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Work in Progress: Design and Implementation of an Advanced Electric
Drive Laboratory using a Commercial Microcontroller and a

MATLAB Embedded Coder

Abstract

This paper presents a design for an advanced instructional electric drives laboratory using
commercial Texas Instruments (TI) C2000 microcontroller and MATLAB-based Embedded
Coder toolbox. The main objective of this project is to familiarize students with real-time
implementation of advanced electric machine drive concepts such as field-oriented vector control
by programming high-performance industrial microcontrollers. Hands-on experience with
electric drives is also provided through the operation and control of machines. This laboratory
course, designed to follow the advanced lecture course on electric drives, aims to improve
students’ understanding of theory. Experiments, hardware and instruments for the proposed
laboratory course are discussed.

Introduction

In the past, due to the convenience of their torque and speed control, DC machines were used
most widely for adjustable speed applications. However, with the development of vector control,
also known as field-oriented control (FOC), AC machines driven by variable-voltage
variable-frequency (VVVF) inverters have become the norm1,2,3. AC machines, especially
induction machines, are inexpensive and more rugged than their DC counterparts. This shift from
DC to AC machines has continued due to the advancement of power electronics devices as well.
With FOC techniques, an induction machine can be modeled like a separately excited DC
machine through a series of transformations, so that DC machine-like control techniques can be
applied to obtain good transient performance. Recently, efforts have been made to implement
DSP-based electric machine and drive laboratories4,5, but the required software and equipment
have been unaffordable.

While TI provides software solutions to drive various machines via hardware, it is still
challenging for students to understand the complicated interlinking of modules with many
features and functions, typically in C language. However, today’s students are familiar with
writing MATLAB code and developing Simulink models for their courses. Graphical
representation of Simulink programming is easier to learn and more intuitive. Furthermore,
MATLAB has developed Embedded Coder, a toolbox that can translate MATLAB code and
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Figure 1: Functional diagram of the experimental hardware setup.

Simulink models into C and C++ for embedded microcontrollers. In this context, Simulink is
used to design and model complex machine control algorithms and translate them into C code
using the Embedded Coder toolbox.

This paper presents the design and implementation of an advanced electric drive laboratory using
a commercial microcontroller development kit and MATLAB Embedded Coder, including
hardware components, laboratory equipment setup, experiment sessions, and prototype test
results. The laboratory is designed for graduate and advanced undergraduate students with
moderate programming skills. Although it has not yet been offered, we expect 10-15 students in
this course.

Hardware Design

The hardware design for the proposed laboratory focused on cost-effectiveness and reliability, as
well as establishing a setup that is both realistic and safe. The design aims to place all equipment
(i.e., power supplies, inverter, microcontroller, transformers and machine) on the same platform,
so students can perform experimental tasks without the need for any modifications. The complete
system and a functional diagram of the setup appear in Figures 1 and 2, respectively.

1. Microcontroller and Voltage Source Inverter

TI provides real-time control microcontroller units (MCUs) that use a 32-bit 28x-core to provide
advanced digital signal processing in industrial system applications. In this work, an eZdsp
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Figure 2: Experimental hardware setup.

TMS320F28335 microcontroller DSP starter kit (DSK) was selected to perform the experiment
sessions. It features 150 MHz operating speed, on-chip 32-bit floating-point unit, 68 kbytes
on-chip RAM, 512 kbytes on-chip flash memory, 12-bit analog-to-digital converter (ADC) with
16 input channels, enhanced pulse-width modulation (ePWM) channels, RS-232 connector with
line driver, multiple expansion connectors for analog input/output (I/0) pins, and an on-board
JTAG emulation connector. Furthermore, the DSK has an enhanced quadrature encoder (eQEP)
module, intended to acquire position, direction, and speed information from rotating machines for
high-performance motion control applications.

