
Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

Session 1726

Brick Sorting Revisited*

M. L. Neilsen

Department of Computing and Information Sciences
234 Nichols Hall

Kansas State University
neilsen@cis.ksu.edu

Abstract

With the rapidly advancing capabilities of computing hardware, it
is now possible to embed computing capabilities in virtually all
manufactured devices. Consequently, there is an increased demand
for professionals trained to develop embedded electronic systems.
However, the design and implementation of such systems requires
a broad knowledge in areas traditionally not covered in any one
discipline.

This paper discusses how a conceptually simple brick sorting
problem can be used to solidify and unify some of the theoretical
concepts covered in a traditional real-time systems course. The
problem is to sort Lego™ Bricks of different colors into separate
bins using a standard set of sensors and actuators controlled using
Lego Mindstorms™ Robotic Command Explorer (RCX) bricks.
Although conceptually simple, the problem enables students to
connect abstract design concepts with a concrete implementation
and to better understand the importance of using an iterative
design methodology.

* In part, this material is based upon work supported by the National Science Foundation under NSF Grants No.
9980321 and 0227709. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

P
age 10.270.1

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

1 Introduction

The number of embedded electronic systems used in automobiles, industrial automation, and
other control systems continues to increase dramatically. These systems typically include
subsystems with separate processors. The processors must communicate to coordinate their
activities. A typical system consists of an interconnected collection of distributed processors
connected by a real-time network. As these systems become even more complex, the need for
real-time embedded systems research and students trained in embedded system development
become even more critical.

Design and implementation of embedded systems requires a broad knowledge in areas
traditionally not covered in any one discipline. These areas include electrical and computer
engineering, computing sciences, mechanical engineering, and other engineering disciplines. As
a result, it is very difficult to train students and engineers within a single discipline to effectively
design and implement complex real-time embedded systems. Thus, we felt that it was important
to first establish an interdisciplinary framework of structured courses for education in real-time
embedded system design [5]. One of the major goals of this new curriculum is to expose students
to industrial and commercial quality implementations and bridge the gap between conceptual
understanding and concrete implementations. When undergraduate and graduate students are
able to apply abstract knowledge in concrete implementations, subsequent higher-level, theory-
oriented concepts have more relevance.

The same problem exists wihin typical upper undergraduate and beginning graduate-level real-
time systems courses where students lack an understanding of the connection between the
underlying abstract theory and concrete implementations, and professors struggle to motivate
students to appreciate the importance of learning those abstract concepts. One solution that has
been used in our traditional beginning graduate-level real-time systems course is to develop
innovative, challenging design problems that can be implemented using cost-effective hardware
and software. This paper describes one such problem called brick sorting.

A Brick Sorter is used to sort 2x2 Lego™ Bricks of different colors into separate bins. Although
this is a fairly well-known design problem for Lego Mindstorms™ Robotic Command Explorers
(RCX Bricks), this paper describes how this problem can be integrated with theoretical design
methodology for embedded systems and describes two new design challenges that can be used to
further challenge students in a real-time systems course. The first challenge is to sort bricks of
two distinct colors into two different bins at the fastest rate possible. The second challenge is to
sort different colored bricks with the most precision. From the second challenge, students
confront the limitations of the simple color sensor in the standard Lego Mindstorms™ Robotics
Invention System. Consequently, the most effective solutions involve both hardware and
software design.

Three steps are required to solve this problem. In the first step, a real-time design methodology
using Rational Rose RealTime™ or some other design tool is used to specify requirements and
develop a real-time model using the Unified Modeling Language extended with capsules and P

age 10.270.2

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

ports to capture real-time requirements and describe the interaction between key system
components. The second step is the actual code generation, testing, and debugging using the
RCX Brick, a real-time operating system, and (optionally) custom sensors. The final step is to
perform real-time validation (via graphical simulation) and verification (via automatic model
checking) using a tool such as UPPAAL or Real Time Spin (RT Spin). The system is modeled
using timed-automata which are finite state machines with time implemented using real-valued
clocks. The simulation is performed by interactively running the system to validate that it works
as advertised. Then, the verifier can be used to check reachability properties by exhaustively
searching all possible dynamic behaviors of the system. The verifier checks for simple invariants
and reachability properties. This simple problem unifies several themes that are emphasized in
our real-time systems course, including real-time design methodologies, scheduling theory,
testing, validation, and verification.

