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Visual representations guide students’ use of conceptual knowledge and 

problem-solving strategies 
  

Introduction 

One of the key findings from the expert-novice transition literature is that experts and novices 

interpret information from visual representations in different ways [1]. This suggests that what is 

meaningful to each of these groups is different, and it is so ingrained that experts are able to 

notice differences between two diagrams shown for 200 ms but only if the differences would 

change the underlying science [2]. These findings also suggest that the structure of students’ 

conceptual knowledge and how they express it is grounded in visual representations. Some 

researchers have proposed that one of the reasons students struggle to learn science and 

engineering concepts, and thus gain expertise, is because students frequently struggle to access 

information encoded within visual representations [3]–[6] or prioritize what features to focus on 

[7]. The goal of our work then was to explore how novices engage visual representations in 

engineering. 

 

Prior research in this area generally examines how well students reason with different types of 

representations [8] or how different types of features within a specific type of representation 

influences students’ performance on a task. The former has been extensively studied in the math, 

engineering, and physics education literatures while the latter is relatively unexplored in 

engineering where students are expected to dynamically modify and create new representations 

as part of the task. Research in this relatively unexplored area has culminated in a theoretical 

framework that asserts that successfully comprehending information from visual representations 

depends on the interplay between students’ domain knowledge, the nature of the task, and the 

perceptual salience of task-relevant information [9]. Studies in multiple domains seem to confirm 

that the design of a representation can affect how students use representations during problem 

solving, what information students access, performance on transfer tests, or how students learn 

the concepts encoded in those representations [5], [10]–[14]. 

 

While useful, Hegarty’s theoretical framework does not address contexts in which students are 

dynamically modifying the visual representation or are engaged in more complicated problem-

solving tasks that require students to coordinate multiple representations. These processes are 

cognitively different from those that the framework is built from so it is unlikely that the same 

theoretical framework can be applied to analyze the contexts we are interested in. Thus, we used 

Hegarty’s theoretical framework to design our study, but we chose a data-driven analysis method 

to explore how novices engage with visual representations in problem-solving tasks. 

Additionally, prior studies have yet to explore nuances across disciplines, which could have 

implications for the kind of pedagogical suggestions this work can make. 

 

To fill these gaps in the literature, we conducted think-aloud interviews of students solving 

problems. We chose the tasks such that the students were expected to use and generate similar 

kinds of representations and the representations used in the tasks both contained discipline-

specific notational conventions. For example, shear force is denoted as a straight arrow with the 

letter V in statics and the state in a state diagram is denoted a circle labeled with a state name in 

digital logic.  

 



Literature Review 

Our work lies at the intersection of the visual representations and conceptual understanding 

literatures. To limit the scope of this literature review, we summarize relevant findings from 

these two fields. 

  

Visual Representations 

Prior research in how students engage with visual representations has focused on two types of 

research questions. The first type of questions asked are: “What types of representations hinder 

students’ performance” [15]–[18]. The second type of questions asked are: “What is it about a 

type of representation that hinders students’ performance” [19]–[21]. The former asks about 

representation type, which we call the macro level view of representations while the later asks 

about the context of particular types of representations, which we call the micro-level view of 

representations. While the macro-level view of representations has been extensively studied [16], 

[17], the micro-level view is relatively unexplored. Thus, in this work, we focused on the micro-

level effects of representations on students’ performance in accessing and using their conceptual 

knowledge. Because we focus on the micro-level view, we will summarize findings from that 

area only. 

 

In her theoretical framework, Hegarty posits that learning from representations is “an active 

process of knowledge construction rather than a passive process of internalizing the information 

presented in an external display.” [22] This process requires people to coordinate information 

from the representation’s features with their domain knowledge and goals to create a mental 

model of the concept that the representation encodes. 

