
Paper ID #26180

Board 43: Designing Boosters and Recognition to Promote a Growth Mindset
in Programming Activities

Prof. Stephen H Edwards, Virginia Tech

Stephen H. Edwards is a Professor and the Associate Department Head for Undergraduate Studies in the
Department of Computer Science at Virginia Tech, where he has been teaching since 1996. He received
his B.S. in electrical engineering from Caltech, and M.S. and Ph.D. degrees in computer and informa-
tion science from The Ohio State University. His research interests include computer science education,
software testing, software engineering, and programming languages. He is the project lead for Web-CAT,
the most widely used open-source automated grading system in the world. Web-CAT is known for al-
lowing instructors to grade students based on how well they test their own code. In addition, his research
group has produced a number of other open-source tools used in classrooms at many other institutions.
Currently, he is researching innovative for giving feedback to students as they work on assignments to
provide a more welcoming experience for students, recognizing the effort they put in and the accomplish-
ments they make as they work on solutions, rather than simply looking at whether the student has finished
what is required. The goals of his research are to strengthen growth mindset beliefs while encouraging
deliberate practice, self-checking, and skill improvement as students work.

Mr. Zhiyi Li, Virginia Tech/Department of Computer Science

I am a Ph.D. graduate student in Department of Computer Science in Virginia Tech since Fall, 2013. My
research interests is computer science education. Before that, I worked as a research staff in School of
Medicine in University of Virginia from 2007 to 2013. I hold a Master degree in Computer Science in
Virginia Tech. Master degree in Computer Science and Chemistry in Georgia State University in Atlanta,
GA. I obtained my Bachelor degree of Engineering in East China University of Science and Technology
in Shanghai, China.

c©American Society for Engineering Education, 2019

Designing Boosters and Recognition to Promote a Growth
Mindset in Programming Activities

April 29, 2019

Abstract

When one first learns to program, feedback on early assignments can easily induce a fixed
mindset—where one believes programming is a fixed ability you either have or you don’t.
However, possessing a fixed mindset perspective has negative consequences for learning. The
alternative is to foster a growth mindset, where one believes ability can be improved through
practice, effort, and hard work. However, automated grading tools used on programming
assignments currently focus on objectively assessing functional correctness and other
performance-oriented features of students’ programs. Unfortunately this encourages students to
adopt performance-oriented goals, which are characteristic of a fixed mindset. By building on
existing measures of “productive effort”, we design a new kind of feedback approach that focuses
on recognizing, encouraging, and rewarding diligence and productive actions based on those
indicators. The goal is to add such elements to existing feedback in an emotionally supportive
way that recognizes the efforts of a student expending and valuing these practices. The feedback
design presented here consists of two main components: textual/verbal feedback that recognizes
productive effort students spend on a problem, or that encourages students to be strategic about
expending effort to improve their own skills. The point of this feedback is to convey to the student
that constructive practice to improve one’s skills is valued and recognized, independently of the
final product they are creating. In addition to the textual feedback, the feedback also includes
boosters, or rewards in the form of perks that enhance parts of the student work experience. By
taking inspiration from video game psychology and other sources, we designed a booster-based
reward system that recognizes hard work without tacitly promoting performance-oriented
(score-oriented) motivation. In addition to describing the design of the reward and recognition
feedback strategy and the variable ratio reinforcement schedule on which the strategy is based, we
also present a post hoc analysis of the results obtained when applying this strategy to existing
student submission data. This allows investigating what feedback or boosters would have been
earned by individual students in a real-life situation to validate the feedback design before live
deployment.

Keywords

Rewards, incentives, motivation, intrinsic motivation, programming assignments, grading,
automated grading, feedback.

Introduction

Automatic programming assessment systems such as Web-CAT5 6 7 are widely used in courses
where students learn to program. Providing rapid feedback on solutions gives students a more
concrete understanding of whether their program works, and allows for a larger number of
corrections and re-submissions, leading to greater opportunities for learning8. The feedback
produced by such automated graders is often performance-based, however, focusing on evaluating
program correctness and other measures of solution quality, without regard for the amount of
students’ effort in trying to solve the problem. Unfortunately, this feedback does nothing to
encourage a growth mindset, and may instead implicitly reinforce a fixed mindset.

