x
2025 ASEE Annual Conference & Exposition #§ ~

8800600 1 & A A . = A
...... Palais des congres de Montréal, Montréal, QC - June 22-25, 2025 ‘)ASEE Paper ID #49221

BOARD #110: WIP: A Reconfigurable Testbed for Assessing Cognitive Workload
in N-back and Multi-Object Tracking Tasks

Yug Patel, Missouri University of Science and Technology

Yug Patel is an undergraduate student in Computer Science at the Missouri University of Science and
Technology (MST). Yug has conducted research in both the Department of Computer Science and in

the Department of Biology at MST, exploring the intersection of these fields through interdisciplinary
projects. As a previous NSF-REU intern, Yug has gained valuable research experience and a deeper
understanding of the applications of computer science in biological research. This paper presents Yug’s
work on a novel reconfigurable testbed for cognitive workload assessment and management, which demonstrates
a comprehensive and customizable platform for evaluating cognitive workload and physiological responses
under controlled experimental conditions.

Sanjana Shangle, University of Texas at Dallas

Sanjana Shangle is currently pursuing a Bachelor of Science in Computer Science at the University of
Texas at Dallas (UTD). Sanjana is passionate about machine learning and artificial intelligence, having
applied her skills in real-time data processing, neural networks, and wearable technology integration
during her NSF REU internship at Missouri University of Science and Technology. She is pursuing
her work as an Undergraduate Research Assistant. Her academic excellence is demonstrated by the
prestigious Academic Excellence Scholarship she received at UTD, recognizing her outstanding performance
in high school. With a focus on innovation, Sanjana seeks to leverage her skills to solve complex problems
and is actively exploring opportunities in computer science and related fields.

Asir Abrar, Missouri University of Science and Technology

Asir Abrar is a PhD student in Computer Science at the Missouri University of Science and Technology.
He earned his master’s degree in Computer Science from Lamar University in Texas, USA, and completed
his bachelor’s degree in Computer Science and Engineering at BRAC University in Dhaka, Bangladesh.
Currently, his research focus is cognitive workload assessment. He also has interests in health informatics
and natural language processing.

Prof. Venkata Sriram Siddhardh Nadendla, Missouri University of Science and Technology

Dr. Venkata Sriram Siddhardh Nadendla is an Assistant Professor in the Department of Computer Science
at Missouri University of Science and Technology. In Fall 2018, Venkata Sriram Siddhardh Nadendla
worked as a postdoctoral research associate in Coordinated Science Laboratory at University of Illinois at
Urbana-Champaign since Oct 2016. He received his PhD degree in Electrical and Computer Engineering
from Syracuse University in 2016, his MS degree in Electrical Engineering from Louisiana State University
in 2009, and his BE degree in Electronics and Computer Engineering in 2007 from SCSVMYV University
(India). He also worked as a research intern at ANDRO Computational Solutions, LLC, Rome, NY in
the summers of 2013 and 2014. He received multiple best paper awards as well as grants from multiple
funding agencies including National Science Foundation, Army Research Office, National Institute for
Occupational Safety and Health and Boeing Inc. His research interests broadly span the field of computational
neuroscience, machine learning, game-theory and inference networks.

Dr. K Krishnamurthy, Missouri University of Science and Technology

Dr. K. Krishnamurthy received his B.E. degree in Mechanical Engineering from Bangalore University,
India, and his M.S. and Ph.D. degrees also in Mechanical Engineering from Washington State University,
Pullman, Washington. He is currently a Professor of Mechanical Engineering in the Department of
Mechanical and Aerospace Engineering at Missouri University of Science and Technology.

©American Society for Engineering Education, 2025



WIP: A Reconfigurable Testbed for Assessing Cognitive
Workload in N-back and Multiple Object Tracking Tasks *

Yug Patel¥, Sanjana Shanglew, Asir Abrar?,
Venkata Sriram Siddhardh Nadendla¥, K. Krishnamurthy?

