
Paper ID #38904

Board 382: RHLab RELIA: A Remote Integrated Environment forEmbed-
ded
Computing and RF Communication Systems

Brian Chap, University of Washington

Brian Chap is a Ph.D. student and research assistant of the Remote Hub Lab (RHLab) in the department
of Electrical and Computer Engineering at the University of Washington. Brian’s research spans remote
engineering, computer vision, human-computer interaction, and image processing and sensing.

Marcos Jose Inonan Moran, University of Washington

Marcos Inonan is a PhD student and research assistant in the Remote Hub Lab (RHLab) of the depart-
ment of Electrical and Computer Engineering at the University of Washington in Seattle. His research is
centered on developing remote laboratories with a lens of equitable access to engineering education, and
driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to
his research on remote laboratories, Marcos has expertise in digital communication theory, signal process-
ing, radar technology, and firmware engineering. Additionally, he has extensive experience in teaching
embedded systems and senior design courses.

Zhiyun Zhang, University of Washington

Zhiyun Zhang is an undergraduate research assistant in the Remote Hub Lab at the University of Wash-
ington. He is a graduating senior and an incoming MS student with a focus area on embedded systems
and remote engineering. Zhiyun is the recipient of the outstanding academic excellence award from the
United States President’s education awards program in 2019.

Pablo Orduna, LabsLand
Payman Arabshahi, University of Washington
Dr. Rania Hussein, University of Washington

Dr. Rania Hussein is an Associate Teaching Professor in the Electrical and Computer Engineering de-
partment at the University of Washington, where she also serves as the founder, principal investigator,
and director of the Remote Hub Lab (RHLab). With her research focus on embedded systems, medical
image analysis, digital twinning, and remote engineering, Dr. Hussein is committed to developing inno-
vative solutions that enhance equity and access in engineering education and telehealth practices. Her
work in promoting diversity, equity, and inclusion in higher education led to the successful building and
passing of the religious accommodation law in the State of Washington, which provides alternative exam
testing accommodations for students due to religious observances. Dr. Hussein is the recipient of the
2021 Innovative Program Award from the Electrical and Computer Engineering Department Head Asso-
ciation (ECEDHA), for founding the RHLab, as well as the 2022 IEEE Region 6 Outstanding Engineering
Educator, Mentor, and Facilitator in the Area of STEM Award, recognizing her contributions to advanc-
ing students’ success, mentorship, empowering under-represented communities, and promoting equitable
access to engineering education.

©American Society for Engineering Education, 2023



RHLab RELIA: An Integrated Remote Environment for
Embedded Computing and RF Communication Systems

Abstract

The development of technologies designed for the virtualization of signal and information
processing experimentation has been persistently constrained by cost-associated hardware
limitations, the inability to scale for larger audiences, and the lack of a flexible framework which
supports user-specific interaction. Given recent advances in cloud computing, we introduce an
adaptable, open-source system harnessing field-programmable gate array (FPGA) and
software-defined radio (SDR) platforms to streamline the process of analyzing communication
patterns between various individual transmitter-receiver pairs. A real-time user environment
designed to complement the GNU Radio toolkit is demonstrated with minimal signal interference,
enabling remotely-controlled, real information transfer. User-defined configuration files are
processed through various Firejail-secured runner engines and dynamically visualized with
adjustable feedback and interaction. By integrating novel images into the ADALM-PLUTO
vanilla architecture, improved processed signal resolution was accomplished, with additional
potential for ARM processor or FPGA reprogramming.

The findings of this paper are targeted towards individuals of all communities, including those
with insufficient access to requisite hardware. To remedy such issues, the integrated environment
has been adopted and is currently accessible through LabsLand, a partner in this research, and its
network of affiliated universities and institutions. Individual contributions to the constructed
system are highly distributable by courtesy of the modular nature of the provided framework,
encouraging collaboration and sharing of physical resources. Existing functionalities of
LabsLand, including learning management systems, are anticipated to further contribute towards
the fostering of a complete, visual environment for users, replicating the actual experience of end
users in standard, on-site hardware experimentation without associated localized issues.

