

632

Building Affordable High Performance Computing Platforms for
Engineering Education

Yili Tseng

Department of Electronics, Computer, and Information Technology
North Carolina A & T State University

Greensboro, NC 27411, U.S.A.
E-mail: ytseng@ieee.org

YILI TSENG

Yili Tseng received the PhD degree in computer engineering from the University of Central Florida.
He is currently an Associate Professor and the advisor of the Computational Technology
Concentration in the Department of Electronics, Computer, and Information Technology at North
Carolina Agricultural and Technical State University. He published several research papers in
internationally recognized journals and conferences, including IEEE Transactions on Parallel and
Distributed Systems and Parallel Computing. His research interests include high-performance
computing, grid computing, and cloud computing.

633

Building Affordable High Performance Computing Platforms for

Engineering Education

Yili Tseng

Department of Electronics, Computer, and Information Technology

North Carolina A & T State University

Greensboro, NC 27411, U.S.A.

E-mail: ytseng@ieee.org

Abstract - Traditionally, engineering and science disciplines have relied on observation, theory, and

experimentation as tools to perform research to explore new knowledge. With the introduction of

computer hardware and software, numerical simulation based on mathematical modeling gradually

becomes an important tool. After high performance computers are mature and commercially available,

numerical simulation has become a tool as important as observation, theory, and experimentation to all

engineering and science disciplines. In most cases, it is adopted more often than experimentation because

it is more economic, less time-consuming, and able to explore infeasible situations. Without doubts,

numerical simulation should be included by engineering education. Numerical simulation depends on

high performance computers. High performance computers refer to parallel computers, namely

computers equipped with multiple processors. However, the largest barrier to high performance

computing education is the high cost of high performance computers. Most institutions cannot afford

expensive parallel computers. The author explored and managed to discover three options of affordable

platforms suitable for high performance computing classes. The first platform is personal computers

equipped with multi-core processors and thread libraries. The second platform is PCs equipped with

Graphic Processing Unit cards. The third platform is commodity clusters consisting of inexpensive PCs

and network switches. They even can be built with retired PCs. All three approaches provide low-cost

solutions for all institutions to offer their high-performance computing education.

1. Introduction

Traditionally, engineering and science disciplines have relied on observation, theory, and

experimentation as tools to perform research to explore new knowledge. With the introduction of

computer hardware and software, numerical simulation based on mathematical modeling gradually

becomes an important tool. [1][2] Most engineering and science disciplines develop numerical modeling

for simulations in their respective fields. [1][2][3] After high performance computers are mature and

commercially available, numerical simulation has become a tool as important as observation, theory, and

experimentation to all engineering and science disciplines. In most cases, it is adopted more often than

experimentation because it is more economic, less time-consuming, and able to explore infeasible

situations. [1][2] Without doubts, numerical simulation should be included by engineering education.

Numerical simulation depends on high performance computers to solve large scale problems or

effectively improve accuracy of results because they surpass the computing power of uniprocessor

computer system. High performance computers refer to parallel computers, namely computers equipped

with multiple processors. [3][19][20][22] Although parallel computers are capable to execute sequential

programs, but only one processor is being utilized while other processors sitting idle. Parallel programs

have to be written and executed to take advantage of all processors in a high performance computer.

Therefore, introductory high performance computing and parallel programming courses should be

covered by engineering education as well. Another rationale which makes both courses imperative for

engineering education is explained as follows. Since 2003, the speed of uniprocessors can hardly be

634

pushed because of energy-consumption and heat-dissipation problems. [3] That is why the major

processor manufacturers such as Intel and AMD introduce multi-core processors instead of uniprocessors

with faster clock cycle since then. Just like multiprocessor computers, parallel programs have to be

executed to take advantage of all cores of a multi-core processor. Both phenomena push the need for high

performance computing education to be part of engineering education as engineering applications heavily

depend on computation.

However, the largest barrier to high performance computing education is the high cost of high

performance computers. Most institutions cannot afford expensive parallel computers. Even if a

university owns few high performance computers, they are always reserved for research and would not

be used for teaching and learning because they are precious. That is the case at the author’s institution. In

order to find affordable platforms for his high performance computing classes, the author explored and

managed to discover three options of affordable platforms suitable for high performance computing

classes. The first platform is personal computers (PCs) equipped with multi-core processors and thread

libraries. The second platform is PCs equipped with Graphic Processing Unit (GPU) cards. The third

platform is commodity clusters consisting of inexpensive PCs and network switches. They even can be

built with retired PCs. All three approaches provide low-cost solutions for all institutions to offer their

high-performance computing education. They will be presented in this paper so that any institution can

select the option which fits their affordability and deploy high performance computing platforms with the

minimal costs.

