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Broadening student knowledge of dynamics by means of simulation software 
 

Abstract 

 

Some examples are given with the aim of broadening undergraduate student knowledge and 

understanding of dynamics. Typically the examples involve non-linear equations and numerical 

methods must be employed. Here, because of its wide availability and of its increasing use in 

undergraduate mathematics courses, MAPLE
[1]

 is employed. The central goal of the work is to 

introduce new phenomena, and the examples treated are: (i) The effect of viscous damping on 

the stability of an inverted pendulum. It is shown that with a linear model viscous damping does 

not stabilize an unstable state, whereas damping plays an important role when a non-linear model 

is considered. (ii) Forced harmonic motion of a non-linear hardening spring-mass system. The 

numerical simulation of the response illustrates the “jump phenomena” in which the steady state 

amplitude undergoes a jump in passing through frequencies close to the linear resonance 

frequency. (iii) A simple pendulum with an oscillating support, illustrating parametric resonance. 

Depending on the system parameter values instabilities can occur (parametric resonance). This is 

shown numerically and confirmed with an available analytic expression. The associated MAPLE 

files are given in an appendix. 

 

Introduction 

 

The availability of commercial codes such as MAPLE
[1]

 has made it possible to numerically treat 

problems in dynamics which are analytically intractable. Of course other codes such as 

MATHCAD
®

 and MATLAB
®

, for example, are also available. However the thrust here is not to 

debate the relative merits of finite difference schemes in various software packages. The students 

should be aware of the nature of finite difference schemes (a simple illustrative example is given 

in a previous work
[2]

) then, at least in dynamics classes, the software may be treated as a “black 

box”. Several examples that broaden student physical knowledge and understanding were given 

previously
[2]

, namely: a non-linear pendulum subjected to various initial conditions, showing 

how the period depends on the amplitude; a non-linear softening spring showing the existence of 

instabilities; an undamped inverted pendulum restrained by a spiral spring, illustrating the 

existence of multiple equilibrium states and their stability; a simulation of a sweep test (forced 

motion of a single-degree-of-freedom system in which the forcing frequency varies with time), 

showing that if the sweep rate is too fast, no resonances will be observed. Here several new 

examples are presented (for convenience both sets are included in  in an appendix, which 

has MAPLE worksheet objects included). The examples are: (i) the effect of viscous damping on 

the stability of an inverted pendulum; (ii) forced harmonic motion of a non-linear hardening 

spring-mass system; and (iii) a simple pendulum with an oscillating support, illustrating 

parametric resonance. Examples (i) and (iii) can readily be handled in a beginning course, 

whereas example (ii) may be more suitable for an intermediate course.  

TABLE 1
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Physical Examples 

 

Effect of viscous damping on the stability of an inverted pendulum 

 

The equation of motion for an inverted pendulum with a torsional spring and torsional damper at 

the base is given below (see FIGURE 1). 
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FIGURE 1 – INVERTED PENDULUM 

 

 

This equation can be written in the dimensionless form: 
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Here v  (dimensionless time) 
g

t
l

? ,  is a dimensionless spring constant defined by 

 and is a dimensionless damping constant defined by 

B

G mgB? l J
2

C l
J

ml g
? . 

 

It should be pointed out to the students that equation ( 2 ) has two possible equilibrium states, 

namely the roots of:  

 

sin( ) 0Bs s/ ?  

( 3 ) 

This has the solutions 0s ?  and, for 0.95B ? ,  ( ). Such states will not 

be seen in practice if they are unstable. Consider the 

31.62s ? C

0

0.5519rad

s ?  case. Equation ( 2 ) is solved 

numerically (with initial conditions 5s ? C
0.0873rad… and 0d ds v ? ) using MAPLE’s finite 

difference scheme. (The students / reader could consult reference
[2]

 for an illustration on a simple 

finite difference scheme.) 

 

Shown in FIGURE 2 is the response for the linearized system ( sin( )s s? ) for zero damping. The 

response (and hence the 0s ?  equilibrium state) is clearly unstable. An interesting question is 

whether this state can be stabilized by adding damping to the system.  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2 – RESPONSE FOR LINEAR 

SYSTEM AND ZERO DAMPING 

FIGURE 3 – RESPONSE FOR LINEAR 

SYSTEM WITH DAMPING 

 

Shown in FIGURE 3 is the response for the case where the damping value (non-dimensional) is 

0.20. The instability still persists; damping plays no significant role. However this response is 

not what would actually occur. Consider now the non-linear model in which sin( )s  is retained.  
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FIGURE 4 – RESPONSE FOR NON –LINEAR 

SYSTEM AND ZERO DAMPING 

FIGURE 5 – RESPONSE FOR NON –LINEAR 

SYSTEM WITH DAMPING 

 

Shown in FIGURE 4 is the response for zero damping (and initial conditions close to zero). Note 

that the response grows but finally becomes bounded, oscillating about the     

 state. FIGURE 5 depicts the response for a damping value (non-dimensional) of 0.05. 

