
Paper ID #21490

A Simple SoC Platform for the Integrated Computer Engineering Lab Frame-
work

Dr. Pong P. Chu, Cleveland State University

Dr. Chu is Associate Professor in the Department of Electrical Engineering and Computer Science. He
has taught undergraduate and graduate digital systems and computer architecture courses for more than
two decades, and he has received multiple instructional grants from the National Science Foundation and
authored six textbooks in this area.

Dr. Chansu Yu, Cleveland State University

Chansu Yu received the B.S. and M.S. degrees in electrical engineering from Seoul National University,
Korea, in 1982 and 1984, respectively, and the Ph.D. degree in computer engineering from the Penn-
sylvania State University in 1994. He is currently Professor and Chair of the Department of Electrical
Engineering and Computer Science at the Cleveland State University in Cleveland, Ohio. Before joining
the CSU, he was on the research staff at LG Electronics, Inc. He has authored/coauthored more than
120 technical papers and numerous book chapters in the areas of mobile computing, performance evalu-
ation, and parallel systems. His research has been supported by both industry and government including
National Science Foundation. Dr. Yu is a member of the IEEE, IEEE Computer Society, ACM, and
ASEE.

Dr. Karla R. Hamlen, Cleveland State University

Dr. Karla Hamlen is an Associate Professor of Educational Research in the Department of Curriculum and
Foundations. She specializes in educational research relating to both formal and informal entertainment
technology use among students.

c©American Society for Engineering Education, 2018

A Simple SoC (System on a Chip) Platform for
the Integrated Computer Engineering Lab Framework

1. Introduction

A “spiral” lab framework is developed for the computer engineering curriculum. It is
motivated by a study from the Carnegie Foundation [6], which recommends a “spiral model” to
enhance the integration skills and to provide more effective learning experiences:

“… the ideal learning trajectory is a spiral, with all components revisited at
increasing levels of sophistication and interconnection. Learning in one area supports
learning in another.”

Instead of treating the labs as the adjuncts that follow the learning of the theories and
presenting them in a limited “component context,” we use them as a cohesive framework
to connect and integrate the individual courses in the computer engineering curriculum,
including freshman engineering, introductory digital systems, advanced digital systems,
computer organization, embedded systems, hardware-software co-design, and senior
capstone design [9]. This goal of the lab framework is to make students aware of the big
picture, help them to connect the individual subjects, and apply and integrate the previous
learning in a new context. The framework consists of a series of sound- and video-theme
based lab experiments and projects [7,8], whose complexities and abstraction levels
gradually grow with the progress of curriculum.

The lab framework covers both hardware and software aspects of computer systems and the
experiments are done in the SoC (system on a chip) context [14], in which a system contains a
general-purpose processor for “housekeeping” tasks and hardware accelerators for computation-
intensive tasks. The commercial SoC platforms are too complex and use the proprietary and
encrypted bus interconnect and IP (intellectual property) cores. A simple, open, and vendor-
neutral SoC platform is developed to support the lab framework [10,11]. The SoC platform can
support the audio- and video-theme experiments and projects. It demonstrates many key design
concepts and can be used to construct custom and functional embedded systems. Earlier articles
covered the development of the sound theme [7] and video theme [8]. This article describes the
SoC platform and discusses the hardware and software organization.

The remaining article is organized as follows: Section 2 discusses the design principles of
the platform; Sections 3 and 4 highlight its hardware organization and software organization,
respectively; Section 5 describes the implementation; and Section 6 summarizes the work.

2. Design principle of a “learning” SoC platform

The hardware acceleration is a key application of FPGA devices and each FPGA vendor has
its own SoC development platform [15], which includes the software tools and a large collection
of predesigned IP cores. However, these commercial platforms are inadequate for the proposed
lab framework for several reasons:

 Commercial SoC platforms are intended for large high-end systems and their
development flows are very involved. A significant amount of time will be spent on
learning the software tool rather than studying and doing the design.

 Commercial IP cores are usually provided as black boxes with obfuscated source codes.
 The interface protocols are intended for high speed transfer and require special IP cores.

 The software drivers and libraries are difficult to comprehend.
 Because of the proprietary IP cores and software libraries, the design is frequently

“locked” to an individual vendor. Thus, learning is tied to a particular platform and the
developed IP cores are not portable.

To overcome the limitation, we define a simple SoC platform and call it FPro SoC (which is
abbreviated from “FPGA Prototyping” or can be interpreted as “Fun and Professional”). It is
composed of a video subsystem and a memory-mapped I/O subsystem and provides a collection
of predesigned IP cores, including general-purpose peripherals, customized hardware
accelerators, and a music synthesizer [10,11]. The goal of the platform is to facilitate the student
learning in the areas of digital systems and hardware-software co-design and to serve as a
pathway to comprehend and utilize commercial SoC platforms to develop full-fledged SoC
systems in the future.