Students with a fixed mindset believe their intelligence is a predetermined asset that they are
“born with”4. In the context of programming, this is sometimes known as the “geek gene”, which
is hypothesized as: that programming ability is an innate talent, rather than a learned skill14 12.
However, students with such beliefs are more likely to avoid academic challenges, perform more
poorly, and give up sooner than students with a growth mindset. Students with a growth mindset
believe that they can increase their abilities through hard work and effort4. Individuals with a
fixed mindset also focus more on performance-oriented goals such as grades or assignment
scores, because they equate academic achievement with an indication of their intelligence or
ability. This is in contrast to growth mindset individuals, who are more likely to adopt learning
goals that challenge them to increase their own abilities.

This paper reports on research to augment existing automated grading feedback so that it
encourages and reinforces a growth mindset view by explicitly recognizing the productive effort
that students put into their solutions as they develop them. This recognition is an add-on in
addition to the objective performance-based scoring that an automated grading system already
performs. However, rather than using marks (or points) to direct student attention, the aim is to
foster growth mindset beliefs through non-points-based feedback, in university and college level
introductory programming courses CS1 or CS2. This work may be extended to apply AP
programming courses in K-12 education in future.

The feedback design presented here consists of two main components: textual/verbal feedback
that recognizes productive effort students spend on a problem, or that encourages students to be
strategic about expending effort to improve their own skills. The point of this feedback is to
convey to the student that constructive practice to improve one’s skills is valued and recognized,
independently of the final product they are creating. In addition to the textual feedback, the
feedback also includes boosters, or rewards in the form of perks that enhance parts of the
students’ work experience. By taking inspiration from video game psychology and other sources,
we designed a booster-based reward system that recognizes hard work without tacitly promoting

performance-oriented (score-oriented) motivation. In addition to describing the design of the
reward and recognition feedback strategy and the variable ratio reinforcement schedule on which
the strategy is based, we also present a post hoc analysis of the results obtained when applying
this strategy to existing student submission data. This allows us to investigate what feedback or
boosters would have been earned by individual students in a real-life situation to validate the
feedback design before live deployment.

Related Work

Rewards, Operant Conditioning, and Intrinsic Motivation

Applying rewards to increase student motivation has been widely researched in areas including
psychology, education, and video games1 2 17. In 1940’s, Skinner formed the theory of operant
conditioning to explain how a behavior can be shaped by its resulting consequences15. By
studying the behavior of animals in experiments, Skinner formulated the underlying ideas of
positive and negative reinforcement through rewards and punishments. Operant conditioning
theory is often applied in students’ learning process in classroom. For example, a teacher can
encourage students to answer questions by positive reinforcements such as praise if they answer
correctly. Even though operant conditioning has been applied in learning process, it is limited
because it does not include other factors such as inherited and cognition factors and cannot
explain the human learning process completely. Recent research work studies the role of
cognition in classical and operant learning10.

While operant conditioning has been shown to affect behavior in some circumstances, in the
classroom teachers are also concerned with motivation. Human motivation often is classified into
two categories: intrinsic motivation and extrinsic motivation. When people engage in an activity,
intrinsic motivation is internal and based on the individual’s own interests. For example, a student
who engages in programming because he really likes the activity is intrinsically motivated.
Extrinsic motivation, instead, is caused externally by a reward or by avoidance of negative effects
such as punishments1. For example, a student who attends a programming contest because there
is an opportunity to win a scholarship is extrinsically motivated.

Extrinsic rewards such as money, grades, and praise definitely can influence individual’s intrinsic
motivation. Rewards can be categorized as intangible (e.g., verbal praise, social approval) or
tangible (e.g., money, grade). Rewards can also be categorized based on expectancies: expected
rewards, unexpected rewards, and no rewards. There are controversial opinions about the effect of
extrinsic rewards on intrinsic motivation in the education research community. Judy Cameron et
al.1 review the research about the effect of reinforcement/rewards on intrinsic motivation. Their
meta-analysis of 96 studies indicates overall, rewards do not decrease intrinsic motivation.
However, Deci et al.3 claimed rewards undermine a student’s intrinsic motivation instead.
Dweck4 has stated that changing a student’s mindset requires intrinsic motivation, and therefore
extrinsic rewards may not be the best approach. In this work, we present a design that attempts to
balance these differing concerns by avoiding mindset-oriented feedback aimed at performance
goals or points-based/grade-based rewards. Instead, we focus on reinforcing the idea that course

staff value productive effort and practice as students work on solutions, and that students should
also value this effort because it leads to improvement.