Here damping is seen to play a role. The larger the value of the damping coefficient the faster the 

approach to the 

31.62s ? C …
0.5519rad

0.5519rads ?  state. This can be seen by comparing FIGURE 6 to FIGURE 7. 

The responses for non-dimensional damping values of  0.10 and 0.20 are shown, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 – RESPONSE FOR NON –LINEAR 

SYSTEM – DAMPING = 0.10 

FIGURE 7 – RESPONSE FOR NON –LINEAR 

SYSTEM – DAMPING = 0.20 

 

Harmonic motion of a hardening spring-damper-mass system 

 

An important consequence of non-linearity can be illustrated with the following example. The 

equation of motion for a spring-damper-mass system with a hardening spring is given by: 
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( 4 ) 

where the spring force is ,   is the mass, 
3

1
kx k x- m d  is the damping ratio of the system, 0

y  

(given by k
m ) is the undamped linear natural frequency and Q  and y  are the amplitude and 

frequency, respectively, of the external harmonic excitation. Setting 1
k kf?  and introducing the 

following dimensionless quantities: 0
tv y? , 

x

Q
e ?

k

, 
0

yp y? ; equation ( 4 ) becomes: 

2
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2 s

d d
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d d

e ed e f p
v v

- - - ?  

( 5 ) 

Equation ( 5 ) is a harmonically forced Duffing equation
[3]

.  A numerical solution to the problem 

is given in the following.  

 

Taking, 0.25f ?  (weak non-linearity) and 0.10d ?  (light damping) the response can be obtained 

with the aid of MAPLE (initial conditions are set to 0e ?   and 0d de v ? ). The goal is to 

illustrate the “jump phenomena”, where the steady state response amplitude undergoes a jump 

when the frequency of the excitation approaches the linear resonant frequency ( 1p ? ). The 

response is obtained for several values of the excitation frequency and the steady state values are 

plotted versus the frequency ratio p . FIGURE 8 through FIGURE 11 illustrate the responses and 

the steady state values for excitation frequencies close to the linear resonance frequency. Note 

the increase of the steady state values and the sudden drop (“jump”) at 1.5p ? . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8 – RESPONSE FOR  0.9p ?  FIGURE 9 – RESPONSE FOR 1p ?  
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FIGURE 10 – RESPONSE FOR  FIGURE 10 – RESPONSE FOR  1.41.4p ?  

 

 

FIGURE 11 – RESPONSE FOR 1.5p ?  

 

 

 

 

 

 
Linear Case  
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FIGURE 12 – NUMERICALLY OBTAINED FREQUENCY RESPONSE 
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FIGURE 12 depicts the frequency response for the system obtained numerically. A “jump” is 

clearly observed in the vicinity of 1.5p ? .  Also included in the figure is the frequency response 

for the system when 0f ?  (linear system, response peaks at the resonant level 1p ? ). Students 

should notice the “bending” of the resonant peak in the case of a non-linear system. Here the 

peak is bent to the right since the non-linearity is of a hardening type (in the case of a softening 

non-linearity the peak would bend to the left). No steady state values were obtained for the 

unstable solutions highlighted in the figure. These are unstable stationary solutions and will not 

be observed in practice.  

 

Motion of a pendulum on an oscillating support 

 

Resonances other than forced motion ones can be illustrated with the following example. 

Consider the motion of a pendulum which is connected to a support that undergoes a harmonic 

translational motion. The pendulum is subjected to gravity and to a viscous damping moment at 

the support ( 2cl s% ). The amplitude of the translational motion and its frequency are prescribed,  

and , respectively. The system is shown in FIGURE 13. 
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FIGURE 13 – PENDULUM WITH AN OSCILLATING SUPPORT 

 

Deriving the equations of motion may be challenging from a student viewpoint. One approach is 

to use a reference frame translating with u . An observer in that frame sees the mass 

undergoing circular motion. Then it can be seen that the acceleration of the end mass is given 

by: 

m

2( cos( ) ) ( sin( )a u l n u l t)s s s? - - - s
EE E%%% %% %%

n where 
E

 and t
E

 are the unit vectors directed 

along the normal and tangential directions to the circular motion, respectively. Using 
t t

F ma?Â  

leads to: , where sin( ) cos( ) ( s ( )mg R m u ls s s/ / ? %%%% in ) 0s- ? R
E

 is the pin reaction force. 

