
Paper ID #36963

Board 196: A Framework to Assess Debugging Skills for Computational
Thinking in Science and Engineering

Derrick Hylton, Spelman College
Dr. Shannon Hsianghan-huang Sung, Institute for Future Intelligence

Shannon H. Sung is a Learning Scientist at Institute for Future Intelligence. Her research focuses on
technology-enhanced learning and assessment, interdisciplinary STEM learning, and the cognitive learn-
ing processes.

Xiaotong Ding
Mary Johanna Van Vleet

©American Society for Engineering Education, 2023

A Framework to Assess Debugging Skills for Computational Thinking in

Science and Engineering

Abstract

A rubric is presented to assess debugging skills for students particularly in the natural sciences

and engineering. The three categories that are assessed for the cognitive processes in debugging

skills are identification, isolation, and iteration. These are defined, and the characteristics of each

process are listed. We discuss the method used to develop this rubric that was based on

intentional errors in a programming assignment given to students in an introductory physics

course. The programming in this assignment was in Python and a visual-based programming

platform, called iFlow. We believe that visual-based programming will help elicit weaknesses in

debugging because it removes students' familiarity with particular programming languages.

Our focus on debugging skills came from a survey of students to self-identify barriers in

computational work in an introductory physics course that included engineering majors. This

skill was the primary self-identified barrier along with abstraction skills, which will be the focus

of another work. We also present the results of this survey. The Python assignment (ntext = 9) was

used to create the rubric and the iFlow assignment (ngraphic = 11) was used to test the rubric.

Scoring was based on a scale of six levels in each category. Although the sample size was too

small to establish rigorous scoring reliability, we discussed how the two researchers attained

agreement in scoring the assignments after iterative modifications of the rubric and rescoring.

For the Python assignment, the average for identification was 2.75/5, for isolation 2.30/5, and for

iteration 3.33/5. For the iFlow assignment, the average for identification was 2.63/5, for isolation

2.23/5, and for iterate 3.32/5. A consistent trend from these assignments showed that students'

approach to debugging is mainly to identify and iterate without a full understanding of the error

(i.e., isolation). The lack of a full understanding of the error implies that students are prone to

repeat the error. Thus, the important outcome of debugging is to understand the source of error

by systematically investigating different parts of the computational solution. Our preliminary

results led to the hypothesis that students with weak debugging skills are mainly due the isolation

process. This hypothesis will be tested in a future experiment. Results from such an experiment

will be significant to those who are designing intervention strategies to integrate computational

thinking in science and engineering curricula.

Background

In STEM education, computational thinking (CT) has become a critical component in preparing

students for the technical workforce [1]. Computation is fundamental to science because it

renders rich contexts for solving complex problems in the real world. The overall goal of this

project is to equip practitioners with the ability to enhance students’ computational skills in

STEM courses, especially in introductory courses. In order to do this, we must identify barriers,

develop specific assessments, and create intervention activities to improve CT skills.

Practitioners are less familiar with the integration and assessment of CT in STEM curricula [2].

Also, very few CT assessment studies have been applied to higher education, and the CT

literature is especially lacking in the STEM field, or mostly focuses on assessing overall CT.

Although focusing on assessing overall CT is beneficial, it does not allow a practitioner to

pinpoint the specific weakness of a student. Therefore, just-in-time and strategic interventions

may not be feasible.

The definition of CT in the literature, although divergent, entails common themes (e.g., [3], [4],

[5]) which we have coalesced into five practices: abstraction, decomposition, algorithmic

thinking, debugging, and generalization. For more detailed information of the aforementioned

practices, see Martínez and his colleagues [6]. In this paper, we summarize our preliminary work

in debugging.

Our focus on debugging skills came from a survey of students to self-identify barriers in

computational work in an introductory physics course that included engineering majors. This

skill was the primary self-identified barrier along with abstraction skills, which will be the focus

of another work. Our objective is to identify cognitive processes and practices associated with

debugging computational solutions in STEM and develop a framework using undergraduate

students’ artifacts.