Rewards in Video Games

Reward strategies are widely used in video games. David explains a number of game reward
systems11. He introduces a key reinforcement schedule used in many video games: variable-ratio
reinforcement. The idea of a variable-ratio reinforcement schedule comes originally from
Skinner’s pigeon experiments in his operant conditioning theory work, where pigeons were more
likely to press a lever when they received a food reward only 50% of the time, compared to when
they receive the reward every time. A variable-ratio reinforcement schedule is applied in many
video game designs because it produces a better response rate than fixed schedules.

Wang et al.19 gave an overview about how reward systems give positive experiences to players in
various video games. They recommend that players can have fun with both rewards and reward
mechanisms. Rewards and reward mechanisms in video games foster players’ intrinsic motivation
with sense of fun and pleasure. Some games may also give extrinsic rewards such as virtual
rewards. Wang et al.19 also describe reward formats in video games. One interesting reward form
is feedback messages used as an instant reward. These instant messages can take many forms,
including textual/verbal praise, pictures, sound effects, and video clips. Another interesting
reward format is story-based animations and pictures that further the plot. This reward is often
applied when important events happen such as beating major enemies, advancing to new levels,
and finishing the game. In video games, virtual rewards are often applied to enhance players’
motivation. Some virtual rewards aim to power up players’ characters such as experience points,
in-game money, or special character equipment. Others use story content rewards such as
cut-scenes or audio logs. Lessons from video games are important, since the industry is based on
encouraging players to return over and over to a game to continue playing, and on developing the
player’s intrinsic motivation to foster a long-lasting play experience.

Sylvester illustrated the relationship of dopamine with pleasure and motivation in video games18.
Dopamine is a brain chemical generated from the brain’s reward center based on outside stimuli
such as a bit of tasty food, winning money or a look at an attractive mate. In theory of motivation,
dopamine is pleasure’s messenger. Dopamine is a marker of motivation since motivation is to
pursue for pleasure. In video games, both real rewards and virtual rewards are all dopamine
driven rewards. An interesting thing is why virtual rewards work because players cannot
distinguish virtual rewards from real rewards since the human brain evolved in an environment
that lacked modern games18.

Progress Indicators

The work described here depends critically on being able to measure a student’s productive effort.
To this end, we build on existing research that has produced a series of 15 indicators that are
designed to be applied incrementally to a series of program submissions by a student. Together,

these indicators identify when students are investing productive effort on their solution, as it is
being developed9.

These indicators use the same strategy described by O’Rourke et al., who created a math
education game to teach children fraction concepts while also attempting to encourage adoption
of a growth mindset16. In order to measure effort, they developed a group of simple indicators
that individual might suggest a student was productively working on a solution, and developed a
(textual) feedback scheme that used the indicators in combination. These fifteen indicators
compare features of a program in the current submission with the previous four submissions. For
each indicator, only if parameters show an increasing (positive) trend in the current submission,
that indicator is treated as positive (triggered). These fifteen indicators include seven general
purpose indicators and eight software testing indicators. Seven general purpose indicators are
about various perspectives when students construct solutions for their assignments. Eight
software testing indicators concentrate on student’s testing effort when they are writing better
software tests. Among 15 indicators some individual indicators may highly related with other
indicators. We applied Pearson Correlation Coefficient (PCC) function in R packages to find
highly related indicators, with a historical CS2 programming dataset. 3 Redundant indicators
were removed and left 12 indicators were used for later research work 13. All 12 are then
combined using a simple rule, where a student is considered as productively working on their
solution if at least K indicators are simultaneously triggered. Here, we adopt this existing work
and use a threshold of K = 4 to determine if a student is working productively, with the aim of
giving students instant feedback to encourage adoption of a growth mindset. The threshold of K is
determined by statistic analysis of a historical CS2 programming dataset7.

