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A Framework to Assess Debugging Skills for Computational Thinking in 

Science and Engineering 

 

Abstract 

A rubric is presented to assess debugging skills for students particularly in the natural sciences 

and engineering. The three categories that are assessed for the cognitive processes in debugging 

skills are identification, isolation, and iteration. These are defined, and the characteristics of each 

process are listed. We discuss the method used to develop this rubric that was based on 

intentional errors in a programming assignment given to students in an introductory physics 

course. The programming in this assignment was in Python and a visual-based programming 

platform, called iFlow. We believe that visual-based programming will help elicit weaknesses in 

debugging because it removes students' familiarity with particular programming languages. 

 

Our focus on debugging skills came from a survey of students to self-identify barriers in 

computational work in an introductory physics course that included engineering majors. This 

skill was the primary self-identified barrier along with abstraction skills, which will be the focus 

of another work. We also present the results of this survey. The Python assignment (ntext = 9) was 

used to create the rubric and the iFlow assignment (ngraphic = 11) was used to test the rubric. 

Scoring was based on a scale of six levels in each category. Although the sample size was too 

small to establish rigorous scoring reliability, we discussed how the two researchers attained 

agreement in scoring the assignments after iterative modifications of the rubric and rescoring. 

For the Python assignment, the average for identification was 2.75/5, for isolation 2.30/5, and for 

iteration 3.33/5. For the iFlow assignment, the average for identification was 2.63/5, for isolation 

2.23/5, and for iterate 3.32/5. A consistent trend from these assignments showed that students' 

approach to debugging is mainly to identify and iterate without a full understanding of the error 

(i.e., isolation). The lack of a full understanding of the error implies that students are prone to 

repeat the error. Thus, the important outcome of debugging is to understand the source of error 

by systematically investigating different parts of the computational solution. Our preliminary 

results led to the hypothesis that students with weak debugging skills are mainly due the isolation 

process. This hypothesis will be tested in a future experiment. Results from such an experiment 

will be significant to those who are designing intervention strategies to integrate computational 

thinking in science and engineering curricula. 

 

Background 

In STEM education, computational thinking (CT) has become a critical component in preparing 

students for the technical workforce [1]. Computation is fundamental to science because it 

renders rich contexts for solving complex problems in the real world. The overall goal of this 

project is to equip practitioners with the ability to enhance students’ computational skills in 

STEM courses, especially in introductory courses. In order to do this, we must identify barriers, 

develop specific assessments, and create intervention activities to improve CT skills.  



 

Practitioners are less familiar with the integration and assessment of CT in STEM curricula [2]. 

Also, very few CT assessment studies have been applied to higher education, and the CT 

literature is especially lacking in the STEM field, or mostly focuses on assessing overall CT. 

Although focusing on assessing overall CT is beneficial, it does not allow a practitioner to 

pinpoint the specific weakness of a student. Therefore, just-in-time and strategic interventions 

may not be feasible. 

 

The definition of CT in the literature, although divergent, entails common themes (e.g., [3], [4], 

[5]) which we have coalesced into five practices: abstraction, decomposition, algorithmic 

thinking, debugging, and generalization. For more detailed information of the aforementioned 

practices, see Martínez and his colleagues [6]. In this paper, we summarize our preliminary work 

in debugging. 

 

Our focus on debugging skills came from a survey of students to self-identify barriers in 

computational work in an introductory physics course that included engineering majors. This 

skill was the primary self-identified barrier along with abstraction skills, which will be the focus 

of another work. Our objective is to identify cognitive processes and practices associated with 

debugging computational solutions in STEM and develop a framework using undergraduate 

students’ artifacts.  

 

Methods 

Operational Definition of Debugging 

We adopted Weintrop and his colleagues’ definition of troubleshooting and debugging 

definition, which states “Students who have mastered this practice will be able to identify, 

isolate, reproduce, and ultimately correct unexpected problems encountered when working on a 

problem, and do so in a systematic, efficient manner.” ([5], p.140) Our team operationally 

defined 3 cognitive processes of debugging that are most relevant in STEM education – 

identification (making sense of the solution), isolation (investigating the cause of an error), and 

iteration (repeatedly improving the solution); see the Table in the Appendix for complete 

characteristics for each process.  

 

Key practices for each cognitive process were listed and student responses according to their 

complexity levels were categorized into 6 levels. This approach was inspired by the Knowledge 

Integration framework, where Lynn [7], Liu [8], and their colleagues listed essential science 

concepts and categorized student’s conceptual understanding into various levels according to the 

number of connected key concepts. These characteristics were defined as distinct as possible to 

ease scoring purposes.  

