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Abstract. The convex recoloring problem is a clustering problem to
partition nodes of a network into connected subnetworks. We develop a
hybrid rule combining the Dantzig’s Rule and the Steepest Edge Rule to
produce columns which enter into the basis of the master problem in the
column generation framework introduced by Chopra et al. (Modeling and
Optimization: Theory and Applications (MOPTA 2016), pp 39-53, 2017).
The hybrid rule leads to only a small number of iterations and makes it
possible to perform the column generation approach in an undergradu-
ate class using Microsoft Excel. We perform a large scale computational
experiment and show that the hybrid rule is effective.

1 Introduction

A column generation approach performs the simplex method to solve a huge
scale of linear programming problem which we call the master problem. While
a general linear programming approach enumerates the reduced costs of the
columns which measure the contribution of the columns toward the optimal
solution, the column generation approach keeps and updates only a small set
of columns, which we call a basis, without enumerating the columns. Instead,
the subproblem of the column generation approach generates a column which
improves the current basis most effectively by replacing the least effective column
of the basis.

Johnson, Mehrotra and Nemhauser [10] first developed a column generation
framework for a clustering problem, and Chopra, Erdem, Kim and Shim [4] ad-
justed the framework to the convex recoloring problem to recolor nodes of a
colored graph at minimum number of color changes such that each color in-
duces a connected subgraph where a pair of nodes colored with a same color
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are connected by a path of nodes colored with the same color. Equivalently, the
convex recoloring problem is to maximize the number of nodes where the initial
colors stay without change. For applications of the convex recoloring problem in
bioinformatics, the reader may refer to [12–14].

Figures 1 and 2 illustrate an optimal solution to the convex recoloring prob-
lem on a phylogenetic tree and the columns in an optimal basis of the master
problem. In Figure 1, given the coloring at the leaf nodes on the left, each color
makes a connected subgraph in the optimal solution on the right which is ob-
tained by changing only one color at node c or keeping the maximum number of
initial colors at the other six leaf nodes. Note that we can color uncolored nodes
at no cost but uncolor an initial color at the unit cost. Figure 2 depicts the
columns of an optimal basis in the coefficient matrix A of the master problem

max{WZ : AZ = 1, Z ≥ 0},

where 1 denotes the vector of all components 1. The first components of a column
Aj indicate a color and the next components indicate the nodes colored with the
color. The objective coefficient Wj corresponding to Aj is the number of nodes
where the initial color remains the same one as indicated by the first components.
The binary variable Zj = 1 will indicate that Aj is in the basis. The basis is
updated at every iteration by a best contributing column which is generated by
a small size of integer programming.

In the column generation framework introduced by Chopra et al. [4], the
subproblem to generate the best contributing column is solved in two steps:

Step 1. For each color, generate the column of the maximum reduced cost which
indicates nodes colored with the color.

Step 2. Enumerate the generated columns for the colors and pick the best one.

Dantzig’s rule selects the column of the best reduced cost and is used in Step
1. Chopra et al. [4] used Dantzig’s rule in Step 2 as well. Since the columns
generated in Step 1 can be enumerated in Step 2, we can apply the steepest edge
rule which is suggested by Goldfarb and Reid [9]. The steepest edge rule picks
the column which leads the basis in the direction of the sharpest angle with
the gradient W of the objective function. This partial use of the steepest edge
rule reduces the number of iterations and allows us to implement the column
generation approach using Microsoft Excel.

In Section 2, we discuss the pedagogy of column generation approaches and
the steepest edge rule. In Section 3, we perform computational experiments
comparing Danzig’s rule with the hybrid rule. We conclude that the hybrid rule
works well across small and large numbers of colors while Dantzig’s rule only
does not perform well in a small number of colors.

2 Pedagogy

2.1 Column generation

The general linear programming problem was formulated in the late 1940s, and
the simplex algorithm for solving it was proposed by George Dantzig in 1947.
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Fig. 1. Convex recoloring

Fig. 2. The master problem
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The field of linear programming developed simultaneously with computing tech-
nology. In recent years both areas have experienced very rapid development.
Computers have become much more powerful, and much less expensive. And
linear programming software has become much more widely available; for exam-
ple, Excel Solver is an add-in program which is a built-in program of Microsoft
Excel.