 

Based on Hegarty’s work [22], people pay attention to and use the features of a representation 

depending on how perceptually salient the feature is to them. The perceptual salience of a feature 

depends on both the brain’s visual system and a person’s level of domain knowledge. Features 

that have high contrast with their background either by color, shape or motion are readily noticed 

by visual systems. We call these types of features intrinsically perceptually salient. Examples of 

these types of features include a lone red dot on a white map or an arrow to indicate what 

someone should pay attention to [23].  

 

Without domain knowledge to guide them, novices will naturally pay attention to and talk about 

the intrinsically perceptually salient features regardless of whether they are relevant to the task 

[24], [25].  For example, one study by Montfort, Herman, Streveler, and Brown [24] showed 

engineering students often justified there were no shear forces acting on a beam because there 

were no “vertical forces”. When shown the same beam but rotated to be horizontal instead of 

vertical, the same students said there would be shear forces because there were now vertical 

forces. Given how experts and novices justify their answers based on what is perceptually salient 

to them, there is a need for studies to investigate what types of features novices find perceptually 

salient and which they do not in visual representations. 

  

Context-dependence of conceptual understanding 

In Hegarty’s theoretical framework [22], students integrate both verbal and visuospatial 

information into a mental model of the concepts encoded within the representation. These 

findings of the context-dependent nature of comprehension align well with the knowledge in 



pieces perspective of conceptual change, which posits that students’ conceptual knowledge is a 

collection of pieces that are cued depending on the context of the problem. While there is still 

considerable debate about whether conceptual knowledge is in pieces or more monolithic [2], 

[7], [26], [27], we based our project on the knowledge-in-pieces perspective based on its 

alignment with prior findings in the micro-level view of representations. 

 

The context-dependent nature of cognition has been identified in several studies within a variety 

of engineering disciplines [28]–[30]. For example, in Herman, Loui, Kaczmarczyk, & Zilles 

[59], students solved isomorphic logic problems, one time by completing a truth table, one time 

by selecting images that corresponded to the rows of that truth table, and one time by directly 

deriving a Boolean expression that expressed the same information as the truth table. Students 

were often inconsistent in how they revealed their conceptual understanding across these 

different modalities. While many studies in the conceptual understanding literature have studied 

the structure of students’ conceptual knowledge, these studies focus on introductory courses on 

mechanics [31], astronomy [6], heat [32] and circuits [33] with only a small number of recent 

studies in more advanced engineering topics such as shear stress [24], [34], motion in dynamic 

systems [35] and drift/diffusion [27]. 

 

Based on the gaps we identified in the literature, the project’s main contributions are to 1) 

understand how the context of engineering tasks and the visual representations within the task 

hinder students’ ability to learn engineering concepts and apply them during their problem 

solving and 2) leverage cross-disciplinary analysis so we can move beyond specific mistakes and 

instead identify potential causes that encourage students to make those mistakes despite direct 

instruction, which has been identified as a need in prior cross-disciplinary studies [28].  

 

Methods 

Consistent with the views of Strauss and Corbin [36], we believe interpretation of phenomena 

across multiple observations and multiple disciplines with researchers of different backgrounds 

leads to a description that comes close to describing objective reality. Because we were 

interested in describing the how and why of students’ reasoning with visual representations [37], 

we chose to take a qualitative approach. We consequently use the Constant Comparative 

Method, a method derived from Strass & Corbin’s methodologies. This method critiques, 

extends, or supports data and emerging theory from prior studies through constant comparison 

with new data [38]. We also use multiple researchers who work together, challenging each 

other’s interpretations and biases. In our prior studies, the comparisons were within each 

individual data set [29], [39], [40]. In this study, we conducted comparisons of the themes across 

each dataset to describe ways in which features of visual representations hinder students’ ability 

to learn engineering concepts. 

 

We used novice-led analysis to further challenge each researcher’s biases [28]. The first author 

began as a novice in qualitative data analysis but had expertise in teaching statics while the 

second author was an expert in digital logic and had experience with qualitative data analysis. 

This novice-led approach helps guard the researchers from expert blindspot [41], [42] or 

inappropriately projecting nascent theories about how students learn that have been gained from 

informally observing students in the classroom. 