The hardware setup also includes a custom voltage source inverter (VSI) that uses a 48 VDC
supply and 3.3V ePWM digital signals from the microcontroller to generate up to 24 VAC peak
output. The ePWM digital signals drive the six MOSFET devices using an IRS2336 integrated
gate driver. Three high-voltage discharge capacitors are placed before the AC output stage of the
VSI, which maintains solid DC input voltage. Furthermore, the VSI has one voltage sensor for
DC voltage and three current sensors that feed the microcontroller’s ADC channels.

To accommodate the microcontroller and its associated modules (ADC, ePWM, and eQEP), a
custom motherboard powered by a 24 VDC supply was developed. To implement user control
interfaces for speed, run/stop, and rotational direction, it has additional control inputs –
potentiometer, toggle and pushbutton switches, respectively. The bill of materials is listed in
Table 1.



Description Part number Manufacturer Quantity Price($)

Induction machine ACP-M-4IK25A-SU PeeiMoger 1 89.24

Microcontroller eZdsp TMS320F28335 Texas Instruments 1 549.00

Motherboard Custom - 1 199.75
Inverter Custom - 1 117.00
Step-up transformers DP-241-5-24 Signal Transformer 3 34.80

+48 VDC supply SP-320-48 MEAN WELL USA Inc. 1 85.73

+24 VDC supply PLA150F-24 Cosel USA, Inc. 1 65.38

Encoder ENC-A5DI-1024-313-H-G Anaheim Automation 1 64.00
Hex standoffs Generic - 10 4.31
22 AWG wire Generic - 1 10.00
Polycarbonate panel Generic In-house machine shop 1 5.00

Terminal connectors Generic - 20 5.20
Miscellaneous - - - 20.00

Total $1,249.41

Table 1: Bill of materials for one experimental setup. It should be noted that the price could vary
according to the purchasing quantity and time.

2. Induction Machine and Encoder

In this laboratory, a 4-pole AC induction machine (ACP-M-4IK25A-SU, PeeiMoger) was
selected. It comes in a small frame with standard 6-lead configuration and is wired to run on a 3,
60Hz, 230VAC supply. The machine is rated at 25 W at 1625 rpm, and mounted on an aluminum
plate built by the in-house machine shop. Additionally, a differential optical encoder is attached to
the end of the rotor shaft to measure rotational speed, which is powered through the motherboard
connection. The encoder feeds the signals to the microcontroller’s eQEP module, which counts
quadrature pulses and measures time.

3. Step-Up Transformers

The maximum peak output voltage generated using VSI is half of the DC input voltage, which is
24 VAC. Since the machine requires 230 VAC, three single-phase 1:10 transformers are used to
step up the voltage level for each phase. Additionally, the transformers provide galvanic isolation
to the machine.



4. DC Power Supplies

In this laboratory, two AC-DC switching power supplies (48 and 24 VDC) are used to power the
VSI and motherboard. Both power supplies use 1, 60Hz, 100-240VAC input and connect to a
120VAC power socket through a switch, so that power can be cut when needed.

5. Development Tools and Instruments

TI has a software program called Code Composer Studio (CCS) [6], an integrated development
environment (IDE) tool for their processors and controllers. The software includes a suite of
tools, such as optimizing C/C++ compiler, source code editor, project build environment,
debugger, and many other features that are used to develop and debug embedded applications;
however, users are required to develop complex C/C++ code. Alternatively, MATLAB Embedded
Coder – along with support packages for TI microcontrollers – generates C and C++ code from
Simulink models and MATLAB functions and sends it to CCS, where a real-time executable is
generated and downloaded to the target hardware. Figure 3 illustrates the MATLAB TI embedded
software design flow. Furthermore, a Simulink model is shown in Figure 4, and the C code
generated by the Embedded Coder appears in the Appendix.

A computer with pre-installed firmware development packages is provided to each student, as
well as generic industrial instruments like the digital multimeter and oscilloscope.
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Figure 3: MATLAB embedded coder with TI support package software design flow.