Introduction

Numerous lessons learned amidst the COVID-19 crisis have pushed engineers, educators, and
other professionals to rethink lab work approaches post-pandemic era. Offering an equivalent to
hands-on engineering labs virtually presented itself as a particular challenge during the
emergency transition to work-from-home (WFH) and remote learning. This necessitated
innovative strategies to create lab-based solutions efficiently and conveniently for all individuals,
irrespective of geographic location. One such strategy involved the implementation of remote
hardware systems for forming full-fledged remote lab experiences without compromising on



positive aspects of physical hardware experimentation. While the implemented systems may have
appeared temporary in nature, and were often inadequate in scale, construction, and integration,
the potential effectiveness of using such technologies to replicate, and improve, testing and
learning experiences for individuals was noticeable. Such experiences have inspired this work
which seeks to design and distribute a new generation of environments offering an open-access
solution to costly hardware platforms unobtainable to many under-served communities and
institutions with limited resources. This project builds on the success of previously implemented
remotely-accessible FPGA systems by expanding scope and incorporating hardware which
integrates FPGAs and software-defined radios (SDRs), together with new software enablers, for
interdisciplinary projects in scientific and engineering disciplines. The proposed toolkit is
replicable across institutions and provides access to industry-grade hardware for all communities.
While individual institutions may use this open-source toolkit to create a remote lab for their own
purposes, our sustainability plan, in coordination with LabsLand, proposes a scalable solution
allowing users to connect individual contributions together in order to decrease equipment
purchase costs and cultivate further inter-institutional collaboration by sharing both physical
resources and user-generated content.

In this paper, we share our approach in implementing an open-source, integrated remote
environment for software defined radio applications using ADALM-PLUTO. In this system,
individuals using GNU Radio may design a complete flow from one device emitting a particular
signal to another device receiving that signal with a different, separate GNU Radio configured
process. By adopting this technology, individuals will be able to analyze real radio waves without
encountering small-scale device issues.

Related Work

GNU Radio

GNU Radio is a GPL-licensed, Linux-supporting software framework recognized for its low-level
customizability. Signal and information processing units are arranged block-wise in C++, with
each block corresponding to various sources/sinks (e.g. signal and noise generation, UDP and
USRP I/O, file read/write, oscilloscope visualization, etc.) or operations (e.g.
modulation/demodulation, interpolation, FFT, filtering, delays, gain control, etc.). Transceiver
outputs are graphed for ease-of-use, although the process of tuning such outputs is arduous, due
to the irreplicability of precise hardware tx/rx chains [1]. The system defined and discussed in this
paper aims to address this issue via an interactive user environment which enables end users to
tune results in real-time and with sufficient specificity.

Software defined radio (SDR) architectures

Since the release of Universal Software Radio Peripheral (USRP) in 2003 [2], Software Defined
Radio (SDR) has gained significant traction for its versatility in the construction of high-quality
communication prototypes. The ability to manage signal processing through FPGAs and other
programmable devices, and the subsequent ability ”to turn hardware problems into software
problems” [3] is a feature which has ensured continual growth in the field, from both developers
and end users alike.



ADALM-PLUTO, or PlutoSDR, (as visualized in Figure 1) is one instance of an SDR module
developed by Analog Devices, Inc. to help individuals self-learn wireless communication,
software-defined radio (SDR), and radio frequency (RF) [4]. This module was selected for the
design due to its reliability [5], cost-effectiveness, USB connectivity, high signal-to-noise (SNR)
ratio, and full-duplex architecture. Additionally, the ADALM-PLUTO supports a wide range of
tools (e.g. Matlab and GNU Radio). Its 12-bit ADC (analog-to-digital converter) and DAC
(digital-to-analog converter) provide sufficient signal resolution for most experimentation
expected for the design. A Raspberry Pi may be incorporated to control ADALM-PLUTO over
high-speed data transfer.