 

 



Context of Study 

To test whether the assessment framework could be used in different programming platforms, we 

designed two parallel debugging assignments, one in text-based (see Box 1) and the other in 

graphic-based (see Box 2) formats. Both questions are program-based computational problem, 

where students have to identify that the output is not the most ideal solution, to isolate which 

input codes are needed to be corrected, and to iterate the investigation to fix the error. Twenty 

students (ntext = 9, ngraphic = 11) from the laboratory component of a calculus-based introductory 

physics course consented to participate in this study.  Four think-aloud interviews were 

conducted to ensure that the questions were eliciting the desirable debugging practices under 

study.  

 

Box 1 

Sample text-based debugging question. 

 

We write a code to plot the points (1.5, 2.5), (2.5, 4.5), (3.5, 7.2) and (4.6, 10.3), as follows: 
import matplotlib.pyplot as plt 

point1 = (1.5, 2.5) 

point2 = (2.5, 4.5) 

point3 = (3.5, 7.2) 

point4 = (4.6, 10.3) 

plt.plot(point1, point2, point3, point4) 

 

a. Is the output of the plot function as expected? Explain in the space below. 

b.Python allows you to check the type of data for a particular variable by using the built-in 

function ‘type’. The syntax is: type(x), where the argument x is the name of the variable you 

want to check. Use this to consider inputs and output of the plot function to isolate the 

problem. In the space below state what you did with the ‘type’ function, if anything. 

c. Try to fix the problem. In the table below, write each thing that you tried along with your 

reasoning, even if it did not work. 

d.What might have been the thought process of writing the code as shown? 



Box 2 

Sample graphic-based debugging question 

Graphic-based prompt: 

Assume that you have collected data of one quantity (called y) as you vary another quantity 

(called x). You want to plot this data so that you can visualize any trend in the data. The data 

points (x, y) are: (1.3, 4.8), (2.7, 8.5), (4.1, 12.6), (6.7, 19.3), and (8.5, 25.1) with appropriate 

units. This data has been entered into an Array Input block in iFlow for you. The link below will 

take you to this iFlow file. Click on the link or copy and paste it in a Chrome browser; sign in; 

and copy this file either in the Clouds or on your local computer as a .json file. (iFlow works 

better with Chrome.) 

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1 

To plot this data, we use a block called Space2D that can be found in the Inputs and Outputs 

category of blocks. Drag a Space2D block to the work area and resize it. Connect the output 

node of the Array Input block to both input nodes of the Space2D block as an attempt to plot the 

data. 

 

a. Is there a problem with the final graphical output? Explain. 

b. Fill in the table below in describing each action you did in trying to fix the problem: 

List of things done Reasoning for each 

step 

State what you learned 

from each step 

   

   

 

 

http://intofuture.org/iflow/index.html?userid=shannon%40intofuture.org&filename=ssplot1


Refining Debugging Rubrics 

Two of the researchers coded both Python and iFlow questions together to establish interrater 

agreement. Although the sample size was too small to establish rigorous scoring reliability, the 

two researchers obtained agreement in scoring the assignments after iterative modifications of 

the rubric and rescoring them after exhaustive discussions. We also took notes based on the 

recurring mistakes found in their responses as feedback to revise future questions.  

 

Results 

The final debugging rubrics are divided into three cognitive processes along with expected 

practices and 5 complexity levels for each process (see Appendix). The Python assignment was 

used to create the rubric and the iFlow assignment was used to test the rubric. Scoring was based 

on five levels in each category. For the Python assignment, the average for identification was 

2.75/5, for isolation 2.30/5, and for iteration 3.33/5. For the iFlow assignment, the average for 

identification was 2.63/5, for isolation 2.23/5, and for iterate 3.32/5. A consistent trend from 

these assignments showed that students' approach to debugging is mainly to identify and iterate 

without a full understanding of the error (i.e., isolation). For example, one student’s response to 

the text-based prompt in Box 1 as an example of intermediate identification:  

I thought it would just produce a picture of one plot line but it also spit out a 

discontinuous line. (identification: 2).  

The student showed an attempt to examine the output, however, the response was incorrect 

because the problem asked to plot the points and the student was focusing on the line rather than 

the points as was prompted.  