Submission Energy

While not directly related to the concept of rewards or mindset adoption, one additional piece of
related work is relevant here: the idea of assignment submission energy. This concept was
inspired by techniques from commercially successful mobile games. These games use structural
features that limit the player’s play time, and encourage more frequent but shorter play sessions.
This usually takes the form of a limited resource that is regenerated over time (lives, energy, gold,
fuel, ammunition, etc.), where the resource is required for some aspect of play, and the player
then has the responsibility for managing the resource. The idea of a limited resource that
regenerates over time but limits the player’s actions shapes the way players manage their play
time: it deters “binge” play sessions and strongly promotes the use of a much larger number of
small, periodic play sessions spread over a longer period of time.

We already use a similar mechanism that we call submission energy aimed at achieving the same
goals. For each assignment, each student has an energy bar that holds up to 3 units of submission
energy. Each time the student submits to the automated grading system, one unit of energy is
used. The bar will then regenerate energy at a rate of 1 unit per hour until it is full again. If a
student’s energy runs out, the student cannot submit again until another unit of energy is
regenerated. To ensure that lack of energy will not prevent a student from submitting their final
work, students are still allowed to submit without energy during the last hour before an
assignment deadline.

This energy system is intended to exert a similar effect on how students manage their time in
completing assignments. The goal is to shift students to using a larger number of shorter work
sessions, spread over a longer period of time. While we are still evaluating the effectiveness of
this approach, it also presents some opportunities for certain kinds of rewards or perks given to
recognize student achievements in terms of effort expended.

Design

To reinforce growth-mindset beliefs, we have designed a feedback strategy that can be layered on
top of an existing automated grading system’s existing feedback to augment it with an assessment
of productive effort invested by students. The mindset-oriented feedback that will be delivered
takes two forms: recognition and encouragement messages that reinforce the value of improving
skills through hard work, and boosters (rewards) that provide more tangible process-oriented
perks to students.

The design is based on the following principles:

• Both additional forms of feedback must be encountered frequently enough by students so
that students see that their hard work is validated and recognized, even if they do not win
boosters.

• Boosters in particular cannot be so rare they appear unattainable.

• Alternatively, feedback frequency cannot be so high that students become over-saturated,
which will devalue the feedback and/or boosters.

• The reinforcement schedule chosen should promote sustained (rather than decaying)
responses from students to the best extent possible.

Recognition and Encouragement

The first component of the feedback design takes the form of textual feedback that is intended to
convey praise, social approval, encouragement, and reinforcement of growth-mindset beliefs. The
primary purpose of this textual feedback is to convey to the student that productive effort is
valued and helps improve one’s coding skills.

Fortunately, Edwards et al.9 suggest a direct way to generate such feedback from any individual
indicator from the set of 12 used for assessing student effort. Each indicator captures a specific
kind of change to the student’s solution: adding code, adding software tests, reducing logic
complexity, reducing the average length of methods, correcting formatting errors, and so on.
Every indicator can thus be used to generate a feedback statement.

If an individual indicator is triggered on a student submission, it can be used to generate a
recognition statement that is phrased to recognize the positive achievement a student has made
through their efforts. Examples include:

You’ve clearly worked at extending your solution. As you write more code, your skills
improve.

Your effort at increasing the thoroughness of your testing has paid off, which will help
you find problems via self-checking.

By working hard, you have improved your solution to meet more of the assignment’s
expectations.

Similarly, if an individual indicator is not triggered on a student submission, it instead can be used
to generate an encouragement statement that is phrased to encourage the student to work more
productively. Examples include:

Consider shortening your methods, which improves your skills at writing
understandable code.

Adding more software tests is a good way to self-check your own work and helps to
build your code understanding skills.

To strengthen your skills, you can work on removing formatting problems from your
code.

In principle, it is possible to generate feedback from every indicator on every submission,
producing either a recognition message or an encouragement message for each one. Using a small
collection of similarly phrased feedback statements for each indicator can add some variety.
However, this approach would be overwhelming to students and would quickly lead to such
feedback messages being ignored because they are so common.

Instead, our design makes two choices to reduce feedback to a level intended to meet our design
principles. First, we only give feedback on one indicator per submission. Currently, we pick that
indicator at random, alternating between a randomly selected indicator that was not triggered (an
encouragement message) and then a randomly selected indicator that was triggered (a recognition
message).