The next section provides some background information. Then, Section 3 describes the design
project completed by students as part of our real-time systems course. Finally, the paper
concludes in Section 4 with a summary and recommendations for future work.

2 Background

Traditional approaches to system design in computing sciences have focused primarily on
software design, whereas system design in other engineering disciplines has focused primarily on
hardware design. With the introduction of inexpensive microprocessors, it becomes possible to
provide students with hands-on laboratory experiences to construct simple embedded systems.
As these systems have evolved in commercial applications, the number and complexity of
embedded controllers has also increased. A significant portion of the design process must now
focus on software engineering and the integration of hardware and software. However, most
microprocessor-based system courses still emphasize hardware construction [7,8]. In order to
address both software and hardware issues, it becomes essential to apply an interdisciplinary
approach [5].

Many microcontrollers are used in real-time control systems such as automotive electronics and
factory automation. To be practical for industry, the per-unit cost must be strictly controlled, but
the development platform can be fairly expensive as long as the development cost can be
amortized over thousands or millions of units. However, in an academic environment, the cost
per development platform must be controlled to fit within a typically constrained laboratory
budget. Early in the development process, this was a limitation in trying to establish a collection
of inter-departmental laboratories. More recently, we have benefited by the foresight of many
leading development platform vendors, both software and hardware. Development environments
should support source-level debugging, simulators, profiling, and analysis tools. Many
developers are now offering Educational Partner Programs to enable the integration of these
sophisticated development tools into the curriculum.

Another frequently required technology is a real-time operating system (RTOS). We currently
use both commercial (VxWorks) and open source (ERIKA, LeJOS, BrickOS, etc.) operating P

age 10.270.3

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

systems. We also built an RTOS that provides an efficient and extensible set of services. The
functionality of the RTOS includes scheduling and thread context switching capability,
synchronization primitives, and micro-interrupt handlers for interruptible peripheral devices. On
top of the RTOS, various functions can be implemented as independent threads. All of these real-
time operating systems can be used in either simulation or execution mode.

Due to the lack of time and facilities, traditional university education tends to emphasize theory
and concepts. Even though implementation (laboratory) projects are associated with many
courses, these projects tend to be more abstract than real implementations that can be used
directly in industrial and commercial products. Typically, there is a large gap in students'
understanding between theory (conceptual understanding) and implementation (concrete
understanding). As a result, many students who have a good understanding of theory and
concepts do not have confidence to map their knowledge onto implementations. One of the goals
of this curriculum is to expose students to industrial and commercial quality implementations
and bridge the gap between conceptual understanding and concrete implementations. After
students are able to apply abstract knowledge in concrete implementations, subsequent higher-
level, theory-oriented courses have more relevance. This paper describes a project that was
included as a part of our traditional, theorectical, real-time systems course. Even though the
focus in this course is on theoretical concepts, we felt that it was important for student to apply
those concepts to small design problems so that subsequent courses that include large, capstone
design problems could be managed efficiently and also, so that subsequent theory courses would
have more significance.

The availability of powerful microprocessors and development environments supporting high-
level languages and formalisms has allowed complex features to be incorporated into embedded
systems. In turn, this sophistication has enabled the development of embedded systems to control
complex applications having real-time, reliability and safety constraints by utilizing theoretical
research advances made in a number of areas such as real-time computing, hardware interfacing,
networking, fault-tolerance, and verification. Hence, theoretical research from these areas needs
to be applied in practice for the development of high assurance, state-of-the-art, real-time
embedded systems. We incorporate recent advances in methodologies, development tools and
design techniques to develop practical new design methodologies, and apply those techniques in
the design of real-time embedded systems. At the same time, the rapid evolution of embedded
systems in industry also drives new directions for theoretical research.

Finally, the curriculum allows us to accelerate applied research in engineering, and produce
significant new embedded systems for numerous applications including variable rate technology
for precision farming. This transfer of technology has enabled us to develop even stronger
linkages with industry.