 



Data Collection  

We selected two sets of problems for the interview protocols: 1) creating shear force and bending 

moment (SFBM) diagrams for a beam given by its schematic and 2) creating a sequential circuit 

diagram when given a state diagram for a finite state machine (FSM).  

 

In both the statics and digital logic studies, we conducted 1-hour think-aloud interviews where 

students sketched either SFBM diagrams (statics) or sequential circuits (digital logic). The two 

protocols were developed simultaneously to answer similar research questions and with the 

intention of eventually combining findings from the two datasets. The statics interviews had 15 

participants (13 male and 2 female), and the digital logic interviews had 24 participants (17 male 

and 7 female). For details of the specifics of the participant sampling and data collection, please 

refer to the prior publications [29], [40]. All participants were paid for their participation and 

gave written consent to be interviewed under IRB approval (Midwestern University). The videos 

were then imported into MaxQDA for qualitative analysis. 

  

Data Analysis 

In prior studies, we used the Constant Comparative Method to identify themes in the way that 

students interacted with visual representations in statics[40] and digital logic [29]. We generated 

these themes by making comparisons across different granularities of analysis. These 

granularities used increasingly smaller units of analysis respectively: each dataset, each problem 

solved, each new representation drawn, each statement made, or component of a representation 

drawn. We provide the name of each granularity in bold followed by the unit of analysis, in 

parenthesis, before describing what types of codes were generated in that granularity. 

 

Domain (each dataset) includes the themes generated in the prior studies, which were 

constructed by comparing across the four smaller granularities of analysis. For example, we 

compared the findings that supported the creation of the digital logic theme (Reliance on Origin 

+ Transition=Destination heuristic) and the statics theme (Reliance on Object Translation 

heuristic). These two themes suggested that students generally used the same heuristics within a 

domain and that these heuristics were generally useful, but they failed students. Comparing when 

and how these heuristics failed, we identified new domain-general patterns (e.g., theme 1: 

students conflate concepts that share perceptual features) that did not rely on domain-specific 

heuristics. 

 

Problem (each problem solved) includes a description of the overall strategies participants used 

when solving each problem. For example, did the student analyze external and internal 

equilibrium or just external equilibrium? Did the student analyze the output separately from 

analyzing next-states? 

 

Translation (each new representation drawn) includes when a student uses information from 

one representation to sketch another. This granularity identifies which translations students 

performed so we could compare what knowledge students used or features they noticed during 

each translation. For example, a student uses a state diagram to construct a circuit diagram, or a 

student uses a free body diagram and algebraic expressions to construct their shear force 

diagram. 



Statement (each statement or component of a representation) includes correct and incorrect 

statements students made while sketching, their auditory explanation of their sketches, or the 

contents of what they sketched. We use these statements to document what students are paying 

attention to and how they are using that information. For example, a student might use 

knowledge of specific joint types to determine start and end points for their shear force diagrams. 

Alternatively, a student might refer to the output of the circuit (O) as next state (Q+) revealing a 

conflation of the two ideas. 

 

We identified the emergent themes across the two datasets in two stages. First, we compared the 

themes generated from the prior studies to each other to determine which themes were domain-

general and which were domain-specific. Second, we compared each theme’s supporting 

evidence (constructed from comparisons amongst the three other granularities) to find similar 

trends in how each theme emerged from the data. Similar trends in each theme’s supporting 

evidence were grouped and renamed to describe the trend, which resulted in three themes. 

 

Limitations 

While the goal of our work is to identify the patterns and nuances in students’ interactions with 

visual representations across engineering disciplines, our study only examines two disciplines 

due to the intensely time-consuming nature of this analysis. However, because students from a 

majority of engineering majors take either statics or digital logic and these two courses explore 

dramatically different types of engineering (i.e., analysis of physical systems based on laws of 

nature vs. design of systems based on man-made conventions), we believe that the comparisons 

of these two datasets represent a vital first step in identifying ways in which visual 

representations hinder students’ ability to learn engineering concepts. Future studies in more 

disciplines will be needed to further refine the findings from this project. 

