
AC 2008-346: BEYOND VHDL SIMULATION TO ON-CHIP TESTING

Ronald Hayne, The Citadel
Ronald J. Hayne, PhD, is an Assistant Professor in the Department of Electrical and Computer
Engineering at The Citadel. His professional areas of interest are digital systems and hardware
description languages. He is a retired Army Colonel with experience in academics and Defense
laboratories. 

© American Society for Engineering Education, 2008 

P
age 13.251.1



Beyond VHDL Simulation to On-Chip Testing 
 

 

Abstract 

 

Digital systems design relies heavily on hardware description languages and their associated 

software tools.  While VHDL allows functional verification of designs, simulation alone cannot 

prepare our students for the technical challenges associated with the final translation to actual 

hardware. 

 

Field programmable gate arrays (FPGAs) allow rapid prototyping of digital designs on a single 

chip.  This tight integration presents additional challenges when it comes to testing the final 

hardware, because access to internal signals is limited.  ChipScope™ Pro integrates key logic 

analyzer components with the target design inside the FPGA. 

 

A program of instruction has been developed at The Citadel that uses VHDL, FPGAs, and 

ChipScope™ Pro to teach advanced digital systems design.  Examples are modeled and 

simulated using VHDL, then synthesized to FPGAs with embedded logic analyzer cores.  The 

final hardware implementations are demonstrated using ChipScope™ Pro to provide access to 

on-chip signals. 

 

Designs include a binary multiplier and a reduced instruction set computer (RISC) processor.  

These textbook examples are turned into functional prototypes, bridging the gap between theory 

and hardware.  Ultimately, the use of these integrated design tools provides a more robust 

learning experience that moves beyond VHDL simulation to on-chip testing. 

 

Introduction 

 

Modern digital systems design relies heavily on hardware description languages, such as VHDL, 

and their associated software tools.  Most important in an educational environment is logic 

simulation, which allows functional verification of designs without the need for hardware 

implementation.  While this allows quick investigation of multiple design examples, simulation 

alone cannot prepare our students for the technical challenges associated with the final 

translation to actual hardware. 

 

Programmable logic devices provide an integrated platform for implementation of digital 

circuits.  Mapping designs to hardware provides students additional experience and insights 

associated with synthesis and device programming tools.  FPGAs allow rapid prototyping of 

digital designs on a single chip, eliminating the need for multiple devices and error-prone 

external wiring.  This tight integration presents additional challenges when it comes to testing the 

final hardware.  Access to internal signals is limited, often making debugging more difficult. 

 

Development Options 

 

A quick web survey of undergraduate digital systems design courses revealed two basic 

approaches, lecture and lab.  Lecture courses taught hardware description languages and relied 

P
age 13.251.2



heavily on logic simulation.  They often risked becoming “programming” courses and straying 

too far from the hardware they were trying to design.  Lab courses also used hardware 

description languages, but concentrated on implementation of multiple design projects.  These 

courses required extensive hardware support for testing of student designs.  What was desired 

was a lecture course that also emphasized hardware, but without the time and expense of a lab. 

 

The choice of a textbook was also based on finding a balance between software and hardware.  

Again, there were many texts that treated VHDL like a programming language and never went 

beyond logic simulation.  In fact, much of the VHDL covered won’t even synthesize into 

hardware.  Eventually, Digital Systems Design Using VHDL by Roth
1
 was chosen because it 

maintains the link between VHDL and hardware.  Additionally there is coverage of synthesis 

tools and FPGAs, providing the necessary building blocks for adding hardware examples to a 

lecture course. 

 

Students in our introductory digital design course are already exposed to the Xilinx® design 

environment
2
 and implementing projects on FPGA trainers with limited I/O.  As the complexity 

of designs and the density of FPGA devices increase, so does the impracticality of attaching test 

equipment probes to these devices under test.  Xilinx now provides optional real-time 

verification tools that provide on-chip debug at or near operating system speed.  The 

ChipScope™ Pro
3
 tools integrate key logic analyzer and other test and measurement hardware 

components with the target design inside the FPGA.  The ChipScope™ Pro tools communicate 

with these components and provide the designer with a robust logic analyzer solution as shown 

in Figure 1. 

 

 
 

 

Figure 1.  ChipScope™ Pro Test Configuration. 

P
age 13.251.3



Course Content 

 

A program of instruction has been developed at The Citadel that uses VHDL, FPGAs, and 

ChipScope™ Pro to teach advanced digital systems design.  Throughout the course, digital 

designs are first modeled using VHDL and then functionally verified via logic simulation.  