2. Multi-core Processors and Threading Libraries

The easiest way to start parallel processing is to carry out multithreaded programs on multi-core PCs. No

extra hardware needs to be added except multithreading libraries needed to be installed. Most

multithreading libraries are free. Although multithreaded programs can be executed on uniprocessor PCs,

parallelism from multithreading would not make any performance gain because all threads are executed

sequentially by a single uniprocessor. Fortunately, multi-core PCs are very affordable these days. The

current drawback is that all threads can only be executed on the cores of the same chip. Consequently,

only small scale multithreaded programs can be executed because not many cores can be incorporated

into a chip by current technology. Nonetheless, considering many-core processors with 32 or 48 cores are

being rigorously tested, multithreaded programs will be able to carry out large scale parallel applications

soon. It is still worthy to starting teaching multithreading programming. The popular threading libraries

and concurrent programming languages are introduced in following subsections.

2.1 Intel Threading Building Block

Intel Threading Building Block (TBB) is the newest threading library which supports C++. [15] It is

downloadable at http://threadingbuildingblocks.org for free. It targets to provide high-level parallelism in

contrast to low-level parallelism offered by raw threads libraries and Message Passing Interface (MPI).

Issues like optimal management of a thread pool, proper distribution of task with load balancing, and

cache affinity are automatically taken care of by TBB. Therefore, it is easier for beginning parallel

programmers in addition to better performance than the alternatives.

2.2 POSIX Threads

POSIX (Portable Operating System Interface) Threads (Pthreads) is a threading library for C++ as well.

It has been existing for more a decade and was the most popular threads library in the past. Hence, more

documentations and textbooks are available for Pthreads. [13][14][16]

635

2.3 Microsoft Windows Threads

Microsoft Windows Threads is a threading library supporting C++ for Microsoft Windows operating

systems. It is included in Microsoft Windows SDK. Some programmers prefer it to Pthreads because of

the simplicity of use. [24]

2.4 Threads in Java and C# and Tasks in Ada

Java, C#, and Ada are concurrent programming languages which directly support concurrency without

having to use API. [17] The concurrent activities are called threads in Java [17][18][21] and C# [23]

while called tasks in Ada. Different thread and tasks can be executed in parallel on different cores of a

multi-core processor.

3. GPU-equipped Personal Computers

Compute Unified Device Architecture (CUDA) is an architecture developed by NVIDIA for its GPUs.

[27][28][29] CUDA adopts many-core approach which has numerous much smaller cores than the cores

of a multi-core CPU. The massive GPU cores are optimized for floating-point calculations while the

CPU cores are optimized for sequential code execution. [28] Engineering applications rely heavily on

floating-point calculations. CUDA can place much more cores in a chip than multi-core CPUs. That

makes it more powerful than multi-core CPUs in floating-point calculations as much more cores are

dedicated to the purpose. In 2009, the ratio for peak floating-point calculation throughput between many-

core GPU and multi-core CPU is about 10 to 1. [28] The Chinese Tienhe-1A supercomputer took the title

of fastest supercomputer in the world from American Jaguar supercomputer in November 2011 with

37794 less CPU cores by adopting GPUs. GPUs’ design philosophy also makes them cheaper than multi-

core CPUs. Table. 1 lists the numbers of GPU cores and costs of four different GPU cards. The numbers

of CPU cores and costs of three different CPUs are shown in Table 2. Those prices as of October

2011were found on www.pricewatch.com. Apparently, the cost/performance ratio of GPUs is much

better than that of multi-core CPUs. The programming language is CUDA C/C++ which is based on

C/C++. Lots of computational scientists and researchers are adopting GPU programming because it is

very cost-effective. Therefore, GPU computing is very promising and should be covered in engineering

education.

Model Number of GPU Cores Price

GeForce 210 16 $35

GeForce GT 430 96 $60

GeForce GTX 460 336 $149

GeForce GTX 580 512 $460

Table. 1 Features and Costs of GPU

Model Number of CPU Cores Price

Intel Core i7 3.06GHz 4 $297

AMD Phenom II X6 3GHz 6 $169

AMD Phenom II X4 3GHz 4 $120

Table. 2 Features and Costs of CPU

636

With the low-costs of GPUs, PCs equipped with GPU cards are affordable for any institution. The

CUDA library and compiler is provided by NVIDIA for free for Linux, Windows, and MacOS. All

software required for GPU programming is free if Linux platform is adopted.