 

Although there was an attempt to identify an issue, there was no investigation as to why the line 

was discontinuous as the following response shows: 

I put each position variable into the type function to make sure there were no errors. c)I 

tried to make a line of best fit by using outside resources for tips. I changed the x and y 

values to be listed. I then calculated a slope and made a plot line. I tried this because I 

was unsure of how to make the original code work. It was running perfectly, the line was 

just broken. It worked, and produced one single line of best fit. d) I think the code was 

written that way to put the x and y points together instead of having the code do it 

automatically. But, since the points were plotted individually with two lines of best fit, the 

line had a significant break. (isolation: 0) 

This student tried to artificially place a continuous line to replace the discontinuous line and did 

not attempt to investigate why the line was discontinuous in the first place. In order for students 

to receive a Level 5 score on isolation, they must complete all three practices: 1) Decide which 

part of the computational solution is a reasonable cause of the error; 2) Provide the correct 

reasoning as to what about the part in #1 could be the cause the error; 3) Systematically study 

how the reasoning given could have caused the error. Notice this score was not used to penalize 

the lack of identification in Question a), but to assess their practices for isolation.  



Discussions  

Our preliminary results led us to hypothesize that students with weak debugging skills were 

mainly due to the isolation process, since this process had the lowest score. The finding implies 

that, even if students can quickly identify and fix the error in the program, they are not as 

proficient in isolating and investigating possible causes of error, which is an essential practice to 

acquire better understanding of computational problems. Without a full understanding of the 

error, students are prone to repeat the error. Thus, the important outcome of debugging is not just 

to fix the error, but also to understand the source of error by systematically investigating 

different parts of the computational solution.  

 

Results from this study will be significant to those who are designing intervention strategies to 

integrate computational thinking in science and engineering curricula. For instance, it shows that 

practitioners should focus most of their efforts on teaching the isolation process instead of 

spending a lot of time on identifying or iterating; the focus should be on investigating the source 

of error. Even though this study focused on the program-level debugging, the process can be 

readily applied to problem-level debugging. Problem-level debugging is an analysis of the 

solution based on the non-programming parts, as not all errors occur in the programming part. 

For example, some errors may occur in the assumptions and modelling parts of the solution. 

 

Future Plans  

A similar approach will be taken in the future to other practices in CT, such as for algorithmic 

thinking and abstraction. We would also like to research interconnectedness of the different CT 

practices, such as the relationship among debugging, abstraction, and algorithmic thinking, and 

what it means in terms of assessment. Our hypothesis that students are weak in isolation will be 

tested in future studies that include problem-level CT.   
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Appendix 

Table  

Assessment Framework for Debugging of Computational Solutions 

Categories 
Response 

Characteristics/Practices 
Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 

Identification 

process: 

making sense 

of the solution 

Compare the output with existing 

schema to make sense. 1. Identify 

a correct issue based on the 

solution/output. 2. explain why is 

it an issue. 

no/ 

irrelevant 

response 

show some 

attempt to 

examine the 

output but 

conclude that 

there is no issue 

conclude that there 

is a problem but 

the issue identified 

is irrelevant or 

incorrect w/ or w/o 

explanation 

correctly 

identify the 

issue w/ 

incorrect or 

w/o 

explanation 

correctly 

identify the 

issue with 

partially 

correct 

explanation 

correctly 

identify the 

issue with 

correct 

explanation 

Isolation 

process: 

investigating 

the cause of an 

error 

Understand the source of an error 

by systematically investigating 

different parts of the 

computational solution. 1. Decide 

which part of the computational 

solution is a reasonable cause of 

the error. 2. Provide the correct 

reasoning as to what about the 

part in #1 could be the cause the 

error. 3. Systematically study 

how the reasoning given could 

have caused the error. 

no/ 

irrelevant 

response 

Attempted 

isolation: 

Attempt(s) of 

the practice(es) 

is/are incorrect. 

Simple isolation: 

Attempt practices 

with only 1 correct 

practice. 

Partial 

isolation: 

Engage in 2 

out of the 3 

practices 

correctly. 

Systematic 

isolation: 

Engage in #1 

and #2 

correctly and 

an attempt to 

#3 

Complete 

isolation: 

Engage in all 3 

practices 

correctly and a 

complete 

undertanding 

of the error. 

Iteration 

process: 

repeatedly 

improving the 

solution 

Employ strategies repeatedly to 

improve the solution. 

1. Examine a change that affects 

the solution. 

2. Change to get an improved 

solution. 

3. Iterate (if necessary) to 

address ALL issues with the 

solution to get the best solution 

no/ 

irrelevant 

response 

Attempt(s) at 

the practice(es) 

is/are incorrect. 

Attempt practices 

with only 1 correct 

practice. 

Engage in #1 

and #2 but did 

NOT get the 

best solution 

for any issue 

as stated in #3. 

Engage in #1 

and #2 

correctly and 

solve SOME 

of the issues 

stated in #3 or 

did not 

complete all 

the iterations. 

Engage in all 3 

practices 

correctly and 

follow through 

#3 iterations 

completely. 

 