IDepartment of Computer Science
$Department of Mechanical and Aerospace Engineering
Missouri University of Science and Technology, Rolla, MO 65409

ABSTRACT

Cognitive workload assessment and management are critical in managing work efficiency in high-
stress environments and long-duration tasks, such as critical infrastructure operations, first-responder
responses, healthcare, military, and transportation. A major challenge in developing cognitive
assessment algorithms lies in designing an experimental testbed that integrates diverse systems
like brain-computer interfaces, physiological sensors, and task-specific hardware for synchronized
multi-modal data collection. This paper presents a novel reconfigurable testbed for assessing cog-
nitive workload using Letter N-back, Flanker N-back, and multiple object tracking (MOT) tasks.
The testbed features customizable parameters such as trial length, difficulty level, and task com-
plexity, allowing simulation of various stress levels. The integration of Neuroelectrics EEG head-
sets and Bluetooth-enabled physiological sensors ensures real-time multimodal data acquisition.
In addition, the modular design supports future expansion for new tasks and devices, fostering
advancements in cognitive neuroscience and human performance research.

INTRODUCTION

Workers experience cognitive workload, i.e. the amount and type of mental effort required to
perform any given task, which often dictates their performance of the task, particularly in high-
stakes environments. Therefore, assessment and management of cognitive workload are vital to
improving operational efficiency, health outcomes and safety, particularly in individuals working
at computers'. Traditionally, cognitive workload has been assessed using unimodal data sources?
such as subjective surveys, behavioral metrics, heart rate and EEG signals. These unimodal data
sources typically lack the necessary features to perform a wholesome assessment of cognitive
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workload?. For example, subjective surveys can contain misinformation, EEG signals suffer from
poor spatial resolution, and behavioral approaches are sometimes inaccurate. Therefore, there is a
need to design a reconfigurable cognitive assessment testbed that integrates data from multi-modal
sources*. However, this involves many challenges: (i) multi-modal data sources have disparate
sampling rates, which need to be synchronized using simple markers, (ii) a reconfigurable testbed
demand a modular design to support diverse cognitive workload studies as well as diverse physio-
logical sensors, and (iii) the testbed should be user-friendly in terms of experiment setup and data
storage so as to make it accessible to researchers beyond computer science.

The main contributions of this paper are summarized as follows. This paper presents the first-
of-its-kind reconfigurable cognitive workload testbed, which generates a web dashboard that can
be interfaced with multimodal physiological sensors to engage participants in a user-defined ex-
periment. The testbed currently supports a repertoire of three different types of cognitive tasks,
namely Letter N-back?, Flanker N-back® and multiple object tracking (MOT) tasks in order to in-
vestigate the impact of cognitive workload on participant’s working memory, response inhibition,
attentional capacity and spatial awareness. In order to interface with multi-modal physiological
sensors, the testbed is equipped with two communication protocols, namely Lab Streaming Layer
(LSL)® for supporting time-synchronized data streams (e.g. EEG headsets) and Generic Attribute
Profile (GATT) protocol® to connect with Bluetooth Low Energy (BLE) devices such as smart
watches. Currently, the testbed has been successfully interfaced with Enobio 20 EEG headset and
Polar Verity Sense wristband. Depending on the designer’s need, the generated web dashboard
will automatically record markers within the web dashboard, as well as record markers in multi-
modal sensor data streams, all in a synchronous manner. Moreover, the modular architecture of
the proposed testbed ensures the generation of a custom web dashboard according to the experi-
ment parameters (e.g. task length, difficulty level, and stimulus type) chosen by the designer to
develop a wide range of experiments. Finally, the testbed offers a user-friendly interface to support
researchers with diverse technical backgrounds. For example, in both N-back tasks, experiment
designers can adjust the parameter N to modulate the load on the working memory, while the
MOT task is customized to support varying number of objects to track, their colors, and movement
patterns. Thus, the proposed reconfigurable multi-modal cognitive workload assessment testbed
contributes to major scientific advancements in the areas of cognitive neuroscience, psychology,
human factors engineering, and related disciplines.