The guiding principles to develop the FPro platform are:
 Simple. The FPro platform defines a simple synchronous bus protocol and a

straightforward software device driver structure. Once a custom hardware circuit is
developed, it can be converted to an FPro IP core by adding an interface wrapping circuit
and a device driver. The core then can be incorporated into the embedded system.

 Functional. The FPro platform provides commonly used I/O peripherals and serial
interfaces (UART, SPI, and I2C) and includes working device drivers. It resembles a
bare-metal 32-bit microprocessor board.

 Portable. Except for the processor, FPro’s IP cores are developed from scratch in HDL
and do not use any vendor's proprietary components. The bus protocol and device drivers
are not tied to any specific commercial platform or library, either. Thus, the IP cores and
software are portable and independent of vendors. They can be reused for different
FPGA devices and prototyping boards.

 “Upward compatible.” While the FPro platform is simple, the development follows the
rigorous design principles and the best practices. These knowledge and skills can be
applied in the future for more complicated commercial platforms and larger projects. The
FPro IP cores and drivers can be easily modified to be incorporated into existing
commercial IP frameworks.

 Fun. Because the developed system resembles a real microprocessor board, it can
incorporate existing I/O modules and quickly develop a functional prototyping project.
In addition, this platform can provide hardware acceleration capability and custom
peripherals and thus is more capable and more flexible than any microprocessor board. It
allows students to develop interesting and challenging projects and makes studying
hardware more “fun”' rather than “learning hardware for the sake of hardware.”'

3. Platform hardware organization

The top-level conceptual diagram of an FPro system is shown in Figure 1(a). It is composed
of four major parts:

 Processor module
 FPro bridge and FPro bus
 MMIO (memory mapped I/O) subsystem
 Video subsystem

memory-mapped controller

GPIO timer UART PWM hardware
accel.

Bridge

processor
core RAM

memory
controller

vendor’s IP bus

FPro bus

video controller

video
RAM

frame
buffer
control

test
pattern

vendor processor module

memory-mapped IO subsystem

video subsystem

OSD

VGA
sync

DAC

VGA monitor
(a). Top-level diagram of an FPro system

(b). Software hierarchy of an FPro SoC system

Figure 1. Hardware and software of an FPro system

 Processor module

The processor module, shown as the red box in Figure 1(a), consists of a processor, a
memory controller core, and RAM. It is the only part that is constructed from the vendor's IP
cores. To be used in the FPro SoC platform, the processor core must exhibit the following
characteristics:

 32-bit-wide data path
 32-bit memory address space
 Memory-mapped-I/O scheme for I/O access

The memory-mapped I/O scheme means that an I/O core is treated as a collection of registers
and shares the same memory address space. The processor reads and writes the I/O core’s
register just like a normal memory word. Almost all FPGA-based processors support this feature
[3,19]. There is no restriction on types of RAM. It can be FPGA’s internal memory modules or
external memory devices.

 FPro bridge and FPro bus

The processor communicates with I/O cores using a bus or an interconnect structure. The
modern interconnect, such as AMBA AXI [5], is designed to accommodate a wide variety of
communication and data transfer needs and involves complex protocols. It is implemented by
the proprietary IP cores. For the learning purposes, we define a simple synchronous bus protocol
for the two subsystems and call it FPro bus [10,11]. The FPro bridge, shown as the blue box in
Figure 1(a), converts vendor's native bus signals into the FPro bus signals. It needs to be
redesigned for each processor.

 MMIO subsystem

The MMIO (memory-mapped IO) subsystem provides a framework to accommodate MMIO
IP cores, which can be general-purpose and special I/O peripherals as well as hardware
accelerators. The MMIO subsystem consists of a controller to select a specific slot and can
accommodate up to 64 instantiated MMIO IP cores.

For simplicity, we define a standard slot interface that conforms to the FPro bus protocol.
An MMIO IP core can be created by “wrapping” custom digital logic with a slot interface
circuit, which contains a collection of registers, decoders, and multiplexers. The conceptual
diagram is shown in Figure 2.