The overall objective is to provide opportunities for students with varying engineering
backgrounds to gain knowledge and experience in the design and implementation of real-time
embedded systems, and to advance the state-of-the-art in design methodologies and real-time
applications.
 P

age 10.270.4

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

The core curriculum consists of the following four courses:

1. A remedial course consisting of three independent modules, intended to bring students
with varying backgrounds up to speed,

2. An implementation course that allows students to work with state-of-the-art design
tools, embedded development environments, and target platforms to interconnect a
variety of sensors and actuators in complete real-time embedded systems,

3. A theory course, which is the focus of this paper, covering both real-time scheduling
theory and contemporary design methodologies, and

4. A project-based capstone design course to complete a comprehensive design for a
complex embedded system.

This section discusses the layout of our curriculum to provide training to embedded systems
designers and programmers. The embedded systems curriculum consists of four semester-long
courses at the upper undergraduate/beginning graduate level.

2.1 Remedial course

The first course is designed to be a remedial course for students who do not have a proper
background for the subsequent courses in the proposed course sequence. The course consists of
three five-week modules; students can take only the necessary modules and earn one credit each.

2.2 Implementation course

In this course, students implement simple but complete real-time embedded systems. The course
consists of three modules: real-time programming fundamentals, real-time operating systems,
and real-time embedded systems.

2.3 Theory course

This course teaches techniques used in the design and analysis of real-time embedded systems. It
also provides students with a strong theoretical foundation for those techniques and a solid
background in real-time scheduling theory. In additional to traditional scheduling theory, this
course covers elements of the requirements phase, the design phase, and the implementation
phase for the design of embedded systems. The requirements phase includes an introduction to
the Unified Modeling Language (UML) and object-oriented design methodology, use case
analysis, and specification of real-time properties. The design phase covers various aspects such
as design patterns, use-case realization, and verification. An emphasis is placed on verification
and model checking techniques. This is the course in which the Brick Sorting Problem described
in this paper is used to motivate and unify the underlying theory.

2.4 Capstone design course

This course is intended to teach techniques that allow engineering an embedded system to satisfy
certain performance requirements. The students must be able to evaluate various design choices P

age 10.270.5

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

and make design decisions accordingly. A major component of this course is an industrial-sized
team project involving the design and implementation of a complete embedded system. The team
ideally consists of students from different disciplines (CIS, EECE, MNE, and BAE). As team
structures are increasingly emphasized in industry, this is a valuable experience for students. In
particular, since the students are from different disciplines, they learn to work in a synergetic
manner, exploiting the strengths of each discipline.

Figure 1. Redroot pigweed at different density levels.

For example, one capstone project focuses on agricultural applications involving variable-rate
technology (VRT). Infrared sensors are used to collect information (Figure 1). Then, distributed
controllers evaluate the input and generate variable-rate application recommendations in real-
time. All sensors, controllers, and actuators are networked together using a real-time controller
area network (Figure 2). Applications of embedded systems in industrial and agricultural
applications usually involve a large number of various types of sensors and actuators connected
by a real-time network. The rapid increase of such applications requires in-depth research to
correctly interface multiple sensors and actuators. These applications serve as excellent case
studies to motivate team-based research.

Figure 2. Weed detection system with variable rate applicator. P
age 10.270.6

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

With the rapid development of new technologies for precision agriculture, more sensors and
actuators with sophisticated control algorithms will be added to the system. This requires more
complex and reliable networking techniques. We are currently conducting research on real-time
image and optical weed sensors, particle flow sensors [11], soil moisture sensors [13], and
standing wave sensors. Numerous other sensors have been developed for precision agriculture.
Many of these sensors may be linked with a real-time network to log sensory data and provide
feedback for real-time control.

The goal of the Brick Sorting Problem is to provide a simple design problem that can be used to
motivate concepts covered in the theory-based course on real-time systems.