Methods

Operational Definition of Debugging

We adopted Weintrop and his colleagues’ definition of troubleshooting and debugging

definition, which states “Students who have mastered this practice will be able to identify,

isolate, reproduce, and ultimately correct unexpected problems encountered when working on a

problem, and do so in a systematic, efficient manner.” ([5], p.140) Our team operationally

defined 3 cognitive processes of debugging that are most relevant in STEM education –

identification (making sense of the solution), isolation (investigating the cause of an error), and

iteration (repeatedly improving the solution); see the Table in the Appendix for complete

characteristics for each process.

Key practices for each cognitive process were listed and student responses according to their

complexity levels were categorized into 6 levels. This approach was inspired by the Knowledge

Integration framework, where Lynn [7], Liu [8], and their colleagues listed essential science

concepts and categorized student’s conceptual understanding into various levels according to the

number of connected key concepts. These characteristics were defined as distinct as possible to

ease scoring purposes.

Context of Study

To test whether the assessment framework could be used in different programming platforms, we

designed two parallel debugging assignments, one in text-based (see Box 1) and the other in

graphic-based (see Box 2) formats. Both questions are program-based computational problem,

where students have to identify that the output is not the most ideal solution, to isolate which

input codes are needed to be corrected, and to iterate the investigation to fix the error. Twenty

students (ntext = 9, ngraphic = 11) from the laboratory component of a calculus-based introductory

physics course consented to participate in this study. Four think-aloud interviews were

conducted to ensure that the questions were eliciting the desirable debugging practices under

study.

Box 1

Sample text-based debugging question.

We write a code to plot the points (1.5, 2.5), (2.5, 4.5), (3.5, 7.2) and (4.6, 10.3), as follows:
import matplotlib.pyplot as plt

point1 = (1.5, 2.5)

point2 = (2.5, 4.5)

point3 = (3.5, 7.2)

point4 = (4.6, 10.3)

plt.plot(point1, point2, point3, point4)

a. Is the output of the plot function as expected? Explain in the space below.

b.Python allows you to check the type of data for a particular variable by using the built-in

function ‘type’. The syntax is: type(x), where the argument x is the name of the variable you

want to check. Use this to consider inputs and output of the plot function to isolate the

problem. In the space below state what you did with the ‘type’ function, if anything.

c. Try to fix the problem. In the table below, write each thing that you tried along with your

reasoning, even if it did not work.

d.What might have been the thought process of writing the code as shown?

Box 2

Sample graphic-based debugging question

Graphic-based prompt:

Assume that you have collected data of one quantity (called y) as you vary another quantity

(called x). You want to plot this data so that you can visualize any trend in the data. The data

points (x, y) are: (1.3, 4.8), (2.7, 8.5), (4.1, 12.6), (6.7, 19.3), and (8.5, 25.1) with appropriate

units. This data has been entered into an Array Input block in iFlow for you. The link below will

take you to this iFlow file. Click on the link or copy and paste it in a Chrome browser; sign in;

and copy this file either in the Clouds or on your local computer as a .json file. (iFlow works

better with Chrome.)

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1

To plot this data, we use a block called Space2D that can be found in the Inputs and Outputs

category of blocks. Drag a Space2D block to the work area and resize it. Connect the output

node of the Array Input block to both input nodes of the Space2D block as an attempt to plot the

data.

a. Is there a problem with the final graphical output? Explain.

b. Fill in the table below in describing each action you did in trying to fix the problem:

List of things done Reasoning for each

step

State what you learned

from each step

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1

Refining Debugging Rubrics

Two of the researchers coded both Python and iFlow questions together to establish interrater

agreement. Although the sample size was too small to establish rigorous scoring reliability, the

two researchers obtained agreement in scoring the assignments after iterative modifications of

the rubric and rescoring them after exhaustive discussions. We also took notes based on the

recurring mistakes found in their responses as feedback to revise future questions.

