
---- Session 3220

Building a Pipelined Computer in the Architecture Laboratory

Richard J. Reid
Michigan State University

Abstract - This computer architecture laboratory uses an object-oriented approach to provide a simulation modeling language. This
language allows students to complete models of real pipelined computers. The modeling language is implemented as a class library
for C++. Using this library, students are able to complete working models of an actual Silicon Graphics microprocessor, the MIPS
4000. Student work is easily validated since a correct model allows simulated execution of the code produced for a standard model of
the microprocessor.

Introduction

Students come to this Computer Architecture course with a two-semester background in C++ programming, and one semester of
introductory machine organization and assemble-language programming. The latter course, using the text by Maccabe [1], includes
four laboratory sessions in which students use the digital simulator described below to implement combinational gating networks and
simple sequential machines.

The laboratory activity reported here supports this Computer Architecture course and is a required course for Computer Science
and Computer Engineering majors, and is elected by many Electrical Engineering and other students. The course is completed by 60
students each semester. This course uses the text by Patterson and Hennessy [2] with supplementmy material from the MIPS Micro-
processor User’s Manual [3]. Although each student is completing a functionally equivalent microprocessor, each is assigned person-
alized data-flow pathways for which their component interconnections and control must be customized.

The Pipelined Computer

To accommodate the design and implementation of complex digital networks and computing structures, laboratories are turning
to simulation, [4,5]. Simulation allows the convenient modeling of extensive designs.

In keeping with the architecture of all modem computers, those implemented in this laboratory use pipelining for efficient
execution of instructions. The figure shows the three stages, fetch, decode and execute, that are implemented.

completions are accomplished within each of

?@La-’} 1996 ASEE Annual Conference Proceedings
‘.+,~yy’.~

P
age 1.91.1

The Essential features of pipelining encountered in tlis design include:-..
● Separation of instruction execution into multiple stages.
● Simultaneous processing of different instructions within the multiple stages.
● Detection of data and branch dependencies.
● Stalling the pipeline when necessary to prevent hazardous execution.

Simulation Modeling

Object-oriented languages such as C++ allow class definitions which eliminate the need for using special-purpose simulators in
many cases. Simulating digital logic components and computer architectures is one case where the simulation model can be effec-
tively and conveniently expressed in the programming language itself.

A class library supporting: schematic organization, multi-level digital-signal representation, and implementations of a modest
set of component primitives has been developed. This library supports two forms of hierarchical arrangements: first, the digital signals
themselves can be expressed as vectors (as for a bus), either directly or by composition, and second, the digital components can be
arranged hierarchically as modules, and the modules can be used in an identical manner in which the primitives are used. This library
code described here is free software and is available from the author.

The animation features provided with the simulation model allow seeing any collection of logical signals as their values
sequence over time. The model displays the system clock ticking, and the instructions progressing through the pipeline can be viewed.
Wile the simulation would normally advance too rapidly to allow viewing a meaningful animation, interactive control of the simula-
tion time is provided, so every change can be observed.

Networks to be simulated are implemented by declaring the signals involved and connecting those signals to the component
inputs and outputs. The general format of component specification is:

<Component Type> (<Schematic Position>, <Input(s)>, cOutput(s)>);

as C++ function invocations.

Consider the following simple example, written in C++, of a two-input And gate activated by Switches and monitored by a digi-
tal Probe:

#include <sim.h>

maino
{
Signal a, b, c; // Declaration of signals

Switch (” la”, a, ‘a’);// Position Switch at schematic position “la”, and associate keyboard ‘a’ key with Signal a

Switch (” la”, b, ‘b’);// Associate keyboard ‘b’ key with Signal b

And (“lb”, (a, b), c);// Group scalar signals as an input vector

Probe (“ lc”, c); // Display the output

simo; //Begin simulation
}

Since C++ is strongly typed, all Signals must be declared before usage. The Signals a, b, c appear as scalars in this case; however,
Signal declaration is for signal vectors, and the default form here creates signal vectors of unit length.

The <Schematic Position> entries position the components on a two-dimensional grid in the simulation-time display-window.
The simulation is interactive, and the Switch components provide keyboard links to signals so the logical signals may be toggled dur-
ing simulation time.

Components may generally have multiple inputs and outputs. The second argument to the And above is composed using the
overloaded comma operator. The inner parentheses escape from the outer level that is doing argument-list formation, to the level
where comma is just another C++ operator--overloaded for class Signal to allow composition in this case. The simulation-time display
is shown in Figure 2.

w . .- . . -

@X~~ 1996 ASEE Annual Conference Proceedings
‘O,+,pll:“y,..”