6. Safety Aspects

Safety and protection measures will be taken at all times while students are performing
experiments. Motor connections are pre-soldered and completely insulated to avoid
short-circuiting. The hardware setup is covered with a transparent polycarbonate panel to avoid
accidental contact. Fully insulated quick connect crimp terminal connectors are used for all wiring
for added safety. All electrical connections ensure good contact, and no copper is exposed.



Figure 4: V/F closed-loop experiment session implementation in simulink.

Experiments

The proposed advanced electric drives laboratory comprises five experiment sessions, briefly
discussed here. Each session requires students to build a model in MATLAB/Simulink using the
equations provided at the start of the session. Then the code is debugged and deployed to the
target microcontroller using the MATLAB Embedded Coder. Troubleshooting is done as needed.
Students are provided with step-by-step procedures and exercises to meet learning objectives. At
the end of each chapter, students are asked to solve problems using components of the example
model. Each student submits an analysis of the results they obtained from the model and their
measurements for the tasks.

1. Induction Machine Parameter Identification

To apply the vector control algorithm, machine parameters should be identified for setting of
gains, reference and feed-forwarding values of regulators. Locally sensed values, introduced in6,
are utilized to estimate machine parameters in this session. According to this theory, students are
asked to implement a particular machine operating condition using the microcontroller and
inverter so that the parameters can be estimated. For example, the stator transient inductance
(σLs) is estimated by turning on the top switch of a-phase only in the VSI for a time duration of t,
so that the peak a-phase current is around a rated value. Using the sensed values of VSI voltage
and current, σLs can easily be determined. This step is repeated 3-5 times to find the average
value of estimated σLs.

2. Volts-per-Hertz (V/F) Control

The objective of this experiment session is to implement and test the Volts-per-Hertz (V/F)
control in open- and closed-loop modes. An overall block diagram implementing a closed-loop
V/F induction machine drive appears in Figure 5. The measured frequency (Fr) obtained from the



PI

Regulator

Voltage

Source

Inverter

P

120

P

120

P

120

P

120
ePWM

DC supply 

voltage

V/Hz 

profile

ePWMAH

ePWMAL

ePWMBH

ePWMBL

ePWMCH

ePWMCL

Fslip* F*

Slip

limiter

FerrFr*
ωr* 

ωrFr

V*
IM

eQEP

A

B
I

Encoder

* Reference variableTMS320F28335
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eQEP module is compared with a reference frequency value (F ∗
r ) to generate an error (Ferr)

value. Using a PI regulator and a feed-forward signal, the reference value of frequency (F ∗) is
generated, which is then used to calculate the voltage reference value (V ∗) by looking up a preset
V/F profile. Finally, the ePWM module in the MCU is programmed to generate the PWM gating
signals to the VSI, which generates the 3-φ AC voltage. The test is conducted for different ω∗

r ; to
observe the V ∗ trend.

3. Slip Compensation

The objective of this experiment session is to implement and test the slip compensation control
technique, in which the slip speed (ωslip) and slip frequency (Fslip) are estimated using voltage
(Vdc) and current (Idc) measurements sensed from VSI. The estimated Fslip is then added with the
frequency reference (F ∗

r ) to obtain the machine synchronous speed (Fsync). Voltage reference
value (V ∗) is calculated by looking up the V/F profile and applying the same approach as used in
Session 2 for generating 3-φ AC voltage. The overall block diagram implementing a slip
compensation technique appears in Figure 6.
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Figure 8: Rotor-flux oriented vector control experimental results. (a) shows the response of id
current for a step change in idref current. (b) shows the response of iq current for a step change in
iqref current.

4. Rotor-Flux Oriented Vector Control

Topics covered in this session include the implementation of Clarke and Park transformations to
convert the phase currents (Ia and Ib) in abc reference frame to dq currents (Id and Iq) in rotating
dq reference frame. A flux estimator block is modelled to estimate rotor position using the
voltages (Vα and Vβ) and currents (Iα and Iβ) in stationary αβ reference frame. Two current
regulators are designed to regulate Id and Iq, respectively, to a set reference value Idref and
Iqref .