3. Brick Sorting Revisited

The goal of this project is to provide students with a concrete design experience covering several
important aspects of real-time system design. The requirements phase includes an introduction to
object-oriented design methodology and the Unified Modeling Language (UML), use case
analysis, and specification of real-time properties. The design phase covers various aspects such
as design patterns, use-case realization, and verification. An emphasis is placed on verification
and model checking techniques. Design methodologies are introduced using IBM’s Rational
Rose RealTime. Properties of system designs can be verified using several different tools
including a freely-available tool from Uppsala and Aalborg Universities in Denmark (UPPAAL)
[3, 7] and a real-time extension to SPIN, called Real-Time Spin (RT Spin). Both tools are based
on the theory of timed automata [1,2] and include the addition of real-valued clocks to specify
real-time constraints. To give students a simple, but relatively challenging, design experience,
they were assigned the problem of sorting Lego 2x2 bricks, with a twist.

The sorter should comply with the following requirements:

1. The sorter should be able to sort 2 x 2 Lego bricks of different colors.
2. The sorter should be able to sort bricks of at least two different colors.
3. The sorter should not damage the bricks during sorting.
4. The sorter should count the number of bricks sorted and display the total number sorted.
5. To the extent possible, the sorter should respond to abnormal events.

Students are required to develop two different designs to sort the bricks:

1. Speed: In the first design, the brick sorter is only required to sort bricks of two different
colors, black and yellow, but the goal is to sort them as fast as possible. Each design was
tested by loading their chutes with the same “random” sequences of bricks – some of the
sequences used in the test were not very random; e.g., black, yellow, black, yellow, etc.
Then, an average run time was computed for the same 10 sequences. The best design was
able to sort 20 random bricks in an average of 4.6 seconds by flipping the bricks either
left or right as the fell from the chute. P

age 10.270.7

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

2. Precision: In the second design, the brick sorter is required to correctly sort as many

different colored bricks as possible by placing bricks of the same color into the same bin.
In this case, the best design, shown in Figure 3, was able to sort up to 8 different colors
consistently. The bins were moved on a track and every brick of a color seen for the first
time was placed in the first empty bin. Whenever a brick of the same color was seen
again, then the bins were repositioned under the chute so that the brick would fall into the
correct bin. In this case, it was important to carefully calibrate or train the sensor to detect
changes in color.

Figure 3. Most precise brick sorter.

To provide a cost-effective solution for a complete embedded system that is complex enough to
solve interesting problems, the Lego MindstormsTM Robotics Invention System (RIS 2.0) is used.
RIS 2.0 is a very powerful educational tool disguised as a toy. The heart of the system is the
RCX Programmable Brick (RCX 1.0), a microprocessor-based embedded controller housed in an
over-sized Lego™ brick (see Figure 3). Built into the battery-powered RCX are three A/D
inputs, three 9-volt outputs and an infrared (IR) link for communication with a host computer or
other controllers. RIS 2.0 also includes 2 motors, 2 touch sensors, one light sensor, over 800
Lego™ pieces (plates, blocks, gears, axles, etc.) and software designed to allow students to
program the robots designed using an object-oriented design methodology and programmed
using Java or some other high-level programming languages.

For each design problem, the students had to complete the following three steps using an
iterative design methodology:

1. Complete the Requirements Analysis and develop a Design Model using Rational Rose
Real-Time. Verify the feasibility of the resulting task set based on the Scheduling Theory
covered in class. P

age 10.270.8

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

2. Design an UPPAAL or RT Spin Model for the brick sorter designed in Step 1. Verify
both safety and liveness properties to ensure the correct operation of the system. Include
all queries used to verify system properties.

3. Implement and Test the Design using Lego™ Mindstorms Robots. The programming
language and operating system could be selected by the developers.

The following sections discuss each of these steps in more detail.

3.1 Design Methodology

Requirements can be specified by using Use Case Diagrams augmented with real-time
requirements. Then, a Design Model can be developed using Capsules and Ports.

Figure 4. Statechart.

A capsule is just a lightweight concurrent class with ports. Capsules are highly encapsulated and
can only communicate via message passing through their end ports. Capsule behavior is defined
graphically (as shown in Figure 4) through the use of hierarchical state machines or statecharts.
These state machines support run-to-completion semantics which simplifies synchronization
constraints.