Results

The final debugging rubrics are divided into three cognitive processes along with expected

practices and 5 complexity levels for each process (see Appendix). The Python assignment was

used to create the rubric and the iFlow assignment was used to test the rubric. Scoring was based

on five levels in each category. For the Python assignment, the average for identification was

2.75/5, for isolation 2.30/5, and for iteration 3.33/5. For the iFlow assignment, the average for

identification was 2.63/5, for isolation 2.23/5, and for iterate 3.32/5. A consistent trend from

these assignments showed that students' approach to debugging is mainly to identify and iterate

without a full understanding of the error (i.e., isolation). For example, one student’s response to

the text-based prompt in Box 1 as an example of intermediate identification:

I thought it would just produce a picture of one plot line but it also spit out a

discontinuous line. (identification: 2).

The student showed an attempt to examine the output, however, the response was incorrect

because the problem asked to plot the points and the student was focusing on the line rather than

the points as was prompted.

Although there was an attempt to identify an issue, there was no investigation as to why the line

was discontinuous as the following response shows:

I put each position variable into the type function to make sure there were no errors. c)I

tried to make a line of best fit by using outside resources for tips. I changed the x and y

values to be listed. I then calculated a slope and made a plot line. I tried this because I

was unsure of how to make the original code work. It was running perfectly, the line was

just broken. It worked, and produced one single line of best fit. d) I think the code was

written that way to put the x and y points together instead of having the code do it

automatically. But, since the points were plotted individually with two lines of best fit, the

line had a significant break. (isolation: 0)

This student tried to artificially place a continuous line to replace the discontinuous line and did

not attempt to investigate why the line was discontinuous in the first place. In order for students

to receive a Level 5 score on isolation, they must complete all three practices: 1) Decide which

part of the computational solution is a reasonable cause of the error; 2) Provide the correct

reasoning as to what about the part in #1 could be the cause the error; 3) Systematically study

how the reasoning given could have caused the error. Notice this score was not used to penalize

the lack of identification in Question a), but to assess their practices for isolation.

Discussions

Our preliminary results led us to hypothesize that students with weak debugging skills were

mainly due to the isolation process, since this process had the lowest score. The finding implies

that, even if students can quickly identify and fix the error in the program, they are not as

proficient in isolating and investigating possible causes of error, which is an essential practice to

acquire better understanding of computational problems. Without a full understanding of the

error, students are prone to repeat the error. Thus, the important outcome of debugging is not just

to fix the error, but also to understand the source of error by systematically investigating

different parts of the computational solution.

Results from this study will be significant to those who are designing intervention strategies to

integrate computational thinking in science and engineering curricula. For instance, it shows that

practitioners should focus most of their efforts on teaching the isolation process instead of

spending a lot of time on identifying or iterating; the focus should be on investigating the source

of error. Even though this study focused on the program-level debugging, the process can be

readily applied to problem-level debugging. Problem-level debugging is an analysis of the

solution based on the non-programming parts, as not all errors occur in the programming part.

For example, some errors may occur in the assumptions and modelling parts of the solution.

Future Plans

A similar approach will be taken in the future to other practices in CT, such as for algorithmic

thinking and abstraction. We would also like to research interconnectedness of the different CT

practices, such as the relationship among debugging, abstraction, and algorithmic thinking, and

what it means in terms of assessment. Our hypothesis that students are weak in isolation will be

tested in future studies that include problem-level CT.

Acknowledgements

This work is funded under the NSF HBCU-UP Broadening Participation Research Program in

STEM Education under award number 2107104

References

[1] “Dear Colleague Letter: Advancing Educational Innovations that Motivate and Prepare

PreK-12 Learners for Computationally-Intensive Industries of the Future (nsf20101)

National Science Foundation.” https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp

(accessed Feb. 13, 2022).

[2] C. Wang, J. Shen, and J. Chao, “Integrating Computational Thinking in STEM Education: A

Literature Review,” International Journal of Science & Mathematics Education, vol. 20, no.

8, pp. 1949–1972, Dec. 2022, doi: 10.1007/s10763-021-10227-5.

[3] X. Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai, “Assessing computational thinking: A

systematic review of empirical studies,” Computers & Education, vol. 148, p. 103798, Apr.