Designs are then synthesized and mapped to target FPGA devices
4
 providing valuable insights 

into the practicalities and limitations of hardware implementation.  Logic analyzer and 

input/output cores are embedded into the FPGA designs, providing a real-time test and 

verification system.  The final hardware implementations are then demonstrated using 

ChipScope™ Pro to provide access to on-chip signals. 

 

Design examples used in this course include binary, two’s complement, and floating-point 

multipliers, a universal asynchronous receiver-transmitter (UART), and a RISC processor based 

on the MIPS instruction set architecture.  All designs are modeled and verified in VHDL, then 

realized and tested on an FPGA.  For the purpose of this paper a simple binary multiplier will be 

used to illustrate the progression from VHDL model to FPGA hardware.  Additionally some 

insights are provided from the MIPS processor, demonstrating how these textbook examples are 

turned into functional prototypes, bridging the gap between theory and actual hardware.  

 

Add-and-Shift Multiplier 

 

This text example illustrates the design of a small digital system involving a controller and a data 

path.  VHDL is used to model and simulate the design before it is synthesized to hardware.  The 

block diagram for the 4 x 4 binary multiplier is shown in Figure 2 and the state graph for the 

multiplier controller is shown in Figure 3. 

 

 
 

Figure 2.  Block Diagram for 4 x 4 Multiplier. 

P
age 13.251.4



 
 

 

Figure 3.  State Graph for Multiplier Control. 

 

The text covers the development of the VHDL behavioral model which can be complied and 

simulated to provide functional verification of the design.  A portion of the VHDL model is 

provided in Figure 4 and an example simulation output is shown in Figure 5. 

 
architecture behave1 of mult4X4 is 
signal State: integer range 0 to 9; 
signal ACC: unsigned(8 downto 0);         -- accumulator 
alias M: bit is ACC(0);                   -- M is bit 0 of ACC 
begin 
  process(Clk) 
  begin  
    if Clk'event and Clk = '1' then       -- rising edge of clock 
      case State is 
        when 0=>                          -- initial State 
          if St='1' then 
            ACC(8 downto 4) <= "00000";   -- begin cycle 
            ACC(3 downto 0) <= Mplier;    -- load the multiplier 
            State <= 1;  
          end if; 
 

Figure 4.  VHDL Behavioral Model. 
 
 

P
age 13.251.5



        when 1 | 3 | 5 | 7  =>            -- "add/shift" State 

<= '0' & ACC(8 downto 1); -- shift accumulator right 

| 6 | 8 =>             -- "shift" State 

          -- end of cycle 

; 

Figure 4 (cont).  VHDL Behavioral Model. 

 

          if M = '1' then                 -- add multiplicand 
            ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand; 
            State <= State + 1; 
          else 
            ACC 
            State <= State + 2; 
          end if; 
        when 2 | 4 
          ACC <= '0' & ACC(8 downto 1);   -- right shift 
          State <= State + 1;  
        when 9 =>               
          State <= 0; 
      end case; 
    end if; 
  end process
  Done <= '1' when State = 9 else '0'; 
  Product <= ACC(7 downto 0); 
end behave1; 
 

 

 
 

Figure 5.  VHDL Simulation Waveform. 

 

 order to go beyond the textbook model and instrument the design for testing on an FPGA, 

 

L 

In

integrated logic analyzer (ILA) and virtual input/output (VIO) cores are added to the VHDL 

testbench.  A block diagram of the test configuration is shown in Figure 6 and a portion of the

VHDL testbench is shown in Figure 7.  The results of the hardware testing that match the VHD

simulation can also be seen in the ILA window of Figure 6. 

 

P
age 13.251.6



Mpiler 

Mcand 

St 
Product 

Mult4x4 

Done 

 
 

Figure 6.  Block Diagram of Test Configuration. 

 
begin 
  mult1: mult4x4 port map(clk, St, Mplier, Mcand, Product, Done); 
  i_ila: ila port map(control0, clk, trig0); 
  i_vio: vio port map(control1, clk, sync_in, sync_out); 
 
  trig0(17) <= st; 
  trig0(16 downto 13) <= Mplier; 
  trig0(12 downto 9) <= Mcand; 
  trig0(8 downto 1) <= Product; 
  trig0(0) <= Done; 
  sync_in(8 downto 1) <= Product; 
  sync_in(0) <= Done; 
  St <= sync_out(8); 
  Mplier <= sync_out(7 downto 4); 
  Mcand <= sync_out(3 downto 0); 
end test1; 
 

Figure 7.  VHDL Testbench. 

 

P
age 13.251.7



The VHDL model and simulation are used as a live classroom demonstration to reinforce the 

textbook theory.  Beyond the simulation, the actual FPGA hardware implementation is also 

demonstrated in class.  The VIO and ILA cores provide an interactive test environment that can 

be manipulated in real-time, bridging the gap from VHDL to hardware. 