 

Results 

 

Theme 1: students conflate concepts that share perceptual features (perceptually similar 

concepts) 

Students in both the statics and digital logic datasets commonly conflated concepts. We coded a 

conflation when students either consistently used the wrong word to describe the concept or their 

drawings indicated they conflated the concept. Theme 1 describes how students conflated 

concepts when the concepts shared features and did not conflate concepts when features were 

distinct. 

 

Statics example of a conflation 

Sixty-six percent of students who conflated shear force with external forces demonstrated this 

conflation by sketching a profile of the external forces acting on the beam as their shear force 

diagram (see Figure 1). First, notice the red triangles. In this region, there is a 20 N point load 

pointing in the negative y-direction (Figure 1). In the same region, the student draws a line at -20 

N on their shear force diagram (Figure 1). Next, notice the region indicated by the green circle. 

In this region, there are no arrows indicating applied loads. The student drew a line at 0 N on 

their shear force diagram in this region. Finally, notice the blue squares. In this region, there is a 

distributed load of 1 N/m pointing in the negative y-direction, resulting in a cumulative 10 N. In 

this region, the student  drew a line at -10 N on their shear force diagram. 



 

 

 

 
 

 

Figure 1: Shear force diagram from a student showing that each segment of the shear force 

diagram matches the magnitude and direction of applied forces in each segment. 

 

 

Digital logic example of a conflation 

In a circuit diagram, state should be stored inside the system with flip-flops while inputs are 

provided from outside the system and are typically drawn on the far left of the diagram. Next-

state is calculated from the state and input and is drawn as entering the left side of the flip-flops 

while output is calculated solely from the state and is drawn on the far right of the diagram. 

When students maintained a conceptual distinction between these two concepts, they generally 

began their drawings by first drawing their flip-flops to store their state (See first frame of Figure 

2) and then drew inputs on the far left and then used next-state logic to calculate their next state 

(see middle frame of Figure 2). Similarly, when students maintained a conceptual distinction of 

next-state and output, their drawings separated next-state logic from their outputs on the far right 

(see last frame of Figure 2). 

 

 

 
 

Figure 2: Student draws flip-flops first and then added inputs and next-state logic and then 

outputs. This student maintained critical conceptual distinctions. 

 

 



When students conflated state with input, they visually revealed this conflation by failing to draw 

flip-flops and drawing both state and input variables as inputs on the left of their circuit diagram 

(see first and middle frames of Figure 3). Drawing state in this way reveals that the student, for a 

time, conceptualized state as coming from outside the system rather than inside. When students 

conflated next-state with outputs, they drew both next-state and outputs on the far right of their 

circuit diagram (see last frame of Figure 3). These drawings revealed that students treated output 

as a function of state and input rather than as a function only of state, conflating the next-state 

and output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Student draws state and input as inputs (conflation) and next-state and output as 

outputs (conflation) after solving a Karnaugh map. Student fails to draw flip-flops. An example 

of a correct solution can be seen in Figure 2. 

 

Comparing and contrasting the observations across the datasets 

We observed that when students in both datasets conflated two concepts, the concepts shared 

similar features in the visual representation. Some concepts shared more similar features than 

distinct features. For example, bending moment and external moment share both symbolic and 

arrow conventions while shear force and external force share only arrow conventions. The more 

similar features the two concepts shared, the more students we saw conflate them. For example, 

sixty percent of statics students conflated shear force with external force while eighty-seven 

percent of statics students conflated the concept of bending moment with external moment. We 

observed a similar trend in conflations within the digital logic dataset. Figures 4 and 5 show how 

concepts share perceptually similar features. 

 

 



 
 
Figure 4: Symbol and arrow conventions for forces and moments. Forces have distinct symbols but 

identical arrow types while moments have identical symbols and arrow types. 