For example, a typical solution to the brick sorting problem might involve a small set of
capsules, one to control the Brick Chute, one for the Color or Light Sensor, one for the Track,
Belt or Arm Revolver to get the brick lined up with the correct bin, and one to control the Push
Piston or Kick Off Arm to eject a brick.

P
age 10.270.9

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

int b=0, active1=0, active2=0;
int DELAY=25;
int LIGHT_LEVEL=42;

task main{ task kick_off{
 Sensor(IN_1, IN_LIGHT); while(true){
 Sensor(IN_3, IN_SWITCH); wait(Timer(1)>DELAY && active1==1);
 Fwd(OUT_A,1); active1=0;
 start kick_off; Fwd(OUT_C,1);
 while(true){ Sleep(6);
 wait(IN_1<=LIGHT_LEVEL); Rev(OUT_C,1);
 if(b==0){ wait(IN_3==1);
 ClearTimer(1); Off(OUT_C);
 active1=1; wait(Timer(2)>DELAY && active2==1);
 } active2=0;
 if(b==1){ Fwd(OUT_C,1);
 ClearTimer(2); Sleep(6);
 active2=1; Rev(OUT_C,1);
 } wait(IN_3==1);
 b=-b+1; Off(OUT_C);
 wait(IN_1>LIGHT_LEVEL); }
 } }
}

Figure 5. Brick Sorter with defective NQC code [4].

Developers generally focus on techniques that allow an embedded system to satisfy certain
performance requirements. They must be able to evaluate many different design choices and
make design decisions accordingly. Developers must understand techniques and patterns to
satisfy constraints related to real-time, fault-tolerance, and correctness. These goals can only be
accomplished by using a well-defined engineering approach starting with a high-level design
specification which leads to a well-structured component-based implementation.

After developing a model, the designer can step through the execution sequences generated by
randomly or intentionally interjecting events into the simulation of the model. The same model
can be used as the basis for a model for validation and verification in the next step.

P
age 10.270.10

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

3.2 Validation and Verification

An important step is to validate the design and verify that the design satisfies safety and liveness
properties to ensure its correct operation. The Brick Sorter Problem provides an opportunity to
bridge the gap between theory and practice so that participants can apply theoretical knowledge
to practice.

UPPAAL2k is a modeling, simulation, and verification tool for real-time systems modeled as
networks of timed automata extended with real-valued clocks [3,7]. UPPAAL can be used to
check both reachability and invariance properties of a combination of automata locations, clocks,
and integer constraints. In UPPAAL, E<>f expresses that it is possible to eventually reach a
state satisfying f , and A[]f expresses the invariance that f is satisfied over all time.

Figure 6. UPPAAL simulation of brick sorter.

For example, a user might want to test the invariant that it is always the case that Yellow (or
Red) bricks get kicked off; that is they never arrive in the “end” state. This can be specified using
the query: A[] (not Y1.end). Likewise, Black bricks should always be kicked off, so test the
invariant: A[] (not B1.off).

3.3 Results

Students were given a total of four weeks in the middle of the course to complete the project.
They were also enticed to participate in a friendly competition during the Open House festivities
at Kansas State University, with small prizes for the top 3 teams. There were a total of 13 teams,
with 1-3 students each, completing the project. A total of 28 students were in the class. All of the
teams were able to sort at least 4 bricks and sort the set of 20 bricks within 2 minutes. The fastest
design, shown below in Figure 7, sorted all 20 bricks in 4.6 seconds. There were some interesting
designs from both a hardware and software perspective. Some of the designs were not very
structurally sound, and at the other extreme, some of the designs incorporated very simple

P
age 10.270.11

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

software designs. An important aspect was the discussion that ensued after each team presented
their results. This year, we plan to use a more iterative approach to let teams receive more
feedback after each design phase.

Students were not required to use any particular operating system or programming language.
Most of the designs were completed using C and BrickOS (a C-based RTOS), or Java and LeJOS
(a Java-based RTOS). A few of the teams chose to use no RTOS; e.g., NQC. The most
successful designs incorporated an operating system.

Figure 7. Robotics competition at KSU Open House.