 

Microprogramming 

 

The concept of microprogram control is also presented in the text and applied to the binary 

multiplier discussed previously.  The same data path shown in Figure 2 is utilized with a 

modified controller and counter.  This controller can be implemented using the hardware for a 

two-address microprogram shown in Figure 8.  The necessary microcode is shown in Figure 9. 

 

 

 
 

Figure 8.  Two-Address Microprogram Controller. 

 

 

 
 

Figure 9.  Microprogram for Binary Multiplier. 

 

While the text stops with the example microprogram, previous VHDL examples of multiplexers 

(MUX) and read-only memory (ROM) can be combined with a VHDL model of the datapath to 

create a complete microprogram controlled binary multiplier.  A portion of the VHDL model is 

shown in Figure 10. 

 

P
age 13.251.8



architecture microprogram of mult4X4_micro is 
type ROM is array(0 to 5) of unsigned(11 downto 0); 
constant control_store: ROM :=  
                      (X"010", X"D28", X"630", X"E44", X"952", X"C01"); 
signal ACC: unsigned(8 downto 0);  
alias M: bit is ACC(0); 
signal TMUX, Load, Ad, Sh, K: bit; 
signal counter: unsigned(1 downto 0) := "00"; 
signal uAR: unsigned(2 downto 0) := "000"; 
signal uIR: unsigned(11 downto 0); 
alias TEST: unsigned(1 downto 0) is uIR(11 downto 10); 
alias NSF: unsigned(2 downto 0) is uIR(9 downto 7); 
alias NST: unsigned(2 downto 0) is uIR(6 downto 4); 
begin 
  Load <= uIR(3); Ad <= uIR(2); Sh <= uIR(1); Done <= uIR(0); 
  Product <= ACC(7 downto 0); 
  K <= '1' when counter = "11" else '0'; 
  with TEST select 
    TMUX <= St when "00", M when "01", K when "10", '1' when others; 
  controller: process(Clk) 
  begin  
    if Clk'event and Clk = '0' then 
      uIR <= control_store(to_integer(uAR)); 
    end if; 
    if Clk'event and Clk = '1' then 
      if TMUX = '0' then 
        uAR <= NSF; 
      else 
        uAR <= NST; 
      end if; 
      if Sh = '1' then 
        counter <= counter + 1; 
      end if; 
    end if; 
  end process; 
  datapath: process(Clk) 
  begin 
    if Clk'event and Clk = '1' then 
      if Load = '1' then 
        ACC(8 downto 4) <= "00000"; ACC(3 downto 0) <= Mplier;  
      end if; 
      if Ad = '1' then 
        ACC(8 downto 4) <= '0' & ACC(7 downto 4) + Mcand; 
      end if; 
      if Sh = '1' then 
        ACC <= '0' & ACC(8 downto 1); 
      end if; 
    end if; 
  end process; 
end microprogram; 
 

Figure 10.  Microprogram VHDL Model. 

 

The complete VHDL model can again be simulated as a live classroom demonstration to 

illustrate the similarities and differences of the microprogrammed version of the multiplier.  A 

sample simulation waveform is shown in Figure 11.  The new multiplier can also be 

P
age 13.251.9



implemented in FPGA hardware using the same instrumented testbench from Figure 7.  The 

matching test results from the ChipScope™ Pro integrated logic analyzer can be seen in Figure 

12. 

 

 
 

Figure 11.  VHDL Simulation Waveform. 

 

 
 

Figure 12.  ChipScope™ Pro ILA Waveform. 

 

RISC Microprocessor 

 

The largest design example presented in the text is that of a RISC microprocessor based on a 

subset of the MIPS instruction set architecture.  The instruction encoding, data path design, and 

control flow are all discussed along with VHDL models for the register file, memory, and the 

processor CPU.  VHDL simulation is used to demonstrate correct function of the complete 

model. 

P
age 13.251.10



To facilitate synthesis of the VHDL model to a functional FPGA implementation, several minor 

modifications were necessary.  First, the text model for the register file needed to be modified for 

synchronous read and write in order to correctly synthesize to Block RAM on the FPGA.  

Though the text model would simulate correctly, the resulting hardware would fail under testing.  

This exception is used as an important design lesson pointing out valuable insights into actual 

hardware realization. 