Taking moments about the center of mass (here the end point mass) leads to:  
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2cos( ) 0R l cls s/ ?% . Solving the first equation for  and substituting into the second one 

leads to the equation of motion: 

R

sin( )s s…

co

c
Y

1,2,3...j ? n
w

0.2q ?
1

0.01C ?

s q ?

 

1
( )sin( )

c
g u

m l
s s s- - - ?%% % %% 0

 

( 6 ) 

After substituting the function for the harmonic translation and assuming small pendulum 

oscillations ( ), a non-dimensional version of equation ( 6 ) can be written as: 

 
2
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( 7 ) 

where the following non-dimensional coefficients were employed. 
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Equation ( 7 ) is a damped Mathieu-Hill
[4]

 equation. Students should be made aware that, 

although the system is homogeneous, with no apparent forcing function, there are situations 

when the response of this type of system can be unstable. This is due to the presence of the time-

dependent coefficient in the equation. It can be shown that the coefficient frequencies that will 

cause instabilities are related to the undamped natural frequency of the system by 
2

n

j
ww ? , 

( where  is the non-dimensional undamped natural frequency, see reference
[4]

 for 

more details). Note that here 2

0

1
n

g
l

w ?
Y

? , then the condition becomes 2
j

w ?

1

, . 

When this is satisfied, a so-called “parametric resonance” is possible. For 

1,2,3...j ?

j ?  the condition 

leads to the primary parametric resonance at 2w ? . This is different from a forced resonance 

condition, where a resonance is expected when the frequency of the forcing function approaches 

the natural frequency of the system ( 1w ?  not 2w ? ). This parametric instability is verified 

numerically in the following.  

 

FIGURE 14 shows the response for the following parameters: (0) 0.1rads ? , 
(0)

0
d

d
s

v ? , 

,  and 2.0w ?

(0) 0.1

 which, as mentioned above, is expected to lead to unstable 

response. The numerical simulation shows an exponential growth of the response and, 

consequently, instability.  FIGURE 15 shows the numerically obtained response for the 

following parameters: rad? , 
(0)

0
d

d
s

v ? , 0.2  and 1.6w ? . In this case the 

condition for parametric instability is not satisfied and no resonance is expected.  This is 

confirmed by the response shown in the figure. 
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FIGURE 14 – PENDULUM RESPONSE TO 

INITIAL CONDITIONS – UNSTABLE 

 

FIGURE 15 – PENDULUM RESPONSE TO 

INITIAL CONDITIONS – STABLE 

There are several approaches to investigating the conditions that drive parametric systems 

unstable. Their discussion is beyond this text. Nevertheless, a simple approach, known as Hill’s 

infinite determinant
[4]

, is shown here. This approach can lead to the “boundaries” of the 

instability zones in the space defined by the parameters w  versus . Students can verify, 

numerically, whether the response of the system to initial conditions is stable or not (and confirm 

the predictions given by the approach).   
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FIGURE 16 – PENDULUM STABILITY BOUNDARIES 
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The primary instability zone ( ) for the pendulum system is given in FIGURE 16 (using the 

same numerical values as before – worksheet is given in Appendix A). When the system 

parameters  and 

1j ?

q w  lead to a point falling inside the “unstable region” the response to small 

disturbances will be unstable. Note that the unstable response obtained above is for the point 

 and 0.2q ? 2.0w ? , which can be seen to fall inside the unstable region. On the other hand, the 

stable response is for a point falling in the stable region ( q 0.2?  and 1.6w ? ).  Damping does 

play a role here and enough damping could stabilize an “unstable condition” (the instability zone 

moves off the w axis ).  
 