A collection of MMIO IP cores is developed. All cores follow the slot interface specification
and can be inserted into any slot of the MMIO subsystem [10,11]. These cores are

 General-purpose input port
 General-purpose output port
 Timer
 XADC controller
 UART (universal asynchronous receiver/transmitter) controller
 PWM (pulse-width modulation) controller
 Debouncing circuit
 Multi-digit seven-segment LED display controller
 I2C controller
 SPI controller
 PS2 controller
 DDFS (direct digital frequency synthesis) synthesizer

 ADSR (attack-decay-sustain-release) envelope generator

output
register

output
register

output
register

output
register

input
register

input
register

input
register

input
register

decoding /
demultiplexing circit multiplexer

write_data read_dataaddress write read

2 32 32

slot interface

custom logic

chip_select

interface logic

Figure 2. Block diagram of an MMIO IP core

 Video subsystem

The video subsystem establishes a framework to coordinate the operation of video IP cores,
as shown in the bottom of Figure 1(a). A video core generates or processes the video data
stream. The cores are arranged as a cascading chain. The video data is “streamed” and
“blended'” through each stage and eventually displayed on a VGA monitor. A collection of
video IP cores is developed [10,11]:

 VGA synchronization core. It synchronizes the video stream and outputs the data to a
VGA monitor for display.

 Test pattern generator. It produces a test screen.
 Color conversion circuit. It converts a color image to a greyscale image.
 Sprite control circuit. It generates and controls a sprite, which is a small animated object,

on a VGA display. Two sprite circuits, one for the mouse pointer and one for a PacMan
ghost character, are developed.

 OSD (on-screen display) controller. It contains a text buffer and generates characters on
a VGA display.

 Frame buffer. It is a video memory that stores a frame (i.e., a screen) of pixel data.
The video subsystem demonstrates the principles of handling stream data, in which data are
generated or arrived continuously, and then routed through a chain of components for
processing.

4. Platform software organization

The FPro software hierarchy is shown in Figure 1(b). It contains a hardware layer, a device
driver layer, and an application layer. The software runs as a bare-metal system, in which no
operating system is installed and an application program interacts directly with the I/O
peripherals via the device drivers [12]. In its simplest form, the processor boots directly into an

infinite main loop, which contains functions to check input, perform computation, and write
outputs.

The device drivers are portable and constructed from scratch. Only the boot routine, shown
as the red box in Figure 1(b), is tied to the processor configuration. It first performs the basic
initialization process, such as clearing the caches, configuring the stack and heap segments, and
then transfers control to the main program. The boot routine is usually included in the
processor’s software toolchain and inserted into executable code automatically by the linker.

 Direct I/O register access

The I/O register is treated as a normal memory location in the memory-mapped I/O scheme.
During the hardware construction, each slot in the MMIO and video subsystems is assigned a
base address. The address of a register in an IP core can be obtained by adding the offset to the
base address. The application code can access its I/O registers by reading and writing the
designated addresses (as pointers). A pair of macros can make the register read and write
operations more expressive:

#define io_rd(addr) (*(volatile int *)(addr)
#define io_wr(addr, data) (*(volatile int *)(addr) = (data))

Note that the macros are generic C codes and do not depend on the processor. For a processor
with a data cache, the region associated with the MMIO and video subsystems should be marked
as “non-cacheable.” This is usually specified in software toolchain and included in the boot
routine.

 Device driver

A device driver is a collection of routines that interact with the I/O peripherals [33]. The
driver presents the corresponding I/O functionalities in a more abstract way and thus shields the
application program from the tedious details of the hardware. The FPro software framework
constructs a driver for each IP core. A driver is implemented as a unique C++ class. The
methods of the class are used to perform the desired functionalities and the private section of the
instance is used to main the “state” and relevant information of the corresponding IP core. In
this approach, a class becomes “self-contained”' and does not interact with other classes.

When a core is attached or removed from an FPro system, the corresponding driver files
should be included or deleted from the software project. In the main application program, an
instance will be created for each instantiated IP core. The methods in the class will be used to
access and control the core and the state of the core is kept within the private section of the
instantiated object. No external variable is involved.

5. Implementation

Xilinx and Intel (Altera) are two major FPGA manufacturers and they produce an array of
education-oriented prototyping boards. The FPro SoC platform is successfully implemented in
the entry-level boards from both manufacturers. The main task is to construct a processor
module with the vendor’s IP cores and to develop a bridge, as discussed in Sections 3.1 and 3.2.
Since the boot routine is inserted by the linker in the respective toolchain, the software codes are
identical for all prototyping board.

 Intel prototyping boards

Intel provides a soft-core processor, Nios II, for its FPGA device [2] and uses the Avalon
interface [1] to connect its IP cores. We construct an FPro processor module with a Nios II core

and 128 KB on-chip memory. Using the FPGA’s internal memory simplifies the design and
makes the processor module more portable. The 128 KB RAM is large enough to accommodate
most simple embedded applications. A custom FPro bridge translates the Avalon signals to the
FPro bus signals. The FPro system is implemented and verified on two entry-level prototyping
boards: DE0-CV, which contains a Cyclone 5 device, and DE10-Lite, which contains a MAX10
device [2,17]. The DE10-Lite board is shown in Figure 3(a). It contains an Arduino-like header,
as indicated by the green outline. After instantiating proper MMIO IP cores, the board can be
configured as an “embedded system” prototyping board and uses the I/O peripheral modules
designed for the Arduino boards [14]. The cost of the DE10 Lite board is $55 ($85 for non-
academic).