 

The second modification was to alter the text memory model to allow initialization separate from 

the testbench.  The new memory model uses a VHDL type with initial values, which allows the 

contents to be set at compile time.  Machine code can now be loaded directly into memory, 

greatly simplifying the overarching testbench.  A sample MIPS program is shown loaded into 

memory in Figure 13. 

 
architecture Internal of Memory is 
  type RAMtype is array (0 to 127) of unsigned(31 downto 0); 
  signal RAM1: RAMtype := ( 
    x"30630000", -- andi $3, $3, 0 
    x"30420000", -- andi $2, $2, 0 
    x"20420005", -- addi $2, $2, 5 
    x"8C650040", -- lw $5, 64($3) 
    x"8C660048", -- lw $6, 72($3) 
    x"00A63820", -- add $7, $5, $6 
    x"AC670050", -- sw $7, 80($3) 
    x"20630001", -- addi $3, $3, 1 
    x"1462FFFA", -- bne $3, $2, -6 
    x"08000009", -- j 9   

 

Figure 13. Memory Initialization. 

 

In order to instrument the processor model for testing on the FPGA, visibility was desired for 

signals internal to the MIPS CPU.  This required insertion of the ILA core directly into the MIPS 

architecture as shown in Figure 14.  The additional VHDL required is shown in Figure 15.  The 

synthesized processor model was again implemented as an interactive classroom demonstration. 

These results easily replicated the functional verification done with VHDL simulation.     

 

 

Memory 

REG 

ILA 

MIPS 

Data 

Addr 

MIPS_Testbench 

 

Figure 14.  Block Diagram of Complete MIPS Model. 

P
age 13.251.11



 
i_ila: ila port map(control0, clk, trig0); 
trig0(178) <= RST; 
trig0(177) <= CS; 
trig0(176) <= WE; 
trig0(175 downto 144) <= Addr; 
trig0(143 downto 112) <= Mem_Bus; 
trig0(111) <= RegW; 
trig0(110 downto 106) <= SR1; 
trig0(105 downto 101) <= SR2; 
trig0(100 downto 96) <= DR; 
trig0(95 downto 64) <= Reg_In; 
trig0(63 downto 32) <= ReadReg1; 
trig0(31 downto 0) <= ReadReg2; 

 

Figure 15.  VHDL for ILA Core. 

 

This example shows the true power of the ChipScope™ Pro tools.  With only a minor 

modification to the VHDL model, internal signals totaling 179 bits of information can be 

captured and traced with the integrated logic analyzer.  Using conventional methods, these 

signals would need to be converted to ports and routed to I/O pins before being connected to an 

external logic analyzer.  This extra routing and loading is cumbersome and could greatly alter the 

timing and performance of the hardware under test. 

 

Results and Conclusions 

 

The program of instruction described in this paper will be implemented at The Citadel in a pilot 

lecture course during the spring semester 2008.  The approach is to supplement textbook 

examples with interactive classroom demonstrations involving both VHDL simulation and on-

chip testing of FPGA hardware implementations.  Planned enrollment is 15 seniors in two 

sections, which should provide the desired level of interaction and feedback. 

 

Current plans are to keep student homework assignments limited to VHDL simulations. 

ModelSim® PE Student Edition
5
 is included with the course text and provides the students a 

simulation environment available on their own PC or in the department computer labs.  Partially 

due to cost considerations, licensing for the ChipScope™ Pro tools is currently limited to one 

faculty and one classroom computer.   

 

Based on the success of the program of instruction and student feedback, future directions may 

include adding FPGA projects to student homework assignments.  FPGA trainers are readily 

available from the introductory digital design course which is taught in the fall.  The value added 

of hardware assignments will need to be weighed against software license costs, restricted 

availability of such software, and increased demands on student time.  Classroom demonstrations 

may or may not prove sufficient to convey the desired concepts. 

 

In summary what was desired was a lecture course in advanced digital systems design that also 

emphasized hardware, but without the time and expense of a lab.  Design examples are modeled 

and verified in VHDL, then realized and tested on an FPGA.  Thus, these textbook examples are 

turned into functional prototypes, bridging the gap between theory and actual hardware.  

P
age 13.251.12



Ultimately, the use of these integrated design tools provides a more robust learning experience 

that moves beyond VHDL simulation to hardware implementation and on-chip testing.   

 

Acknowledgments 

 

This project was enabled by the generous funding of The Citadel Foundation.  Many thanks for 

their continued support of numerous programs that support this institution. 

 

 

 

 
Bibliography 

 

1. Roth, C. and L. John, Digital Systems Design Using VHDL, Second Edition, Thompson, Toronto, Canada, 2008. 

2. Xilinx ISE 9.1i Software Manuals, Xilinx, Inc., 2007. 

3. ChipScope™ Pro Software and Cores User Guide, Xilinx, Inc., 2007. 

4. Spartan-3E Starter Kit Board User Guide, Xilinx, Inc., 2006. 

5. ModelSim PE Student Edition, Mentor Graphics Corp., 2007. 

P
age 13.251.13