Second, we employ a variable-interval schedule of reinforcement. After one recognition or
encouragement message is generated, we randomly pick a time between 30–90 minutes, and do
not generate another until that time has elapsed. By experimentally validating against existing
student data (see next section), we have found that the median time between submissions for
students is 9 minutes, with approximately three quarters of all submissions being made within a
half hour of the previous submission. Choosing this time range ensures that students are likely to
receive either an encouragement or recognition message in each distinct work session, and will
see a couple of messages in a long work session, but they typically will not see messages on many
successive submissions on the same assignment.

Because these feedback messages are intended to reinforce growth-mindset ideas and are not

intended as rewards that students work towards, a variable-interval schedule is the best match for
ensuring that all students see some feedback, but no individual students get over-saturated by too
many messages. Rarity makes the messages stand out and appear more visible, since they only
occasionally appear.

Boosters

Boosters are intended as tangible rewards for achievements, but are substantively different than
marks or points used for grading because the goal is not to accidentally reinforce
performance-based motivation (which is more commonly associated with fixed-mindset beliefs).
Boosters are intended to be won only on submissions where students have achieved an
appropriate level of productive effort—that is, where at least K = 4 of the 12 indicators have
triggered on the same submission. While the individual indicators themselves are “noisy” and do
not always indicate productive effort, using them in combination decreases (or “averages out”)
noise and makes it much more difficult for students to “game the system” by trying to focus on
maximizing individual indicators.

We have grouped the boosters we have devised into two tiers on increasing value:

• Tier 1 (50% of boosters):

– Energy +1: One unit of submission energy instantly added to energy bar

• Tier 2 (25% of boosters):

– Energy refill: submission energy bar completely refilled

• Tier 3 (15% of boosters):

– No waiting: Jump to the front of the line one time when visiting instructor or teaching
assistant office hours

– Supercharge: Energy regenerates at 2X the normal rate for 24 hours

• Tier 4 (5% of boosters):

– Expert bug finder: An instructor will find/explain a single bug in the student’s code for
the current assignment (the student can pick which bug/problem/issue they wish to
receive help on)

– Full view: see all of the diagnostics about program behavior generated from
instructor-written reference tests on the current submission (normally hidden for our
students, to prevent them from using the system to do their own testing)

– Late pass: receive a penalty-free one-day extension on the current assignment (limit
one per assignment)

– Energy-free 24: unlimited submissions with no energy consumption for 24 hours

– Quiz drop: Drop the lowest quiz grade (limit 1 per semester)

– Quiz drop: Drop the lowest lab grade (limit 1 per semester)

Many of the boosters shown here add small modifications to the submission energy rules to allow
students greater access to submissions. As in many video games, these allow the student to
immediately see benefits that are directly observable in their work actions, but which affect their
work process rather than their assignment score. In other classroom situations, different boosters
might be chosen that better match the instructional needs and procedural methods used in that
situation.

In addition to the range of boosters available and their relative likelihoods, this feedback design
uses a variable-ratio reinforcement schedule. That is, on each submission that triggers the
minimum number of indicators, there is a 50% chance that a student will actually win a booster.
In cases where no booster is won, we fall back to the recognition/encouragement message
mechanism.

Evaluating the Reward Strategy

To evaluate the feasibility of this feedback design, we applied it to a historical dataset of CS2
student programs including 20,364 submission attempts by 257 students over two semesters. This
included 984 finished programs produced by the students across four assignments each
semester.

In this population, the median number of submissions by each student was 16 per assignment
(mean = 20.7, s.d. = 16.6). Of these, a median of 5 submissions triggered at least K = 4
indicators (mean = 5.37, s.d. = 3.93). These factors were significant influences on the 50% rate
chosen for the variable-ratio schedule for boosters. With an average of 5 submissions per
assignment demonstrating productive effort, we should expect 2-3 submissions to actually win
boosters, with 1-2 being tier 1 boosters, and one being from a higher tier.

To confirm the feedback rates are consistent with our design principles we applied this feedback
design to the historic dataset. The results are summarized in Figure 1. With the feedback design
presented here, only 38% of students failed to receive any booster across all their submissions on
an assignment. Instead textual recognition or encouragement feedback according to the
variable-interval schedule were sent to these students. This ensures that even students not earning
boosters still periodically see reinforcing messages about working productively to improve their
skills (but not too frequently). This confirms the design achieves our first design principle,
ensuring the feedback was visible to students.