Figure 1: Simplified schematic of the internal structure of an ADALM-PLUTO module

Integrated Remote Environments

Previous publications have attempted to integrate SDR architectures into environments which
enable remote hardware access. Xu et al. propose a communications-oriented environment
requiring prior allocation of resources through a reservation system (reducing real-time
applicability and scalability) and MATLAB. As noted by the authors, if an allocated resource
were to behave unresponsively, a user must request a re-allocation of the previously assigned
resources [6]. We instead propose a design which enables users to process tasks on any of a wide
range of available devices and handles such failures through automatic time-outs, improving
scalability and efficiency.

Mikroyannidis et al.’s FORGE design incorporates open-source GNU Radio, rather than
MATLAB, as a framework [7]; however, they introduce virtual machines to run SDR, raising
potential questions relating to scalability and security, and require a calendar-based system for the
allocation of resources. Somashekar et al. similarly use GNU Radio, but on a more limited scope
[8]. Somanaidu et al. also suggest an integrated SDR environment without a custom interface for
analyzing frequency modulation (FM) signals using the USRP 2901 platform [9], a solution
which does not consider scalability and is relatively less cost-effective than our suggested
platform.



Methods

Hardware

To enable the delivery of higher resolution processed signals (rather than raw data, which is
limited by transmission rate) to hosts, as well as permit reprogramming of the ARM processor
and FPGA, customized Buildroot-based images were developed. BR2 EXTERNAL was selected
for this purpose, as the manufacturer buildroot system is not actively maintained [10]. The
ADALM-PLUTO firmware was also modified to further expand the existing frequency range,
with new frequencies ranging from 70 MHz to 6 GHz. To address prior issues of scalability, as
shown in Figure 2, all ADALM-PLUTOs are connected to a router via Ethernet, ensuring
individual device access by IP address (in lieu of USB cable). This greatly reduces wiring
between Raspberry Pis and ADALM-PLUTOs and expands the spatial scope at which Raspberry
Pis and ADALM-PLUTOs may exchange information (providing the added benefit of improved
long-term maintenance and reduced signal interference by selective placement).

Figure 2: Dual ADALM-PLUTO setup for transmitting and receiving signals

Software

The software is composed of a central server handling the user interface (UI), scheduling, and
data exchange, with authentication handled externally by weblablib [11]. A properly credentialed
user may add a pair of receiver and transmitter GNU radio configuration (GRC) files to a Redis
memory database (ideal for scaling and streaming large quantities of data), observe file progress
(i.e. whether a file is queued, being processed, completed, etc.), or delete a pair of files when
applicable. When a receiver (dubbed the “leading device”) is available, the scheduler identifies a
receiver GRC file sent by the user based on priority and assigns it to the device. When a
transmitter (dubbed the “lagging” device) is available, the scheduler assigns a configuration to it if
and only if the leading device has either finished processing the associated receiver file or is
actively processing the file. At assignment time, a GRC file is loaded onto a corresponding
Raspberry Pi and QT components embedded within each file’s flowgraph are converted into
individually-designed blocks before compilation (courtesy of GNU Radio Companion Compiler,
or GRCC). Firejail sandboxing is utilized to prevent the execution of malicious contents, or



contents which attempt to access restricted space. A thread responsible for checking file progress
interrupts the process if a user requests file deletion or if execution is exceedingly
time-exhaustive, ensuring optimal allocation of resources.

Figure 3: High-level software implementation schematic

Results

Hardware

A highly modular system comprised of multiple separate components (each consisting of a
Raspberry Pi 4 Model B and ADALM-PLUTO) and a centralized server was developed. SDR
libraries provided by the GNU Radio package enable the controlled timing of data acquisition and
transmission for each ADALM-PLUTO through HTTP and web sockets. Specifications for the
Raspberry Pi and ADALM-PLUTO are included in Table 1 of this paper.