The output of PI regulators (Vdref and Vqref ) is then utilized to obtain Vαref and Vβref by applying
an inverse Park transformation, which are then used as a source to generate PWM gating signals.
The overall block diagram and experimental results of current control implementation are shown
in Figures 7 and 8, respectively. As can be seen, the currents Id and Iq respond for a step change
in reference currents Idref and Iqref without steady-state error. Gain tuning and anti-windup can
be included as additional modules.

5. Sensorless Speed Control
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In this final experiment session, a speed control without the encoder is implemented. To estimate
machine speed, a speed estimator block is modeled by utilizing the information obtained from the
flux estimator model. The overall block diagram and experimental result of speed control
implementation are shown in Figures 9 and 10, respectively. As can be seen, the induction
machine speed (ωr) responds well for a step change in the reference speed (ω∗

r ).

Conclusion and Future Work

This paper presents a design for the instructional advanced electric drives laboratory and its
implementation . Off-the-shelf TI microcontroller DSK and industrial components were utilized
for their cost-effectiveness and reliability as well as the hands-on experience they offer with
induction machine drive systems, up-to-date tools, and embedded programming. For future work,
widely used serial communication interface (SCI), controller area network (CAN) bus and serial
peripheral interface (SPI) can be considered for improved user interface and peripheral
expansion.
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Appendix:

C code sample generated by MATLAB embedded coder for V/F closed-loop implementation

1 #i n c l u d e ” V F C lo s ed l oop Expe r imen t . h”
2 #i n c l u d e ” V F C l o s e d l o o p E x p e r i m e n t p r i v a t e . h”
3

4 /∗ Block s i g n a l s ( d e f a u l t s t o r a g e ) ∗/
5 B V F C lo s ed l oop Expe r imen t T V F C lo s ed l oop Expe r imen t B ;
6

7 /∗ Real−t ime model ∗/
8 RT MODEL V F Closed loop Expe T V F C lo s ed l oop Expe r imen t M ;
9 RT MODEL V F Closed loop Expe T ∗ con s t V F C lo sed loop Expe r iment M =

10 &V F Clo s ed l oop Expe r imen t M ;
11 s t a t i c vo i d r a t e m o n o t o n i c s c h e d u l e r ( vo i d ) ;
12 s t a t i c u in t16 T a d c I n i t F l a g = 0 ;
13 /∗
14 ∗ Set which s u b r a t e s need to run t h i s base s t ep ( base r a t e a lways runs ) .
15 ∗ This f u n c t i o n must be c a l l e d p r i o r to c a l l i n g the model s t e p f u n c t i o n
16 ∗ i n o r d e r to ” remember ” which r a t e s need to run t h i s base s t ep . The
17 ∗ b u f f e r i n g o f e v e n t s a l l o w s f o r o v e r l a p p i n g preempt ion .
18 ∗/
19 vo i d V F C lo s ed l oop Expe r imen t Se tEven t sFo rTh i sBa s eS t ep ( boo lean T ∗ e v e n t F l a g s

)
20 {
21 /∗ Task runs when i t s coun t e r i s zero , computed v i a rtmStepTask macro ∗/
22 e v e n t F l a g s [ 1 ] = ( ( boo lean T ) rtmStepTask ( V F Closed loop Expe r iment M , 1) ) ;
23 }
24 /∗
25 ∗This f u n c t i o n updates a c t i v e t a s k f l a g f o r each s u b r a t e
26 ∗ and r a t e t r a n s i t i o n f l a g s f o r t a s k s t ha t exchange data .
27 ∗ The f u n c t i o n assumes ra t e−monotonic m u l t i t a s k i n g s c h e d u l e r .
28 ∗ The f u n c t i o n must be c a l l e d at model base r a t e so tha t
29 ∗ the gene r a t ed code s e l f −manages a l l i t s s u b r a t e s and r a t e
30 ∗ t r a n s i t i o n f l a g s .
31 ∗/
32 s t a t i c vo i d r a t e m o n o t o n i c s c h e d u l e r ( vo i d )
33 {
34 /∗ Compute which s u b r a t e s run du r i ng the nex t base t ime s t ep . Sub ra t e s
35 ∗ a r e an i n t e g e r m u l t i p l e o f the base r a t e coun t e r . The re fo r e , the sub ta sk
36 ∗ coun t e r i s r e s e t when i t r e a c h e s i t s l i m i t ( z e r o means run ) .
37 ∗/
38 ( V F Closed loop Expe r iment M−>Timing . TaskCounters . TID [ 1 ] ) ++;
39 i f ( ( V F Closed loop Expe r iment M−>Timing . TaskCounters . TID [ 1 ] ) > 9) {/∗ Sample