P
age 1.91.2

1
- .-.

Figure 2. And Network

Figure 3. Branch/Arithmetic Unit

Testing of these individual modules, as they are completed, helps insure they will function properly, when they are finally

?ik! 1996 ASEE Annual Conference Proceedings
‘.,,,~yy’:

P
age 1.91.3

interconnected in the pipeline machine, during the last few weeks of the semester. The culmination of building a model of a standard
proceS?bi%’ running actual code produced for a real machine. We see below a typical testing program in its three forms: 1) The hex
codes of execution, 2) The assembly-language version, and 3) The C-language version. This section of code tests that values can be
written to a region of Ram and subsequently retrieved and checked.

Hexadecimal

2004AA4A
20050000
20060000
2007EEEE
20080040
00002820
10A8OOO5
00A65020
00855820
AD6AOOO0
08000006
20A50004
00002820
10A80008
00A65020
00855820
8D6COOO0
154COO02
20ADO030
KFDoooo
0800000D
20A50004
0800000C
00C63020

Conclusions

s t a r t :

.endforl :

e l s e :

.endfor2:

Assembly-Language

addi $4, $0,0xAAA4
addi $5, $0,0
addi $6, $0,0
addi $7, $0,0xEEEE
addi $8,$0,64
a d d $ 5 , $ 0 , $ 0
A:beq $5, $8, .endforl
a d d $ 1 0 , $ 5 , $ 6
a d d $ 1 1 , $ 4 , $ 5
Sw $10,0($11)
jA
addi $5, $5,4
a d d $ 5 , $ 0 , $ 0
B:beq $ 5 , $ 8 , . e n d f o r 2
a d d $ 1 0 , $ 5 , $ 6
a d d $ 1 1 , $ 4 , $ 5
Iw $12,0($11)
b n e $ 1 0 , $ 1 2 , .else
addi $13,$5,0x30
Sw $13,0($7)
jB
a d d i $ 5 , $ 5 , 4
j endforl
a d d $ 6 , $ 6 , $ 6

C-Language

register int * ram= (int *) OxAAAA;
register int i = O; I* scaled *I
register count = 0x8000;
reg i s t er in t * stderr = (int *) OXEEEE;
loop limit I* scaled *I
for(i=O; ic16; i + +)

*(ram+i) = i + count;

I* i++: s c a l e d *I
for(i=O; i<16; i + +)

if (*(ram+i) == (i + coun t))

*s tde r r = i + OX30;

I* i + + : s c a l e d *I
g o t o l a s t f o r ;
count *= 2;

By using a simulation model of areal pipelined machine, in the computer architecture course laboratory, students complete a
realistic design. Student work is easily validated in this laboratory since acorrect model allows executionof the standard codeforthe
MIPS microprocessor. Opportunities exist for reasonable extensions in this laboratory work. Themicroprocessor currently imple-
mentedhas only thee stages ofpiWlining--this can beelaborated tothefour ormorecomonly used. Cache implementations of the
instruction memory is planned as an addition for these projects in the future.

References

1. B. Maccabe ’’Computer Systems: Architecture, Organization, andProgramming,”
RichardD. Irwin, Inc., Homewood,IL, 1993.

2. D. Patterson and J. Hennessy, ’’Computer Organization&Design,TheHardware/Software Interface;’
Morgan Kaufmann Publishers, San Mateo, California, 1994.

3. J. Heinrich, ’’MIPS R4000User’s Manual:’
PTR Prentice Hall, Englewood Cliffs, New Jersey, 1993.

4. M. Singh, “Role of Circuit and Logic Simulation in the EE Curriculum,” IEEE Trans. Educ., Vol. E-32, No. 43, pp. 411-414,
August, 1989.

5. F. Tangoma, ''The Roleofthe Computer kchitecture Simulator inthe Laborato~,'' ACM SZGCSEBulletin, Vol.22, No. l,pp.5-l0,
June, 1990.

RICHARD J. REID (reid@cps.msu.edu) received B.S. and M.S. degrees in electrical engineering from Iowa State University in 1955
and 1956, respectively, and the Ph.D. degree in electrical engineering from Michigan State University in 1959. Since 1965 he has
been professor of Computer Science at Michigan State University. Hiscument interests meincomputer mcfitecture and simulation.

-.

P
age 1.91.4

.,- ,- -. ... ,

<’6Z@ 1996 ASEE AnnUal Conference Proceedings
‘..+,yyyL,?

P
age 1.91.5