Conclusions  
 

In most undergraduate engineering courses students are introduced to mathematics software such 

as MAPLE®. For dynamics courses, some intractable problems can then be explored in order to 

demonstrate interesting and important physical phenomena. The examples presented here were:   

(i) The effect of viscous damping on the stability of an inverted pendulum. It was shown that 

with a linear model viscous damping does not stabilize an unstable state, whereas, damping plays 

an important role when a non-linear model is considered. (ii) Forced harmonic motion of a non-

linear hardening spring-mass system. The numerical simulation of the response illustrates a 

“jump phenomena” in which the steady state amplitude undergoes a jump in passing through 

frequencies close to the linear resonance frequency. (iii) A simple pendulum with an oscillating 

support, illustrating parametric resonance. Depending on the parameter values of the system 

instabilities can occur (parametric resonance). This is shown numerically and confirmed with an 

available analytic expression.  
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Appendix A 
 

 ############ inverted pendulum stability ####################### 

 restart: 

 with(linalg):with(plots):with(DEtools): 

 eq10:=(diff(x(t), `$`(t, 2)))+J*(diff(x(t), t))+B*x(t)-sin(x(t)); 

 B:=0.95;J:=0; 

 for i from 1 to 20 do 

 eq10;                                                                                

sol001:=dsolve({eq10,x(0)=evalf(convert(5*degrees,radians)),D(x)(0)=0},{x(t)}

, type=numeric, method=gear,output=procedurelist): 

odeplot(sol001,[t,x(t)],0..200,numpoints=1000,color=black,labels=["time","ang

le"]); 

 J:=J+0.01; 

 end do; 

 restart: 

 with(linalg):with(plots):with(DEtools): 

 eq10:=(diff(x(t), `$`(t, 2)))+J*(diff(x(t), t))+B*x(t)-(x(t)); 

 B:=0.95;J:=0; 

 for i from 1 to 20 do 

 eq10;                                                                                

sol001:=dsolve({eq10,x(0)=evalf(convert(5*degrees,radians)),D(x)(0)=0},{x(t)}

, type=numeric, method=gear,output=procedurelist): 

odeplot(sol001,[t,x(t)],0..5,numpoints=1000,color=black,labels=["time","angle

"]); 

 J:=J+0.01; 

 end do; 

 ######################## duffing equation ################################ 

 restart: 

 with(linalg):with(plots):with(DEtools): 

 eq01:=(diff(x(t), `$`(t, 2)))+2*beta*(diff(x(t), t))+x(t)+delta*x(t)^3-

sin(nu*t); 

 delta:=0.25;beta:=0.1; 

 eq01; 

 nu:=0.1; 

 for i from 1 to 20 do 

 eq01;                                                                                

sol001:=dsolve({eq01,x(0)=0,D(x)(0)=0},{x(t)}, type=numeric, 

method=gear,output=procedurelist): 

odeplot(sol001,[t,x(t)],0..200,numpoints=1000,color=black,labels=["time","ang

le"]); 

 nu:=nu+0.1; 

 end do; 

 restart: 

 with(stats[statplots]): 

fig01:=plot([[0.1,0.8495],[0.2,0.8720],[0.3,0.8676],[0.4,1.1246],[0.5,1.1078]

,[0.6,1.1728],[0.7,1.2727],[0.8,1.4091],[0.9,1.5621],[1.0,1.7450],[1.1,1.9307

],[1.2,2.1593],[1.3,2.3589],[1.4,2.5885],[1.5,0.8779],[1.6,0.6639],[1.7,0.533

3],[1.8,0.4393],[1.9,0.3800],[2.0,0.3290]],style=point,symbol=box,color=black

): 

 #fig02:=xscale((1/0.0032),fig01): 

 #fig03:=yscale(1/0.0873,fig02): 

 plots[display](fig01,labels=["omega/omega0","steady state 

amplitude"],labeldirections=[horizontal,vertical]); 

 restart: 

 with(linalg):with(plots):with(DEtools): 
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fig01:=plot([[0.1,0.8495],[0.2,0.8720],[0.3,0.8676],[0.4,1.1246],[0.5,1.1078]

,[0.6,1.1728],[0.7,1.2727],[0.8,1.4091],[0.9,1.5621],[1.0,1.7450],[1.1,1.9307

],[1.2,2.1593],[1.3,2.3589],[1.4,2.5885],[1.5,0.8779],[1.6,0.6639],[1.7,0.533

3],[1.8,0.4393],[1.9,0.3800],[2.0,0.3290]],style=point,symbol=box,color=black

): 

 eq01:=(diff(x(tau), `$`(tau, 2)))+2*beta*(diff(x(tau), 

tau))+x(tau)+delta*x(tau)^3-sin(omega/omega0*tau); 

 amp:=1/(sqrt((1-(omega/omega0)^2)^2+(2*beta*omega/omega0)^2)); 

 omega0:=1;delta:=0;beta:=0.10; 

 eq01; 

 amp; 

 plot(amp,omega=0..2); 

fig01:=plot([[0.1,0.8495],[0.2,0.8720],[0.3,0.8676],[0.4,1.1246],[0.5,1.1078]