Linear programming is taught as a core course in every academic program
of Industrial Engineering. Since linear programming software are available ev-
erywhere, students raise this question; “Why do we have to study the simplex
algorithm? We only need to use the software.”

The instructor may answer the question with the column generation ap-
proach. To the authors’ knowledge, there is no professional linear programming
software (like GUROBI and CPLEX) which immediately performs the column
generation approach, while the column generation approach is used in almost
every industry; in particular, it is used for a large scale of scheduling in trans-
portation and logistics such as airline industry and rail freight industry. (For
more details of applications, the reader may refer to [2, 3, 6, 11].) It can tackle a
variety of large scale optimization problems using only a small size of memory.

Column generation approach was first developed by Gilmore and Gomory [7,
8] to solve the cutting stock problem. The cutting stock problem is to minimize
the number of raws that are cut into finals to satisfy the customer orders. Since
many sizes of finals are required to satisfy customer demands, a company would
like to satisfy demands by cutting up the least possible number of raws. The
cutting stock problem arises in industries that produce materials such as paper,
textiles, and sheet-metal. Such products are often manufactured in large rolls
called raws. These rolls are then cut into smaller rolls called finals to satisfy
customer orders.

The cutting stock problem can be modeled as a linear programming for-
mulation, called the master problem, including a huge population of columns
which indicate all the cutting patterns. The beauty of the linear programming
model is that we only need to keep and update a small number of columns which
we call as basis. In practice a column generation procedure can deal with the
master problem by producing a relatively short list of patterns, each of which
appears likely to contribute to the optimal solution of the master problem. The
column generation procedure itself presents a minor difficulty in that it requires
the solution of a small size of integer programming problem which we call the
subproblem. The solution to the subproblem is the column which enters into the
basis replacing a column.

A column generation approach updates a small set B of columns which we
call as basis. In each iteration, the sub-problem identifies a column of the optimal
reduced cost from the huge pool A of the columns of the master problem. The
reduced cost of a column is a measure of the column’s contribution to improving
the objective value of the master problem. The rule of updating the basis with
the column of the best reduced cost is referred to as Dantzig’s Rule. Since the
reduced cost is a linear objective function in a column generation framework,
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the subproblem is modeled as an integer programming formulation; i.e., a lin-
ear programming formulation with integer variables. The integer programming
prices out the reduced costs of the columns of the master problem without enu-
merating them and generates the entering column of the best reduced cost as
the optimal solution.

2.2 Steepest Edge Rule

Suppose we are solving a linear programming problem max{wx : Ax = b, x ≥ 0}
by the simplex algorithm, and that we have arrived at a vertex v0 on the con-
straint polyhedron. In general it will be possible to improve the objective function
by moving along any one of several edges leading out of v0, to a neighboring ver-
tex vi. Figure 3 depicts this situation. In this case the objective function can be
improved by moving to either v1, v2 or v3. Among the neighboring vertices, v1 is
of the sharpest angle with w; i.e., the angle between v1− v0 and w is minimum.
The steepest edge rule chooses the entering column to be the one that results in
a move to the vertex vi with the sharpest angle with w.

Fig. 3. Geometry of the steepest edge rule

It is a consensus among practitioners that the steepest edge rule performs
significantly better than Dantzig’s rule against degeneracy and cycling; i.e., it
rarely occurs with the steepest edge rule for a same sequence of columns to enter
repeatedly into the basis without improving the objective value. Unfortunately,
the steepest edge rule has not been used for a column generation framework, as
the measure of the contribution of an entering column is not linear in the steepest
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edge rule. The column generation framework for the convex recoloring problem
allows us to use the steepest edge rule along with Dantzig’s rule. For each color,
the subproblem is to generate the best column in the reduced cost by Dantzig’s
rule. Among the generated columns, we enumerate and pick the best one in the
steepest edge rule. This partial use of the steepest edge rule reduces the number
of iterations and allows us to implement the column generation approach in an
undergraduate class using Microsoft Excel.