Figure 1 reflects the proportion of students who won different numbers of boosters across all of
their submissions on a single assignment. As mentioned, 38% of students earned no boosters,
with 41% of students win a single tier1 booster(first major) across all of their submissions, and
24% earning tier 2 boosters(second major). The stacked bars in Figure 1 indicate what proportion
of students earned a booster from each two specific tier. For example, about 24% of students

Figure 1: Simulated rewards by student.

earned one booster over all their submissions on an assignment and that booster turned out to be
from Tier 1, while 4% of students earning a single booster received a Tier 2 booster.

Overall, 38% of students earned 0 boosters, with 63% (major) earning Tier 1 and Tier 2 on their
assignment submissions. Three things are clear from Figure 1. First, boosters are earned often
enough so that students will see Tier 1 boosters regularly, and will at least be aware of peers
earning higher-tier boosters as well. Second, it is clear that the highest-tier boosters are
exceedingly rare. Third, even though some students made many fewer submissions and some
students made many more, the bulk of the students only received a small handful of boosters. The
structure of the indicators and the use of a minimum number of simultaneously triggered
indicators significantly reduces the relationship between the total number of submissions and the
subset that qualify for a booster so the relationship is no longer linear. While the small number of
students who earned a large number of boosters tended to submit an excessive number of times,
their rate of earnings was much lower than typical.

Conclusions and Future Work

In this paper, we present a novel strategy to augment traditional automated feedback with new
mechanisms intended to promote growth mindset beliefs by recognizing and encouraging
productive effort as students work instead of relying solely on points-based grading for
motivation. By taking inspiration from reward mechanisms intended to increase intrinsic
motivation, including those found in modern video games and mobile games, we provide a design
that combines both textual feedback and boosters (or more tangible rewards). The textual

feedback is intended to reinforce the belief that productive effort helps us improve our skills at
coding, and aims to convey that course staff (and the grading system) value this effort
independently of the final product. At the same time, by careful use of intermittent schedule of
reinforcement, we can balance the need to ensure feedback occurs sufficiently often that students
see it, but not so often that it becomes commonplace and devalued.

In addition to textual feedback that reiterates the value of practice for skill improvement, we also
include boosters in our design. These are earned more rarely by students. To avoid any
preoccupation with performance-oriented (or grade-oriented) extrinsic motivation that may be
associated with fixed-mindset beliefs, we instead selected boosters that offer observable “perks”
to the student’s workflow and process of solution creation without directly affecting the program
grade. Indeed, even selecting the term “booster” is an intentional choice aimed at avoiding the
connotations of “rewards” or “prizes”, and instead conveying the idea that these are benefits that
“boost” the way a student operates in completing their assignments rather than trophies. By
tiering boosters, we can make students aware of more desirable (and hence, more motivating)
boosters, even if those boosters may be relatively rare in practice. Instead, by ensuring students
earn a minimum level of lower tier boosters when they make useful progress, we can ensure they
are aware of the mechanism and experience it directly, but keep the more desirable boosters far
enough out of reach that students are encouraged to consider their development actions to
increase their chances of earning.

By applying the feedback design described in this paper to historical data in a post-hoc study, we
have shown that students do earn boosters at the designed rates. This is important to meet our
design objectives laid out in an earlier section. The use of a variable-ratio reinforcement schedule
has been shown to provide effective behavioral incentives for sustained change, and is the best fit
for the booster model presented here.

The next steps for this work are to deploy the feedback model in a live classroom to evaluate its
impact on student behaviors and on student mindset beliefs. Before going “live” with such a
scheme, it is important to verify that its design achieves the objectives that were intended, or any
live study would be suspect. Here, we have provided the description of the design and the
evidence that it operates as intended in order to lay the groundwork for a live evaluation. While
some educators may imagine different boosters they believe are more effective, or may be unable
to use some boosters described in this design because of the particulars of the automated grading
system used, we believe that the approach embodied in this design will help provide a basis for
others to create their own alternative reward schemes based on the same underlying
principles.