2020, doi: 10.1016/j.compedu.2019.103798.

https://www.nsf.gov/pubs/2020/nsf20101/nsf20101.jsp
https://doi.org/10.1007/s10763-021-10227-5
https://doi.org/10.1016/j.compedu.2019.103798

[4] Y. Yin, R. Hadad, X. Tang, and Q. Lin, “Improving and Assessing Computational Thinking

in Maker Activities: the Integration with Physics and Engineering Learning,” J Sci Educ

Technol, vol. 29, no. 2, pp. 189–214, Apr. 2020, doi: 10.1007/s10956-019-09794-8.

[5] D. Weintrop et al., “Defining computational thinking for mathematics and science

classrooms,” J Sci Educ Technol, vol. 25, no. 1, pp. 127–147, Feb. 2016, doi:

10.1007/s10956-015-9581-5.

[6] M. L. Martínez, O. Lévêque, I. Benítez, C. Hardebolle, and J. D. Zufferey, “Assessing

Computational Thinking: Development and Validation of the Algorithmic Thinking Test for

Adults,” Journal of Educational Computing Research, vol. 60, no. 6, pp. 1436–1463, Oct.

2022, doi: 10.1177/07356331211057819.

[7] M. C. Linn, H.-S. Lee, R. Tinker, F. Husic, and J. L. Chiu, “Teaching and Assessing

Knowledge Integration in Science,” Science, vol. 313, no. 5790, pp. 1049–1050, 2006,

Accessed: Feb. 13, 2023. [Online]. Available: https://www.jstor.org/stable/3847060

[8] O. L. Liu, H.-S. Lee, C. Hofstetter, and M. C. Linn, “Assessing Knowledge Integration in

Science: Construct, Measures, and Evidence,” Educational Assessment, vol. 13, no. 1, pp.

33–55, Mar. 2008, doi: 10.1080/10627190801968224.

https://doi.org/10.1007/s10956-019-09794-8
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1177/07356331211057819
https://www.jstor.org/stable/3847060
https://doi.org/10.1080/10627190801968224

Appendix

Table

Assessment Framework for Debugging of Computational Solutions

Categories
Response

Characteristics/Practices
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Identification

process:

making sense

of the solution

Compare the output with existing

schema to make sense. 1. Identify

a correct issue based on the

solution/output. 2. explain why is

it an issue.

no/

irrelevant

response

show some

attempt to

examine the

output but

conclude that

there is no issue

conclude that there

is a problem but

the issue identified

is irrelevant or

incorrect w/ or w/o

explanation

correctly

identify the

issue w/

incorrect or

w/o

explanation

correctly

identify the

issue with

partially

correct

explanation

correctly

identify the

issue with

correct

explanation

Isolation

process:

investigating

the cause of an

error

Understand the source of an error

by systematically investigating

different parts of the

computational solution. 1. Decide

which part of the computational

solution is a reasonable cause of

the error. 2. Provide the correct

reasoning as to what about the

part in #1 could be the cause the

error. 3. Systematically study

how the reasoning given could

have caused the error.

no/

irrelevant

response

Attempted

isolation:

Attempt(s) of

the practice(es)

is/are incorrect.

Simple isolation:

Attempt practices

with only 1 correct

practice.

Partial

isolation:

Engage in 2

out of the 3

practices

correctly.

Systematic

isolation:

Engage in #1

and #2

correctly and

an attempt to

#3

Complete

isolation:

Engage in all 3

practices

correctly and a

complete

undertanding

of the error.

Iteration

process:

repeatedly

improving the

solution

Employ strategies repeatedly to

improve the solution.

1. Examine a change that affects

the solution.

2. Change to get an improved

solution.

3. Iterate (if necessary) to

address ALL issues with the

solution to get the best solution

no/

irrelevant

response

Attempt(s) at

the practice(es)

is/are incorrect.

Attempt practices

with only 1 correct

practice.

Engage in #1

and #2 but did

NOT get the

best solution

for any issue

as stated in #3.

Engage in #1

and #2

correctly and

solve SOME

of the issues

stated in #3 or

did not

complete all

the iterations.

Engage in all 3

practices

correctly and

follow through

#3 iterations

completely.