The software development is done in the Intel Nios II SBT (software built tool) platform. It
is the Eclipse platform with a special Nios II plug-in, which invokes software toolchain to
compile, link, and load software code to a Nios II system.

 Xilinx prototyping boards

Xilinx provides a soft-core processor, MicroBlaze, for its FPGA device. MicroBlaze MCS
(microcontroller system) is a complete system with a preconfigured MciroBlze core, on-chip
memory, and an IO module [19]. We construct an FPro processor module with a MicroBlaze
MCS instance of 128 KB on-chip memory. The MicroBlaze MCS communicates with an “I/O
bus port.” A custom FPro bridge translates the MCS I/O bus signals to the FPro bus signals.
The FPro system is implemented and verified on three entry-level prototyping boards: Nexys 4
DDR, Basys 3, and Arty A7 [13]. All boards contain an Artix7 device [18]. The Arty A7 is
shown in Figure 3(b). It also contains an Arduino-like header, as indicated by the green outline.
As for the DE10-lite board, it can be configured as an “embedded system” prototyping board and
uses Arduino I/O peripheral modules. Since the Arty A7 board does not have a built-in VGA
port, an additional VGA module is needed if the video subsystem is instantiated. The cost of the
Arty A7 board is $99.

The software development is done in the Xilinx SDK (software development kit tool)
platform. Similar to Nios II SBT, it is the Eclipse platform with a special MicroBlaze plug-in,
which invokes software toolchain to compile, link, and generate the execution image.

6. Summary

A spiral lab framework is established for the computer engineering curriculum. The
framework covers both hardware and software and the experiments are done in the SoC context.
To support this effort, the FPro platform, a simple open and vendor-neutral SoC platform, is
developed. The FPro platform defines a simple bus protocol and IP core interface and provides a
collection of predesigned IP cores. It can be used to construct custom and functional embedded
system and to demonstrates many key design concepts. The physical system is successfully
implemented and tested with entry-level Intel and Xilinx prototyping boards.

7. Acknowledgments

Part of this material is based upon work supported by the IUSE program of the Division of
Undergraduate Education of the National Science Foundation under Grant No. 504030. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation. The
photos in Figure 3(a) and Figure 3(b) are courtesy of Intel and Xilinx, respectively.

Figure 3. FPGA prototyping boards

References

[1]. Altera, Avalon Interface Specifications, Intel Corp., 2017.
[2]. Altera, MAX10 FPGA User Guides, Intel Corp., 2017.
[3]. Altera, Nios II Gen 2 Processor Reference Guide, Intel Corp., 2016.
[4]. Arduino, “Arduino UNO R3 Board,” https://store.arduino.cc/usa/arduino-uno-rev3
[5]. ARM, AMBA AXI and ACE Protocol Specification, ARM Holdings, 2011.
[6]. C. J. Atman, et al., Enabling Engineering Student Success: The Final Report for the Center

for the Advancement of Engineering Education, 2010.
[7]. P. Chu, “Integrating Computer Engineering Labs with a Sound Theme,” Proceedings of

ASEE Annual Conference, 2016.
[8]. P. Chu, “Integrating Computer Engineering Labs with a Video Theme,” Proceedings of

ASEE Annual Conference, 2017.
[9]. P. Chu, Chansu Yu, and Karla Mansour, “Integrating Computer Engineering Lab Using

Spiral Model,” Proceedings of ASEE Annual Conference, 2017.
[10]. P. Chu, FPGA Design by VHDL Examples: MicroBlaze MCS SoC edition, Wiley & Sons,

2017.
[11]. P. Chu, FPGA Design by SystemVerilog Examples: MicroBlaze MCS SoC edition, Wiley &

Sons, to be published in September 2018.
[12]. J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers: Where the Kernel

Meets the Hardware, O'Reilly Media, 2005.
[13]. Digilent, Arty FPGA Board Reference Manual, Digilent, 2017.
[14]. S. Monk, Programming Arduino: Getting Started with Sketches, McGraw-Hill, 2011.
[15]. R. Sass and A. G. Schmidt, Embedded Systems Design with Platform FPGAs: Principles

and Practices, Morgan Kaufmann, 2010.
[16]. S. Sheppard, et al., Educating Engineers: Designing for the Future of the Field. Jossey-

Bass, 2009.
[17]. Terasic, “DE10 Lite Board,” http://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=234&No=1021
[18]. Xilinx, DS180 7 Series FPGAs Data Sheet: Overview, Xilinx, 2017.
[19]. Xilinx, PG116 MicroBlaze Micro Controller System, Xilinx, 2013.