The overarching goal of designing this testbed is to collect physiological data to continuously
detect cognitive overload and/or underload'® in diverse tasks!!!>!3, and how this inference can
be utilized to develop neurofeedback to improve task productivity. Furthermore, we anticipate
that the testbed will also greatly help improve our understanding of how cognitive load and stress
impacts the functionality of human brain'#. This can lead to significant scientific advancements in
real-time applications with stressful environments in defense !°, healthcare '°, transportation'’ and
education'® sectors.

TESTBED DESIGN

Figure 1 depicts the testbed’s modular design, which comprises of experiment design interface,
web dashboard generated based on the designer’s parameters, two types of sensor interfaces to
support diverse physiological sensors, data storage, and various task/survey containers to enable
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Figure 1: Testbed Design
flexible design of experiments.

Sensor Interfaces: The proposed testbed supports two classes of sensors depending on how they
communicate data to the participant workstation. Class-1 sensors are those that communicate data
using the Lab Streaming Layer (LSL) protocol, which provides a standardized mechanism for
transmitting time-synchronized data streams, ensuring reliable communication between the sensor
and the testbed®. LSL also supports automatic discovery of data streams and handles high sampling
rates, making it ideal to detect any faulty sensor electrodes. While most EEG headsets utilize the
LSL protocol to communicate data to the workstation, the proposed testbed is specifically tested
using an Neuroelectrics Enobio 20 EEG headset, which utilizes LSL protocol within the Neuro-
electrics Instrument Controller (NIC) software to manage high-resolution time-series data acquisi-
tion and real-time monitoring. Class-2 sensors are those that utilize Bluetooth Low-Energy (BLE)
communication protocol called Generic Attribute Profile (GATT) to share data to the participant
workstation. Most smart watches equipped with multiple sensors typically share data using the
GATT protocol over Bluetooth channels. GATT operates on a client-server model, where the PPG
device serves as the server, exposing its data and functionality, and the testbed acts as the client.
Data is organized into services and characteristics, each identified by a unique UUID, enabling ef-
ficient, low-power data transfer crucial for real-time physiological monitoring'°. Specifically, the
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Figure 2: Repertoire of Supported Tasks

testbed utilizes a lightweight and efficient interface built using the BLEAK python library. This
testbed was validated using the Polar Verity Sense, a smart wrist/arm band that monitors optical
heart rate using photoplethysmography (PPG) sensors, which utilizes the GATT protocol within
its BLE communication interface. Technically, both class-1 and class-2 sensor interfaces available
in the testbed are also expected to support other sensors, such as galvanic skin response (GSR),
functional near-infrared spectroscopy (fNIRS) and eye-tracking devices. This potential to expand
the testbed to other physiological sensors will be explored in the future. Thus, the proposed testbed
supports multimodal physiological data collection, which is crucial for a robust and reliable cog-
nitive workload assessment.

Web Dashboard: The web dashboard is a web application that automatically generated using
HTML, CSS, and JavaScript, in which an experiment is presented to a human participant to assess
the cognitive workload. This browser-based interface provides an intuitive and interactive dash-
board for researchers to configure experiments without the need for any extensive programming
knowledge. As the participant performs the prescribed task during the experiment, the web dash-
board automatically records all the participant actions using timestamps and markers to distinguish
different events. Researchers who design experiments are provided with a design interface, which
allows customization of task parameters, such as trial duration, difficulty levels, and stimulus types.
For example, researchers can select the number of objects to track in the multiple object tracking
task, adjust the value of ‘N’ in the letter NV-back task, or define the duration and intervals for
stimuli in the Flanker /NV-back task.

Synchronization with Task Markers: One of the major contributions of the proposed testbed is
the automatic synchronization of task events with the time-series data generated by the interfaced
sensors. This is achieved by synchronizing the timestamps within the task markers generated by
the web dashboard with the timestamps present within the sensor data streams. For example, in the
context of EEG signals generated by the Enobio 20 EEG headset, the MatNIC MATLAB library
was utilized to send markers to the NIC software with precise timestamps.