,[0.6,1.1728],[0.7,1.2727],[0.8,1.4091],[0.9,1.5621],[1.0,1.7450],[1.1,1.9307

],[1.2,2.1593],[1.3,2.3589],[1.4,2.5885],[1.5,0.8779],[1.6,0.6639],[1.7,0.533

3],[1.8,0.4393],[1.9,0.3800],[2.0,0.3290]],style=point,symbol=box,color=black

): 

 fig02:=plot(amp,omega=0..2): 

 #fig03:=yscale(1/0.0873,fig02): 

 plots[display]([fig01,fig02],labels=["omega/omega0","steady state 

amplitude"],labeldirections=[horizontal,vertical]); 

 ############### pendulum on an oscillating support ##################### 

 restart:with(linalg): 

 eq01:=diff(g(x),x$2)+c*diff(g(x),x)+(nu0^2-nu^2*q*cos(nu*x))*g(x); 

 g(x):=a1*sin(nu*x/2)+b1*cos(nu*x/2); 

 eq01; 

 eq1:=combine(eq01,trig); 

 eq1:=sort(eq1,[sin(nu*x/2),cos(nu*x/2)]); 

 eq1a:=collect(eq1,[sin(nu*x/2),cos(nu*x/2)]); 

 coef01:=coeff(eq1a,sin(nu*x/2),1); 

 coef02:=coeff(eq1a,cos(nu*x/2),1); 

 m1:=collect(coef01,[a1,b1]); 

 m2:=collect(coef02,[a1,b1]); 

matriz:=matrix(2,2,[coeff(m1,a1,1),coeff(m1,b1,1),coeff(m2,a1,1),coeff(m2,b1,

1)]); 

 equacao:=det(matriz); 

 raizes:=solve(equacao,q); 

 c:=.01;nu0:=1; 

 raizes; 

 raizes[1]; 

 raizes[2]; 

 #raizes[3]; 

 #raizes[4]; 

 plot([raizes[1],raizes[2]],nu=0..5,0..10); 

plot([raizes[1],raizes[2]],nu=1.5..2.5,0...0.4,labels=["nu","q"],color=black)

; 

 restart:with(linalg):with(DEtools):with(plots): 

 eq01:=diff(g(x),x$2)+c*diff(g(x),x)+(nu0^2-nu^2*q*cos(nu*x))*g(x); 

 c:=0.01;q:=0.2;nu0:=1;nu:=2; 

 eq01; 

 sol001:=dsolve({eq01,g(0)=0.1,D(g)(0)=0},{g(x)}, type=numeric, 

method=gear,output=procedurelist); 

odeplot(sol001,[x,g(x)],0..50,numpoints=1000,color=black,labels=["time","ampl

itude"],labeldirections=[horizontal,vertical]); 

 c:=0.01;q:=0.2;nu0:=1;nu:=1.6; 

 eq01; 
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 sol001:=dsolve({eq01,g(0)=0.1,D(g)(0)=0},{g(x)}, type=numeric, 

method=gear,output=procedurelist); 

odeplot(sol001,[x,g(x)],0..200,numpoints=1000,color=black,labels=["time","amp

litude"],labeldirections=[horizontal,vertical]); 

 

Appendix B 
 

(i) The effect of viscous damping on the stability of an 
inverted pendulum. It is shown that with a linear model 
viscous damping does not stabilize an unstable state, 
whereas, damping plays an important role when a non-
linear model is considered 
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(ii) Forced harmonic motion of a non-linear hardening 
spring-mass system. The numerical simulation of the 
response illustrates the “jump phenomena” in which the 
steady state amplitude undergoes a jump in passing 
through frequencies close to the linear resonance 
frequency 
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(iii) A simple pendulum with an oscillating support, 
illustrating parametric resonance. 
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 (iv) a finite difference scheme  
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 (v) a non-linear pendulum subjected to various initial 
conditions, showing how the period depends on the 
amplitude  
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(vi) a non-linear softening spring showing the existence 
of instabilities  
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(vii) the stability of an inverted pendulum restrained by a 
spiral spring, illustrating the existence of multiple 
equilibrium states and their stability 
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(viii) a numerical simulation of a sweep test (forced 
motion of a single-degree-of-freedom system in which 
the forcing frequency varies with time), showing that if 
the sweep rate is too fast, no resonances will be 
observed.  
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P
age 12.327.14