4 Conclusions

With the rapid advances in technology, it is now possible to embed computing capabilities in
virtually all manufactured devices. To realize the full potential of this technology, embedded
system developers must be trained to manage the complex design problems that are entailed. An
important factor is the recognition that sound solutions require an understanding of concepts not
covered in any one discipline, and that students with the preparation and desire are needed to
acquire the technological knowledge required to be successful in embedded design programs.

This paper presents a practical design problem that can be easily incorporated into existing real-
time system design courses. It also shows how the Brick Sorting Problem was integrated into our
real-time systems course to enable students to have an opportunity to practice their abstract skills
in a concrete setting. Two new variants of the problem based on Speed and Precision are
suggested for an additional challenge.

P
age 10.270.12

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

Our embedded systems curriculum is still a work-in-progress, and will certainly evolve, just as
the technology and needs of industry evolve. Specific details for each of the designs are available
on-line at http://www.cis.ksu.edu/chert. The continued rapid evolution of real-time embedded
systems and development tools will provide us with interesting challenges and unprecedented
opportunities.

Bibliography

[1] R. Alur and D. L. Dill, “Automata for modelling real-time systems”, In Proceedings of the International
Colloquium on Automata, Languages, and Programming, Vol. 443 of Lecture Notes in Computer Science,
pages 322-335. Springer-Verlag, 1990.

[2] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and tools”, In Lecture Notes on

Concurrency and Petri Nets, W. Reisig and G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

[3] A. David, M. Oliver Möller, and W. Yi, “Verification of UML statecharts with real-time extensions”,
Technical Report, Uppsala University, 2003.

[4] T.K. Iversen, K.J. Kristoffersen, K.G. Larsen, M. Laursen, R.G. Madsen, S.K. Mortensen, P. Pettersson,

C.B. Thomasen, “Model checking real-time control programs verifying LEGO Mindstorms systems using
UPPAAL”, In Proceedings of the 12th Euromicro Conference on Real-Time Systems (ECRTS'00).

[5] M.L. Neilsen, D.H. Lenhert, M. Mizuno, G. Singh, N. Zhang, and A.B. Gross, “An interdisciplinary

curriculum on real-time embedded systems”, In Proceedings of the 2002 American Society for Engineering
Education (ASEE) Annual Conference and Exposition, Montreal, Quebec, 2002.

[6] M.L. Neilsen, “A flexible real-time transport protocol for controller area networks”, In Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’01),
pp. 250-256, June 25-28, 2001.

[7] P. Pettersson and K.G. Larsen,“UPPAAL2k”, In Bulletin of the European Association for Theoretical

Computer Science, Vol. 70, pages 40-44, 2000.

[8] J. Wei, N. Zhang. N. Wang, D. Lenhert, M. Neilsen, M. Mizuno, and G. Singh, “Design of an embedded
weed-control system using Controller Area Network (CAN)”, ASAE Paper No. 01-3033, American Society
of Agricultural Engineers, ASAE 2001 Annual International Meeting, July 29 – August 1, 2001.

[9] W. Wolf, “Rethinking embedded microprocessor education”, In Proceedings of the 2001 American Society

for Engineering Education Annual Conference and Exposition, Albuquerque, NM, 2001.

[10] W. Wolf and J. Madsen, “Embedded systems education for the future”, In Proceedings of the IEEE, 88(1),
pp. 23-30, January 2000.

[11] N. Zhang, “DSP signal processing for a particle velocity sensor”, In Proceedings of the American Society

of Agricultural Engineering, Number 98-3036, 1998.

P
age 10.270.13

Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2005, American Society for Engineering Education

[12] N. Zhang, R. Taylor, S. Runquist, E. Runquist, M. Schrock, and S. Staggenborg, “A field-level geographic
information system (FIS) and precision agriculture”, In Proceedings of the International Conference on
Agricultural Engineering, Dec. 1998.

[13] N. Zhang and N. Wang, “Effectiveness of a polarized laser light in soil moisture-content measurement”, In

Proceedings of the American Society of Agricultural Engineering, Number 99-3113, 1999.

Biographical Information

MITCHELL L. NEILSEN is an Associate Professor in the Department of Computing and Information Sciences at
Kansas State University. His research interests include real-time embedded systems, distributed systems, and
distributed scientific computing.

P
age 10.270.14