Software

Interactivity, and the ability of an end user to adjust features dynamically, are crucial towards
realizing a full environment for individuals utilizing the system. Users may control parameters in
real-time (e.g. amplitude, frequency, power, sampling rate, offset) and customize the handling of
incoming data (e.g. arrangement, zoom, pausing, averaging, noise) on a graphical user interface
(GUI) associated with the GNU Radio signal processing framework. The GUI is flexible in
incorporation and may be integrated into additional SDR hardware devices besides
ADALM-PLUTO, as well as any browser.

The link to the associated GitLab repository for this paper is here:
https://gitlab.com/relia-project/.



Table 1: Raspberry Pi 4 & ADALM-PLUTO specifications

Specification Description
Connectivity USB 2.0
Maximum data rate 480 Mbps
Bandwidth range 200KHz - 20 MHz
Number of channels 2 (1 Tx - 1 Rx)
Type of Antenna JCG401 - omnidirectional
Processor resolution 64-bits
Operative System Linux
Programming Language Python
GRC version 3.10

Discussion

Signal Interference

Signal interference among multiple ADALM-PLUTO modules was minimized through isolation
in nickel and copper sheets, acting as a form of a Faraday cage. Packet Reception Ratio (PRR) for
the transmission of 100K sequential ASCII characters under binary phase-shift keying (BPSK)
modulation was measured and determined to be approximately 99% at distances of both 10
centimeters and 1 meter, implying minimal signal interference [12] [13].

Graphical User Interface

Our UI and GRC (GNU Radio Companion) are both visual interfaces for GNU Radio projects;
both take user input from a YAML file containing all parameters and use Python libraries to read
configuration files, as well as GNU Radio libraries to canalize and process the streaming data.
Differences lie in the visualization framework; while our UI is based on Google Charts Gallery
for creating independent interactive data in web browsers, GRC is a graphical interface for GNU
Radio, which is a software-defined radio (SDR) toolkit.

Examples of tools available to users on the GUI are shown in Figure 4. A comparison of
multichannel data from different domains: time, frequency, and scatter (constellation), is plotted.
Both provide the user the same functionalities (pause, on/off, autoscale, grid on/off, etc.).
However, the design of the system’s independent windows allow users to monitor and control the
streaming data seamlessly, as all controls from a plot are inside every window. It should be noted
that, in contrast to GRC, multiple tool windows are available to a given user at a single time,
allowing an individual to analyze multiple features of submitted data simultaneously.

As previously noted in the Related Work section of this paper, if a resource were to behave
unresponsively, the system scheduler would purge the task on the resource, providing an error
message for user guidance (alongside additional messages if a GRC file were to fail at
compile-time, runtime, etc.) and enabling re-submission to an alternate resource.



(a) Three-channel time sink I/Q data - GRC
(b) Three-channel time sink I/Q data

- Our system

(c) Two-channel frequency sink I/Q data - GRC
(d) Two-channel frequency sink I/Q

data - Our system

(e) Two-channel constellation sink I/Q Data - GRC
(f) Two-channel constellation sink

I/Q Data - Our system

Figure 4: GRC (left) vs. Our system (right) GUI comparison

Digital Design Extensions

The system may be applied towards digital design (in addition to communication and signal
processing) by harnessing remote access of the FPGA or ARM cores which control a SDR device
(e.g. ADALM-PLUTO). Initial configuration tests on ADALM-PLUTO by BR2 EXTERNAL
suggest that reprogramming of the Zynq platform for this end purpose is feasible.



Conclusion

This paper discusses the construction and implementation of a fully-integrated environment for
the remote analysis of signal patterns. Through the incorporation of flexible and scalable features,
our real-time system is demonstrated to be practical for larger audiences needing to replicate
in-person hardware experimentation virtually. The environment achieves improved signal
resolution and is resistant towards external interference, ensuring necessary robustness for
real-life use.

The system outlined in this paper is presently available via LabsLand, a partner in this research.
The remote laboratories at our research group have been used, through the
LabsLand1 network[14], by 3,700 students from 16 countries over more than 100,000 past
laboratory sessions. Learning management systems (e.g. Canvas, Moodle, Sakai, etc.) are
integrated and expected to further encourage the use of our system by individuals globally.