 

 

 
Figure 5: Symbol and variable conventions for state, input, next-state, and output. State, input, 

next-state, and output have appearance matches in tables and equations, but state and input are 

distinct in state diagrams. 

 

Theme 2: students coordinate multiple representations during translations when the 

starting representation is informationally incomplete (informationally incomplete 

representations) 

From analyzing the translation granularity codes across the two datasets, we observed qualitative 

differences in how each discipline translates representations during problem solving. Theme 2 

describes how differences in whether a representation contains all the task-relevant information 

results in students coordinating multiple representations.  

 



Both digital logic students and statics students deviated from how experts describe solving 

problems (i.e., 4 translations), but statics students deviated more than the digital logic students. 

Statics students performed 5.9 translations per problem on average when sketching their SFBM 

diagrams while digital logic students performed 4.7 translations per problem on average when 

sketching sequential circuits. Additionally, we coded 40 unique types of translations for the 

statics students whereas we only coded 18 unique types of translations for the digital logic 

students. 

 

Bigger qualitative differences emerged from the data when we looked at the types of translations 

present in both codebooks. In the statics codebook we found more of what we call hybrid 

translations. We define a hybrid translation as whenever students coordinated information from 

multiple representations to create a new representation. For example, when statics students used 

information from the schematic and their shear force diagram to construct their bending moment 

diagram. We coded a translation as a hybrid translation when students verbalized using 

information from multiple representations or when they scrolled their screen between two 

representations when translating to a new representation. Hybrid translations occurred more 

frequently in the statics dataset as compared to the digital logic data set with  both in the 

percentage of unique translation codes in the codebook (42% of translation codes vs. 4% of 

translation codes respectively ) and percentage of total instances of translation codes (20% of 

translations vs. 1% of translations respectively). 

 

 

Discussion 

 

Implications for the debate on the context-dependence nature of knowledge 

As mentioned in the literature review, there is a debate over the structure of students’ knowledge 

in engineering and how to change that structure from novice-like to expert-like [2], [4], [7]. 

Findings from this project suggest that students apply their knowledge differently depending on 

the context of the problem, which supports the knowledge in pieces perspective [7] and 

corroborates findings from other engineering education studies that show context-dependence in 

students’ knowledge [29]. 

 

In the knowledge-in-pieces perspective, diSessa claims that students’ knowledge structures are 

broken into pieces that are cued depending on the context. From this work, we believe that 

Theme 1 could represent one such piece of knowledge that students have about how to interpret 

information from visual representations (i.e., “two objects that look the same are the same”). If 

two concepts are represented using similar features, this could lead to students incorrectly 

categorizing two concepts as the same thing, hindering them from forming nuanced distinctions. 

For example, in statics, bending moment and applied moment are both moments, but they are 

distinct because applied moments are external to a system and the bending moment is a 

material’s response to external stimuli. In our study, students failed to make this distinction and 

commonly referred to bending moment as “force times distance”, which suggests students treat 

these two types of moments as fundamentally the same concept. 

 

Thus, future studies on conceptual understanding should consider the context of the 

representation when analyzing student responses during problem solving, specifically how 



disciplinary conventions within visual representations might contribute to conflations. For 

example, a recent study by Brown et al [34] found that students consistently associated the 

concept of shear force with vertical forces in visual representations. As an alternative to 

Vosniadou’s framework theory, our findings suggest that a knowledge-in-pieces perspective can 

equally explain this result. Findings from our prior statics study [40] similarly showed that 

students who could identify shear forces for horizontal beams with vertical loading struggled to 

identify these forces for vertical beams that were isometrically loaded with horizontally loads. 

 

This struggle may not be grounded so much in a robust misconception but rather the perceptual 

features of the visual representations that may be prompting and reinforcing this incorrect 

reasoning. While studying only two courses is not sufficient for claims of generalizability, the 

fact that we see this context-dependence across very different engineering disciplines suggests 

this could be a pervasive problem in engineering education. 