3 Computation

We perform computational experiments comparing Dantzig’s rule with the hy-
brid rule. We perform the experiment over small scale of problem instances using
Microsoft Excel and over large scale ones running JAVA code where the subprob-
lem is solved by a fast dynamic programming algorithm introduced by Chopra
et al. [5].

3.1 Small Scale Clustering using Microsoft Excel

A tree is a connected acyclic graph and a connected subgraph of a tree is a
subtree. For each color t, the subtree problem is to identify the subtree colored
with t of the maximum reduced cost, and is formulated as

max
x

{∑
v∈V

(w(v, t)− πv)xv : x is a subtree

}
,

where binary variables xv ∈ {0, 1} indicate the nodes of a subtree. We employ
additional binary variables ye ∈ {0, 1} which indicate both end nodes of edge e
are colored with a same color. We can formulate the subproblem as follows:

max
∑
v∈V

(w(v, t)− πv)xv (1)

s.t.
∑
u∈V

xu −
∑
e∈E

ye ≤ 1 (2)

−xu + yuv ≤ 0
−xv + yuv ≤ 0

}
for edge uv ∈ E (3)

xu ∈ {0, 1} for u ∈ V (4)

ye ∈ {0, 1} for e ∈ E (5)

As a tree is a generalization of a path, (2) says that the number of nodes is one
more than the number of edges. We see that (2) is a necessary condition for a
subtree. It is also a sufficient condition because the subgraph is on a tree which
has no cycle. Inducing a subgraph is described by (3).

The problem instance in Figure 1 is solved using Excel Solver in 5 iterations
with the hybrid rule and in 6 iterations with Dantzig’s rule, including the last
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Fig. 4. In the hybrid rule, four columns were generated and one of them left out of the
basis. The boldfaced columns make the solution in the optimal basis.

Fig. 5. In Dantzig’s rule, five columns were generated and two of them left out of the
basis.
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iteration to verify the optimal basis. Figure 4 shows the resulting columns in the
hybrid method. Four columns were generated and one of them left out of the
basis. The boldfaced columns make the solution in the optimal basis. Figure 5
shows the resulting columns in Dantzig’s rule. Five columns were generated and
two of them left out of the basis. The number of iterations with the hybrid
rule is observed to be uniformly smaller than that with Dantzig’s rule. With
Dantzig’s rule only, cycling occurred frequently and we could not achieve the
optimal solution.

3.2 Advanced Computing

Chopra et al. [4] developed a column generation approach to the convex recol-
oring problem on a tree and successfully solved those problem instances which
the integer programming introduced by Chopra et al. [5] could not solve. If the
number of colors is large, the column generation approach performed extremely
fast. However, if the number of colors is small, the number of elements is large
on average and the solutions are also highly degenerate.

Fig. 6. Computational time (sec.) of Dantzig’s rule vs. our hybrid rule
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With the hybrid of Dantzig’s rule and the steepest edge rule, we can resolve
this problem. The table in Figure 6 compares the hybrid rule with Dantzig’s rule
over phylogenetic trees from TreeBASE.org. The first column is the number of
nodes of the phylogenetic tree and the second column is the number of colors.
In the third column we see the elapse time of Dantzig’s rule frequently exceeds
2 hours (7,200 seconds) in case of a small number of colors. The fourth column
shows that our hybrid rule is strong against the small number of colors and the
dense basis.

4 Conclusion

We developed a hybrid rule so that the steepest edge rule can be partially used to
overcome degeneracy and cycling which had been a systematic problem in a col-
umn generation framework for the convex recoloring problem. In computational
experiments over small scale experiments and over large scale experiments, we
observed that the hybrid rule performs well across small and large numbers of
colors.

Acknowledgement. For summary of column generation approach and the
steepest edge rule, we refer to Lecture Notes on Computational Methods by
Earl Barnes [1] at Georgia Institute of Technology.
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