t ime : [ 0 . 0 0 1 s , 0 . 0 s ] ∗/
40 V F Closed loop Expe r iment M−>Timing . TaskCounters . TID [ 1 ] = 0 ;
41 }
42 }
43

44 /∗ Model s t e p f u n c t i o n f o r TID0 ∗/
45 vo i d V F C l o s e d l o o p E x p e r i m e n t s t e p 0 ( vo i d ) /∗ Sample t ime : [ 0 . 0 0 0 1 s , 0 . 0 s ] ∗/
46 {
47 { /∗ Sample t ime : [ 0 . 0 0 0 1 s , 0 . 0 s ] ∗/
48 r a t e m o n o t o n i c s c h e d u l e r ( ) ;



49 }
50

51 /∗ S−Funct i on ( c280xgp io do ) : ’<Root>/ D i g i t a l Output ’ i n c o r p o r a t e s :
52 ∗ Constant : ’<Root>/Constant ’
53 ∗/
54 {
55 i f ( V F C lo s ed l oop Expe r imen t P . Cons tan t Va lue )
56 GpioDataRegs .GPASET. b i t . GPIO7 = 1 ;
57 e l s e
58 GpioDataRegs .GPACLEAR. b i t . GPIO7 = 1 ;
59 }
60

61 /∗ S−Funct i on ( c280xqep ) : ’<Root>/eQEP ’ ∗/
62 {
63 V F C lo s ed l oop Expe r imen t B . eQEP = EQep1Regs .QPOSCNT; /∗eQEP P o s i t i o n

Counter ∗/
64 }
65 }
66

67 /∗ Model s t e p f u n c t i o n f o r TID1 ∗/
68 vo i d V F C l o s e d l o o p E x p e r i m e n t s t e p 1 ( vo i d ) /∗ Sample t ime : [ 0 . 0 0 1 s , 0 . 0 s ] ∗/
69 {
70 /∗ S−Funct i on ( c280xadc ) : ’<Root>/ADC ’ ∗/
71 {
72 AdcRegs .ADCTRL2 . b i t . RST SEQ1 = 1 ; /∗ Reset SEQ1 module ∗/
73 AdcRegs .ADCST. b i t . INT SEQ1 CLR = 1 ; /∗ c l e a r INT sequence r ∗/
74 AdcRegs .ADCTRL2 . b i t . SOC SEQ1 = 1 ; /∗ So f tware T r i g g e r ∗/
75 w h i l e ( AdcRegs .ADCST. b i t . INT SEQ1 == 0) {
76 } /∗Wait f o r Sequencer INT b i t to c l e a r ∗/
77 asm ( ” RPT #11 | | NOP” ) ;
78 V F C lo s ed l oop Expe r imen t B .ADC[ 0 ] = ( AdcRegs .ADCRESULT0) >> 4 ;
79 V F C lo s ed l oop Expe r imen t B .ADC[ 1 ] = ( AdcRegs .ADCRESULT1) >> 4 ;
80 V F C lo s ed l oop Expe r imen t B .ADC[ 2 ] = ( AdcRegs .ADCRESULT2) >> 4 ;
81 }