3.1 Hardware Requirement

Any graphic card equipped with NVIDIA GPU can be utilized. GPU Device drivers have to be installed

and can be downloaded from www.nvidia.com. [27]

3.2 Software Requirement

The software required for GPU programming is C compiler for GPU and C compiler for CPU. The GPU

compiler is contained in CUDA Development Toolkit which is freely downloadable at NVIDIA’s web

site. [27] The GNU C compiler coming with Linux can be used as the compiler for CPU without charge.

4. Commodity Clusters

C/C++ and FORTRAN has dominated the numerical methods field, a key part of computational science,

for decades and numerous of programs were coded in both languages. It is beneficial to stick with both

languages and reuse existing codes and libraries. Message Passing Interface (MPI) is a standard

developed for parallel libraries supporting C/C++ and FORTRAN.[1][2][3][10] [25][26] Several MPI

implementation has been developed for different platforms. MPI programs are portable among those

platforms. Message-passing clusters are the most popular high performance computers. Students learning

MPI programming from small-scale commodity clusters can easily adapt to large-scale high performance

clusters. Thanks to the contribution of open-source software developers, MPI libraries have been

successfully ported to inexpensive PC platform. Along with other free open-source operating systems

and applications for PC, they can make PCs networked by low-cost switches a commodity cluster, an

affordable platform for high performance computing education. With clusters built with the retired PCs

and free software, any institution can own its platforms with minimal cost and start high performance

computing education. Although clusters built with retired PCs do not have sufficient computing power to

execute large-scale parallel applications, they do exhibit all characteristic of parallel processing and can

execute qualitative experiments. If an institution owns sufficient funding, it can acquire high-end PCs

and construct a cluster which has decent computing power to execute serious parallel programs for

research. While an affordable cluster can be built with the free open-source software and retired PCs, it

cannot work practically without some vital configurations. Several books have been written about

building a cluster with Linux. [4][5][6][7][8] However, all of them fail to point out the vital

configurations required to make the cluster work correctly. The practical issues in building an

inexpensive cluster are addressed in the following subsections respectively.

4.1 Hardware Requirements

Any PC with 128B RAM or more and an Ethernet network interface card (NIC) can work as a node. PCs

with Pentium III 500MHz CPUs work smoothly at author’s institution. All nodes have to be connected

with a network switch. Generic Ethernet NICs and switches can be acquired with very little cost. The

logical layout is shown in Figure 1 and a 10-node commodity cluster is displayed in Figure 2.

637

Fig. 1 Logical layout of a commodity cluster

Fig. 2 A 10-node commodity cluster built of retired PCs

4.2 Operating System and Software Packages

Among all operating systems, only Linux can be acquired for free. Also, Linux operating systems come

with plenty of hardware drivers which cover almost all legacy and new hardware, that further makes it

the ideal OS for commodity clusters. Although several implementations of open source Linux operating

systems are available, not all of them work well with the MPI library. After extensive experiments, the

author chose and installed CentOS Linux which is a clone of commercial Red Hat Enterprise Linux [11]

and downloadable at www.centos.org. The following actions should be done for all nodes in the cluster.

Firewall and SELinux should be turned off during installation as they cause difficulty for

communications among nodes which are required for executing MPI programs. Fortunately, security is

not a concern as long as the cluster is not connected with other networks. The editor, GNU C++ and

FORTRAN compilers under “Development Tools” have to be installed to as they are required for MPI

programming process. One node should be selected as the server node and the following software should

be installed on the node during installation: Network Information Service (NIS) server under “Network

Server” and Network File System (NFS) server configuration tool under “Server Configuration Tool.”

After Linux is installed, networking should be correctly configured so that all nodes of the cluster can

communicate among one another. In general, one user account with the same name needs to be created

on each node because a parallel program is dispatched to each node under the same user account. NIS

which is addressed in later subsections can take care of this and other issues.

638

4.3 MPI library

The next major step is to install the MPI library. Again, there are several free implementations of MPI,

such as MPICH, LAM/MPI, Open MPI, etc. Nevertheless, only Open MPI is still under active

development and growing more powerful. [9] Therefore, Open MPI is the best choice. The steps to

install Open MPI are quite straightforward. They are described as follows. First, download the latest

version of the library from Open MPI’s website, www.openmpi.org. Log into the root account to install

it. Copy the compressed file to the /tmp directory. Uncompress the file by double clicking the file icon to

uncompress the library. Then change to the directory openmpi-1.4.3. Configure and make Open MPI

with the commands below. [9] Replace the directory after prefix option if you want to install into another

directory. The make process may take up to one hour on an old PC.

shell$./configure - -prefix=/usr/local

shell$ make all install

4.4 Need for NFS and NIS

Before we run a parallel program on our cluster, we need to dispatch a copy of the program’s executable

file onto every node under the same account. Manually copying the executable to all nodes is impractical.

