a larger 
percentage of grade variability contained in course size than the other two courses. The relative 
stability of intra-course grade variability could be offset by great variability contained in the 
factor of course size. Also, unlike the previous study, assigning one institution as a problem 
institution for having consistently high variability is not possible for course size variation, which 
is another positive development. 

The results here are useful to the greater engineering education community, especially 
when paired with knowledge of variance between course sections. It appears that the effect of 
course size on the variability of grades presents difficulties in isolating, and is not as great as the 
variability of course sections on grades. Furthermore, unlike course section variance, there is the 
potential argument with some of the low ICC values within this study that a structural equation 
model (SEM) treatment would potentially be as effective in investigating these differences.[21, 22] 
Expansion of the minutia of class size grade variance in MIDFIELD coupled with targeted 
qualitative analysis can potentially yield further novel results. 

 

 

References 

1. Ricco, G., et al. Sectionality or Why Section Determines Grades: an Exploration of Engineering Core 
Course Section Grades using a Hierarchical Linear Model and the Multiple-Institution Database for 
Investigating Engineering Longitudinal Development. in American Society for Engineering Education 
Annual Conference. 2012. 

2. Stevens, R., Daniel M. Amos, Lari Garrison, and Andy Jocuns. Engineering as Lifestyle and a Meritocracy 
of Difficulty: Two Pervasive Beliefs Among Engineering Students and Their Possible Effects. in 

P
age 26.280.10



Proceedings of the American Society for Engineering Education Annual Conference, Honolulu, Hawaii, 
June 24-27, 2007. 2007. Honolulu, Hawaii. 

3. Adelman, C., Women and men of the engineering path: a model for analyses of undergraduate careers. 
1998, Washington, DC: U.S. Dept. of Education : National Institute for Science Education. xii, 105 p. 

4. Suresh, R., The Relationship between Barrier Courses and Persistence in Engineering. Journal of college 
student retention, 2007. 8(2): p. 215-239. 

5. Lambert, A., P. Terenzini, and L. Lattuca, More than meets the eye: Curricular and programmatic effects 
on student learning. Research in Higher Education, 2007. 48(2): p. 141-168. 

6. Volkwein, J.F., The Assessment Context, in Assessing Student Outcomes: Why, Who, What, How?, J.F. 
Volkwein, Editor. 2009, Jossey-Bass: San Francisco. 

7. Vogt, C.M., Faculty as a Critical Juncture in Student Retention and Performance in Engineering 
Programs. Journal of Engineering Education, 2008. 97(1): p. 27-36. 

8. Jewell, R.T., M.A. McPherson, and M.A. Tieslau, Whose fault is it? Assigning blame for grade inflation in 
higher education. Applied Economics, 2011. 45(9): p. 1185-1200. 

9. Felder, R.M. and L.K. Silverman, Learning and Teaching Styles in Engineering Education. Engineering 
Education, 1988. 78(7): p. 674-681. 

10. Akerhielm, K., Does class size matter? Economics of Education Review, 1995. 14(3): p. 229-241. 
11. Funkhouser, E., The effect of kindergarten classroom size reduction on second grade student achievement: 

Evidence from California. Economics of Education Review, 2009. 28(3): p. 403-414. 
12. Chingos, M.M., The impact of a universal class-size reduction policy: Evidence from Florida's statewide 

mandate. Economics of Education Review, 2012. 31(5): p. 543-562. 
13. Galton, M. and T. Pell, Do class size reductions make a difference to classroom practice? The case of 

Hong Kong primary schools. International Journal of Educational Research, 2012. 53(0): p. 22-31. 
14. Raimondo, H.J., L. Esposito, and I. Gershenberg, Introductory Class Size and Student Performance in 

Intermediate Theory Courses. Journal of Economic Education, 1990. 21(4): p. 369-381. 
15. Beekhoven, S., U. De Jong, and H. Van Hout, Different courses, different students, same results? An 

examination of differences in study progress of students in different courses. Higher Education, 2003. 
46(1): p. 37-59. 

16. Wood, K., A.S. Linsky, and M.A. Straus, Class Size and Student Evaluations of Faculty. Journal of Higher 
Education, 1974. 45(7): p. 524-534. 

17. McKeachie, W.J., Class Size, Large Classes, and Multiple Sections. Academe-Bulletin of the Aaup, 1980. 
66(1): p. 24-27. 

18. Deleeuw, J. and I. Kreft, Random Coefficient Models for Multilevel Analysis. Journal of Educational 
Statistics, 1986. 11(1): p. 57-85. 

19. Cronbach, L.J. and N. Webb, Between-class and within-class effects in a reported aptitude * treatment 
interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 1975. 67(6): p. 
717-724. 

20. Luke, D.A., Multilevel Modeling. Quantitative Applications in the Social Sciences, ed. M.S. Lewis-Beck. 
2004, Thousand Oaks, California: Sage Publications. 