Acknowledgments

This work is supported in part by the National Science Foundation under grant DUE-1625425.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] Judy Cameron and W. David Pierce. 1994. Reinforcement, Reward, and Intrinsic Motivation: A Meta-Analysis.
Review of Educational Research 64, 3 (1994), 363–423. http://www.jstor.org/stable/1170677

[2] Edward L. Deci, Richard Koestner, and Richard M. Ryan. 1999. A Meta-Analytic Review of Experiments
Examining the Effects of Extrinsic Rewards on Intrinsic Motivation. Psychological Bulletin 125, 6 (1999), 627
– 668. DOI:http://dx.doi.org/10.1037/0033-2909.125.6.627

[3] Edward L. Deci and Richard M. Ryan. 2001. Extrinsic Rewards and Intrinsic Motivation in Education:
Reconsidered Once Again. Review of Educational Research 1 (2001), 1–27.

[4] Carol S. Dweck. 2000. Self-theories: Their role in motivation, personality, and development. Psychology Press.

[5] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating How Well Students Test Their Own
Programs. J. Educ. Resour. Comput. 3, 3, Article 1 (Sept. 2003). DOI:
http://dx.doi.org/10.1145/1029994.1029995

[6] Stephen H. Edwards. 2003. Rethinking Computer Science Education from a Test-first Perspective. In
Companion of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’03). ACM, New York, NY, USA, 148–155. DOI:
http://dx.doi.org/10.1145/949344.949390

[7] Stephen H. Edwards. 2003. Using Test-Driven Development in the Classroom: Providing Students with
Automatic, Concrete Feedback on Performance. Proceedings of the International Conference on Education and
Information Systems: Technologies and Applications, International Institute of Informatics and Systemics, 2003
(2003), 421–426.

[8] Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-and-error to
Reflection-in-action. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’04). ACM, New York, NY, USA, 26–30. DOI:http://dx.doi.org/10.1145/971300.971312

[9] Stephen H. Edwards and Zhiyi Li. 2016. Towards Progress Indicators for Measuring Student Programming
Effort During Solution Development. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research (Koli Calling ’16). ACM, New York, NY, USA, 31–40. DOI:
http://dx.doi.org/10.1145/2999541.2999561

[10] Irving Kirsch, Steven Jay Lynn, Michael Virgorito, and Ralph R. Miller. 2004. The Role of Cognition on
Classical and Operant Conditioning. Journal of Clinical Psychology 60 (2004), 369–392. Issue 4. DOI:
http://dx.doi.org/10.1002/jclp.10251

[11] David L. 2016. Game Reward Systems. Learning Theories (2016).
https://www.learning-theories.com/game-reward-systems.html

[12] Clayton Lewis. 2007. Attitudes and Beliefs About Computer Science Among Students and Faculty. SIGCSE
Bull. 39, 2 (June 2007), 37–41. DOI:http://dx.doi.org/10.1145/1272848.1272880

[13] Zhiyi Li and Stephen H Edwards. 2018. Applying Recent-Performance Factors Analysis to Explore Student
Effort Invested in Programming Assignments. In The 14th Int’l Conf on Frontiers in Education: Computer
Science and Computer Engineering, FECS 2018. Las Vegas, Nevada, USA, 3–10.

[14] Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, and Carol Zander. 2017. Folk Pedagogy and
the Geek Gene: Geekiness Quotient. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 405–410. DOI:
http://dx.doi.org/10.1145/3017680.3017746

[15] Saul Mcleod. 2015. Skinner Operant Conditioning. https://simplypsychology.org/operant-(2015). [Online;
accessed 28-December-2017].

[16] Eleanor O’Rourke, Kyla Haimovitz, Christy Ballweber, Carol Dweck, and Zoran Popović. 2014. Brain Points:
A Growth Mindset Incentive Structure Boosts Persistence in an Educational Game. In Proceedings of the 32Nd
Annual ACM Conference on Human Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA,
3339–3348. DOI:http://dx.doi.org/10.1145/2556288.2557157

[17] W.E. Scott. 1976. The effects of extrinsic rewards on “intrinsic motivation”: A critique. Organizational
Behavior and Human Performance 15, 1 (1976), 117–129. DOI:
http://dx.doi.org/https://doi.org/10.1016/0030-5073(76)90032-5

[18] Tynan Sylvester. 2013. Designing Games: A Guide to Engineering Experiences. O’Relly Media, Inc.

[19] Hao Wang and Chuen-Tsai Sun. 2011. Game Reward Systems: Gaming Experiences and Social Meanings. In
Proceedings of DiGRA 2011 Conference: Think Design Play. http://www.digra.org/dl/db/11310.20247.pdf