Experiment Design Interface:

* Task Container: A task container is a collection of all the cognitive tasks that are supported by
the proposed testbed. Currently, the task container supports three cognitive tasks listed below:

— Letter N-back: This task assesses working memory by requiring participants to determine
whether the current stimulus matches the one presented N steps earlier, as depicted in figure
2a. Participants are shown a sequence of letters (e.g., Z, X, C, V, B), with the option to
customize the set of letters displayed. The difficulty level is adjustable by modifying the value



of N (e.g., 1-back, 2-back, 3-back). Researchers can also configure the duration for which
each letter is displayed and the inter-stimulus interval.

— Flanker N-back: This task combines response inhibition and working memory by presenting
a sequence of left-right arrows, as depicted in figure 2b. Participants must identify whether
the middle arrow matches the one presented NV steps earlier while ignoring distracting flank-
ing arrows. This task introduces cognitive load by increasing the difficulty of filtering out
incongruent stimuli. Customizable parameters include the number of trials, stimulus duration,
number of flanking arrows, and the interval between trials.

— Multiple Object Tracking: This task measures attentional capacity and spatial awareness by
requiring participants to track multiple moving objects among distractors. As depicted in
figure 2c, the target objects present within the region-of-interest (Rol) are highlighted at the
start of the experiment trial. After a prescribed delay, the target objects are de-highlighted,
and all the objects move randomly within the Rol . At the end of the trial, the objects stop
moving, and the participants are expected to identify the target objects by clicking on them.
Experiments can be customized by changing various parameters such as the number of targets,
their initial colors, and the underlying randomness that dictates the motion of objects.

* Survey Container: The survey container is designed to NASA TLX Survey

host diverse surveys to collect participant opinions re-

garding their mentak workload experience. Currently, ~— vefemepommtysmmanasmeene =
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load on six cognitive dimensions, namely mental de-

mand, physical demand, temporal demand, perfor-
mance, effort, and frustration. A 5-level Likert scale R
(with 5 sub-levels within each level) is used to collect

opinions on each of these six dimensions, as shown in
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* Supported Sensors: As presented earlier, two differ-
ent classes of sensors defined based on the supported
communication protocols are included in the supported s |
sensor container. This container contains all the neces-
sary code and dependencies needed to support the LSL Figure 3: NASA TLX Survey
and BLE GATT communication protocols. For exam-
ple, this repository contains the code built using MatNIC MATLAB library to seamless connect
with NIC software so that EEG markers are precisely aligned with task markers.

Very Low Medium Very High
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Figure 4: Pilot N-back experiment designed using the proposed testbed
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Figure 5: Pilot MOT experiment designed using the proposed testbed

* Integration Layer: Based on the experiment design parameters submitted by the researcher, the
integration layer designs the experiment based on the supported tasks in the task container, the
surveys present within the survey container and the sensors supported by the testbed. The output
of the integration layer is the generated web dashboard which is ready to be interfaced with the

prescribed sensors in the experiment design.

Data and Supported Filetypes: All collected data, including EEG signals, PPG readings, and
task performance markers, are stored in standardized formats such as CSV or JSON, ensuring
compatibility with popular data analysis tools and facilitating post-experiment processing. Task
performance data, NASA TLX survey results, and physiological measurements were stored in sep-
arate files for each trial and run. The physiological data files from EEG and PPG sensors include
synchronized task markers. These markers were additionally logged in a dedicated text file with
precise timestamps to ensure accurate data synchronization across all modalities. Specifically,
EEG data from the Enobio 20 headset, initially stored in .easy format by the NIC software, is
converted to a .csv file using the NEPy Python library?'. This conversion enhances accessibil-
ity and allows researchers to perform detailed analysis using common data processing workflows.
This distributed file structure was implemented to ensure robust data management and enable effi-
cient post-processing, with the capability to consolidate all data into a database for comprehensive

analysis.