21. Raudenbush, S.W. and A.S. Bryk, Hierarchical Linear Models: Applications and Data Analysis Methods 
2001, Thousand Oaks, California: Sage Publications. 

22. Singer, J.D. and J.B. Willett, Modeling Change and Event Occurence. 2003, New York: Oxford University 
Press. 

23. Raudenbush, S. and A.S. Bryk, A Hierarchical Model for Studying School Effects. Sociology of education, 
1986. 59(1): p. 1-17. 

24. Porter, S.R., Institutional structures and student engagement. Research in Higher Education, 2006. 47(5): 
p. 521-558. 

25. Brix, G., et al., Pharmacokinetic analysis of tissue microcirculation using nested models: Multimodel 
inference and parameter identifiability. Medical Physics, 2009. 36(7): p. 2923-2933. 

26. Cudeck, R. and J.R. Harring, Analysis of nonlinear patterns of change with random coefficient models, in 
Annual Review of Psychology. 2007. p. 615-637. 

27. Brostrom, G. and H. Holmberg, Generalized linear models with clustered data: Fixed and random effects 
models. Computational Statistics & Data Analysis, 2011. 55(12): p. 3123-3134. 

28. Dinu, R.R. and A. Veeraragavan, Random parameter models for accident prediction on two-lane undivided 
highways in India. Journal of Safety Research, 2011. 42(1): p. 39-42. 

P
age 26.280.11



29. Mohamed, A.S.A. and T. Prasad, Analysis of the Neuromuscular System Using Random Parameter Tools. 
Mathematical and Computer Modelling, 1990. 13(4): p. 19-36. 

30. Craine, R. and A. Havenner, Classical versus Bayesian models-on the dangers of a little bit of knowledge. 
International Journal of Systems Science, 1983. 14(8): p. 871-5. 

31. Rodrigues Neto, C. and A.C.R. Martins, Multifractality in the random parameter model for multivariate 
time series. Physica A: Statistical Mechanics and its Applications, 2009. 388(11): p. 2198-2206. 

32. Egan, T., The Impact of Leader Coaching Behavior on Engineers’ Motivation to Learn and Voicing 
Behavior, in American Society for Engineering Education. 2013: Atlanta. 

33. Borchers, A. and S. Hee. Assessing the effectiveness of entrepreneurial education programs from a multi-
level multi-dimensional perspective with mental models. in 118th ASEE Annual Conference and Exposition, 
June 26, 2011 - June 29, 2011. 2011. Vancouver, BC, Canada: American Society for Engineering 
Education. 

34. Harper, B. and P. Terenzini. The effects of instructors' time in industry on students' co-curricular 
experiences. in 2008 ASEE Annual Conference and Exposition, June 22, 2008 - June 24, 2008. 2008. 
Pittsburg, PA, United states: American Society for Engineering Education. 

35. Padilla, M.A., et al. Drawing valid inferences from the nested structure of engineering education data: 
Application of a hierarchical linear model to the SUCCEED longitudinal database. in 2005 ASEE Annual 
Conference and Exposition: The Changing Landscape of Engineering and Technology Education in a 
Global World, June 12, 2005 - June 15, 2005. 2005. Portland, OR, United states: American Society for 
Engineering Education. 

36. van der Hulst, M. and E. Jansen, Effects of curriculum organisation on study progress in engineering 
studies. Higher Education, 2002. 43(4): p. 489-506. 

37. Mandel, P. and B. Süssmuth, Size matters. The relevance and Hicksian surplus of preferred college class 
size. Economics of Education Review, 2011. 30(5): p. 1073-1084. 

38. Kennedy, P.E. and J.J. Siegfried, Class size and achievement in introductory economics: Evidence from the 
TUCE III data. Economics of Education Review, 1997. 16(4): p. 385-394. 

39. De Clemencia Cosentino, C. and N. Deterding, Widening the Net: National Estimates of Gender 
Disparities in Engineering. Journal of Engineering Education, 2009. 98(Compendex): p. 211-226. 

40. National Science Board. Science and Engineering Indicators, 2008. 2008; Available from: 
http://www.nsf.gov/statistics/seind08/c0/c0i.htm. 

41. Long, R.A. The Multiple-Institution Database for Investigating Engineering Longitudinal Development. 
2008; Available from: https://engineering.purdue.edu/MIDFIELD. 

42. Ohland, M.W., et al., Persistence, engagement, and migration in engineering programs. Journal of 
Engineering Education, 2008. 97(Compendex): p. 259-278. 

43. Coleman, J., T. Hoffer, and S. Kilgore, Cognitive Outcomes in Public and Private Schools. Sociology of 
education, 1982. 55(2/3): p. 65-76. 

44. Coleman, J.S., Achievement and Segregation in Secondary Schools: A Further Look at Public and Private 
School Differences. Sociology of education, 1982. 55(2-3): p. 162-82. 

 

P
age 26.280.12