 

One weakness of the knowledge in pieces literature is that it so far has not presented a 

pedagogical structure through which instructors could improve students’ learning. In contrast, 

naïve theory and ontological research use domain-general approaches such as cognitive conflict 

and ontological training respectively. Additionally, knowledge in pieces research tends to be 

domain-specific, or even concept-specific, and has been criticized for its lack of a domain-

general perspective [43]. This lack of domain-general understanding has made it difficult to 

develop instructional practices or changes to visual representations that could help students 

across contexts. This project is among the first to our knowledge that uses the knowledge in 

pieces perspective across multiple domains simultaneously, enabling us to make domain-general 

pedagogical suggestions. 

 

Preliminary suggestions for instruction based on our findings 

 

Altering notation to decrease conflations 

Based on our findings, we propose that students’ conceptual understanding and problem-solving 

performance may be affected in part by how many similar features two distinct concepts share. 

These observations corroborate Genter’s [44] study of appearance matching where people group 

concepts together based solely on how similar their features are. In addition to corroborating past 

studies, our findings imply that representing concepts using several similar features may hinder 

how students develop strong, appropriate conceptual distinctions over time and how they use 

their conceptual knowledge during problem solving. Careful consideration of how to visually 

distinguish two concepts may help students more easily gain appropriate conceptual knowledge 

and help them in the early stages of problem solving. For example, instructors could consider 

requiring all state and next-state variables be labeled with accent symbols or with Greek letters in 

contrast to lowercase or latin letters for input and output to help students maintain a conceptual 

distinction between next-state and output. Ideally, as students develop these conceptual 

distinctions, their ability to access their conceptual knowledge will be more robust against 

similarities in notational conventions. Future research could try modifying course notation to see 

its effect on students’ learning and problem-solving performance. 

  

 

 



Future work based on findings from this project 

The findings outlined in this work indicate several areas of future work. First, our findings were 

built from qualitative studies of two engineering disciplines. While that choice allowed us to 

build preliminary comparisons, we would need data from more disciplines to explore the nuances 

of these findings. Second, quasi-experimental follow-up studies are needed to explore the 

generalizability of these findings. We recently conducted such a study exploring the 

generalizability of an additional finding that we did not report in this paper. Preliminary findings 

from that study indicate that making the joints within schematics of beams more perceptually 

salient improved students’ scores when drawing shear force and bending moment diagrams. 

Finally, given these preliminary findings, future studies could explore the use of scaffolding in 

visual representations. Similar to the idea of scaffolding tasks, initial courses at the sophomore 

level where students are first exposed to core concepts would use representations that have a lot 

of visual scaffolding with each subsequent course having less structuring. What constitutes “a 

lot” and how much to take away at each subsequent course could be the subject of these future 

research studies. 

 

Conclusion 

One critique for the knowledge-in-pieces perspective on conceptual change has been that “if 

students’ use of knowledge is unpredictable and subject to contextual cues, how do we design 

instructional interventions that help students across contexts?” By combining a data-driven 

approach with the knowledge-in-pieces framework and Hegarty’s theoretical framework, we 

have identified promising pathways for designing instructional interventions to address students’ 

conceptual difficulties and avenues for future research in conceptual understanding. Ultimately, 

our data suggests that the way we design our visual representations may play a major role in 

helping students identify when and where to use their conceptual knowledge. If students struggle 

with conflating distinct concepts, are there ways that our notational standards reinforce these 

conflations by presenting distinct concepts as similar?  If we can accelerate the creation of these 

distinctions, we can transition students back to traditional representations after their conceptual 

knowledge is robust enough to guide them. Our themes of perceptually similar concepts, 

perceptually obscure concepts, and informationally incomplete representations suggest clear 

avenues for investigating what types of perceptual cues may hinder students’ ability to develop 

or use appropriate conceptual knowledge. As engineers, we can use this knowledge to potentially 

design new notations or new pedagogical techniques that can help students recognize and 

overcome the ways our notation may currently be failing to help students learn. 
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