CASE STUDY: GENERATED PILOT EXPERIMENTS AND DATA COLLECTION PLAN

The testbed has been validated by generating three pilot experiments. These pilot experiments
are designed using parameters depicted in figures 4 and 5 for both N-back tasks and MOT task
respectively. Each of these pilot experiments comprises of [? runs, where each run contains 7 trials
and each trial has S sub-trials. The participant performs any given task once in every sub-trial. In
the case of both /N-back pilot experiments, we chose R = 3, T = 9 and S = 20. Furthermore,



the value of V is also varied randomly between 1 and 3 (i.e. N = 1 for low workload, N = 2 for
medium workload, and N = 3 for high workload) across trials to alleviate boredom. In the case
of MOT pilot experiment, we chose R = 3,7 = 5 and S = 5. As depicted in figures 6 and 7,
the web dashboard records the participant’s response for the stimulus presented in each sub-trial
along with a label that deems if it is correct, physiological data with synchronized task markers
and participant responses in the NASA TLX survey, all in their respective CSV files.

In both N-back pilot experiments, an indicator screen is dis-
played to the participant where the run-ID is disclosed along
with a clickable start button. Once the participant clicks the start
button, each trial begins with the instruction screen, where the
web dashboard provides a short list of instructions for the partic-
ipants for 2 seconds. After that, a blank screen with a 4+ symbol
at the center (a.k.a. fixation cross) is shown for two seconds
to let the participant compose themselves for the experiment.
After that, a sequence of 20 sub-trials are repeated wherein a
stimulus (e.g. a letter in letter /V-back task, and a sequence of 5
arrows in Flanker N-back task) is shown for 500 milliseconds,
followed by a fixation cross screen for 1.5 seconds. At the end
of each trial, a rest period of 4 seconds starts before a new trial
is repeated until all the 7 trials are completed. The only differ-
ence between the two N-back tasks is the single letter in Letter
N-back is replaced by a set of 5 random left-right arrows in the
Flanker N-back task.
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pant’s stimulus and responses
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The MOT task pilot experiment follows a slightly different design due to its unique tracking re-
quirements, as shown in figure 5. Each trial begins with an instruction screen and fixation cross
similar to the N-back tasks. After that, in each sub-trial, 10 circles are presented on the screen
in the Rol for 2 seconds with C' target circles highlighted in black. In our pilot experiment, we
chose C' = 2 for low workload, C' = 4 for medium workload, and C' = 6 for high workload task.
Then, the target circles are de-highlighted and all the circles follow Brownian motion and move
randomly in the Rol for the next 12 seconds. After the movement phase ends, participants are
given a maximum of 10 seconds to identify the C' target circles by clicking on them. Participant
responses are recorded along with their correctness labels in real time. At the end of each trial,
participants complete a NASA TLX survey for 15 seconds, followed by a 4-second rest period
before the next trial begins.

DISCUSSION AND FUTURE EXTENSIONS

The proposed reconfigurable testbed addresses key limitations of existing platforms by providing
flexibility to design tasks with varying parameters and diverse sensors, automatic synchroniza-
tion of the web dashboard with sensor data, and user-friendly interface so that a wide range of
researchers (even with limited programming expertise) can adopt this testbed. Furthermore, the
open-source nature and modular design of the proposed testbed allows anyone to add new features
(e.g. tasks, sensors) to design new experimental paradigms in the future. This adaptability makes
the testbed a valuable resource to neuroscience researchers. The pilot experiments designed with
this testbed exhibited some minor concerns in terms of reliable data acquisition due to occasional
Bluetooth connectivity disruptions. Additionally, during heavy tasks involving overwhelming 1/0
operations, a small amount of latency is observed in marker read/write steps.

Future work will focus on collecting data using the described experiments to develop novel multi-
modal neural network models to predict cognitive workload optimizing and integrating additional
cognitive tasks and expanding sensor compatibility. Additionally, adding remote access function-
ality would allow researchers to monitor experiments and collect data from geographically dis-
persed participants, making the testbed viable for large-scale collaborative studies. To ensure a
robust system, incorporating strong encryption protocols for data security would further enhance
the testbed’s suitability for online applications. The testbed’s adaptability will be advantageous for
cognitive neuroscience research with diverse applications in education, defense, healthcare, and
transportation.
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