Acknowledgements

This work was supported by the National Science Foundation’s Division Of Undergraduate
Education under Grant 2141798.

References

[1] Danilo Valerio. Open source software-defined radio: A survey on gnuradio and its applications. In ftw.
Technical Report, 2008.

[2] Matt Ettus and Brian Bloom. Universal software radio peripheral (usrp). In Proceedings of the 4th Workshop on
Software Radio, pages 1–8. IEEE, 2003.

[3] Eric Blossom. Gnu radio: Tools for exploring the radio frequency spectrum. In Linux Journal, 2004.

[4] Analog Devices Inc. Adalm-pluto: A wideband transceiver for software defined radio, 2018. URL
https://wiki.analog.com/university/tools/pluto.

[5] Yonghan Kwon, Mingyu Park, and Jeongyeup Paek. A measurement study of adalm-pluto software defined
radio with ieee 802.15. 4. In 2022 13th International Conference on Information and Communication
Technology Convergence (ICTC), pages 865–867. IEEE, 2022.

[6] Zhengguang Xu, Wan Chen, Daiming Qu, Xiaojun Hei, and Wei Li. Developing a massive open online lab
course for learning principles of communications. In TALE, pages 586–590. IEEE, 2020.

[7] Alexander Mikroyannidis, Diarmuid Collins, Christos Tranoris, Spyros Denazis, Daan Pareit, Jono
Vanhie-Van Gerwen, Ingrid Moerman, Guillaume Jourjon, Olivier Fourmaux, John Domingue, and Johann M.
Marquez-Barja. Forge: An elearning framework for remote laboratory experimentation on fire testbed
infrastructure. In hal-01656701f, pages 521–559, 2017.

[8] Manjunath Somashekar, Preethi Biradar, Kalyan Ram Bhimavaram, Panchaksharayya S. Hiremath, and S. Arun
Kumar. Remote labs for communications. In Online Engineering and Society 4.0: Proceedings of the 18th
International Conference on Remote Engineering and Virtual Instrumentation, pages 47–54. Springer, 2021.

1https://labsland.com



[9] Utlapalli Somanaidu, Nagarjuna Telagam, Nehru Kandasamy, and Menakadevi Nanjundan. Usrp 2901 based
fm transceiver with large file capabilities in virtual and remote laboratory. In International Journal of Online
Engineering, pages 193–200. iJOE, 2018.

[10] Gwenhael Goavec-Merou, Pierre-Yves Bourgeois, and Jean-Michel Friedt. Embedded gnu radio running on
zynq/plutosdr. In Proceedings of the GNU Radio Conference, 2021.

[11] Pablo Orduña, Jaime Irurzun, Luis Rodriguez-Gil, Javier Garcia-Zubia, Fabricio Gazzola, and Diego López-de
Ipiña. Adding new features to new and existing remote experiments through their integration in weblab-deusto.
In International Journal of Online Engineering, pages 33–39. iJOE, 2011.

[12] Marcos Inonan, Brian Chap, Pablo Ordña, Rania Hussein, and Payman Arabshahi. Rhlab scalable software
defined radio (sdr) remote laboratory. In 20th Annual International Conference on Remote Engineering and
Virtual Instrumentation (REV), 2023.

[13] Rania Hussein, Brian Chap, Marcos Inonan, Matt Guo, Francisco Luquin Monroy, Riley Maloney, Stefhany
Alves, and Sai Jayanth Kalisi. Remote hub lab – rhl: Broadly accessible technologies for education and
telehealth. In 20th Annual International Conference on Remote Engineering and Virtual Instrumentation
(REV), 2023.

[14] Pablo Orduña, Luis Rodriguez-Gil, Javier Garcia-Zubia, Ignacio Angulo, Unai Hernandez-Jayo, and Esteban
Azcuenaga. Increasing the value of remote laboratory federations through an open sharing platform: Labsland.
In Online Engineering & Internet of Things, pages 859–873. Springer, 2018.