Network File System (NFS) is the solution to this requirement. With NFS, the program’s executables

only need to be saved into the shared directory of the NFS and a copy of the program will be

automatically copied to all other nodes. It is also impractical to create accounts for all users on all nodes.

To remedy this problem, Network Information System (NIS) is used to create accounts on the server

node. After all nodes are configured as NIS clients, all users can login from any node and run their own

parallel programs. You have to login as root to perform all following setups and reboot all nodes to take

effect. Do not reboot any client node until the server node completes its boot-up process, otherwise client

nodes cannot read the correct configuration information from the server and perform normally.

4.5 Set Up the NFS Server [11]

1) From the NFS Server Configuration window, click File → Add Share. The Add NFS Share window

appears. In the Add NFS Share window Basic tab, type the following information:

 Directory – Type the name of the directory you want to share. Type “/home” which is the

parent directory to all user directories.

 Host(s) – Enter one or more host names to indicate which hosts can access the shared directory.

Type “*” to let all nodes access NFS server.

 Basic permissions – Click Read/Write to let remote computers mount the shared directory with

read/write access.

2) To permanently turn on the NFS service, type:

shell$ chkconfig nfs on

shell$ chkconfig nfslock on

4.6 Set Up the NFS Client [11]

To set up an NFS file system to mount automatically each time you start your Linux system, you need to

add an entry for that NFS file system to the /etc/fstab file. The /etc/fstab file contains information about

all different kinds of mounted file systems for your Linux system. The format for adding an NFS file

system to your local system is the following:

639

host:directory mountpoint options 0 0

The first item identifies the NFS server computer and shared directory. Mountpoint is the local mount

point on which the NFS directory is mounted, followed by the file system type nfs. Any options related

to the mount appear next in a comma separated list. For our system, we add the following NFS entries to

/etc/fstab:

kingtiger1:/home /home nfs rsize=8192,wsize=8192 0

4.7 Set Up the NIS Client [11][12]

All nodes have to be configured as NIS clients by the following steps. Even the NIS server has to be set

up as an NIS client first.

1) Defining an NIS domain name:

To make the NIS domain name permanently, you need to have the domainname command run

automatically each time your system boots. It can be done by adding the command line to a run-level

script that runs before the ypbind daemon is started. The following line should be added just after the

first set of comment lines in the /etc/init.d/network file.

domainname kingtiger

2) Setting up the /etc/yp.conf file:

We have an NIS domain called kingtiger and a server named kingtiger1, the following entries are

added in the /etc/yp.conf file:

domain kingtiger server kingtiger1

domain kingtiger broadcast

ypserver kingtiger1

3) Configuring NIS client daemons:

We need set up an existing run-level script called ypbind to start automatically at boot time. To do

this, run the following command:

shell$ chkconfig ypbind on

4) Using NIS maps:

For the information being distributed by the NIS server to be used by the NIS clients, you must

configure the /etc/nsswitch.conf file to include nis in the search path for each file you want to use. In

most cases, the local files (files) are checked first, followed by nis. The following are examples of

how some entries should be changed:

passwd: files nis

shadow: files nis

group: files nis

hosts: files nis dns

4.8 Set Up the NIS Server [11][12]

1) To configure your Linux system as an NIS server, you should first configure it as an NIS client and

reboot the system.

2) Creating NIS maps:

To create NIS maps so that your Linux system can be an NIS server, start from the /var/yp directory

from a Terminal window as root user. In that directory, a Makefile enables you to configure which

files are being shared with NIS. All default configurations in Makefile are ok for our purposes, so we

don’t need change them.

3) Configuring access to maps:

640

In the /etc/ypserv.conf file, you can define rules regarding which client host computers have access to

which maps. For our purposes we just need add the following line into /etc/ypserv.conf to allow all

hosts access to all maps:

* : * : * : none

4) Configuring NIS server daemons:

We can use the following chkconfig command to set ypserv and yppasswdd scripts to start

automatically at boot time.

 shell$ chkconfig ypserv on

 shell$ chkconfig yppasswdd on

5) Updating the NIS maps:

If you modify the sources for NIS maps (for example if you create a new user by adding the account

to the passwd file), you need to regenerate the NIS maps. This is done by a simple

make –C /var/yp

This command will check which sources have changed, creates the maps new and tell ypserv that the

maps have changed.

4.9 Disabling Password Authentication

As Open MPI is configured by default to use ssh (secured shell) to dispatch parallel tasks, it is ssh that

asks for password to authenticate the connection. Extra steps below will prevent ssh from requesting

passwords [9]. Because the measure should only work for the user account which intends to run MPI

applications, log into the specific user account instead of root account to configure. First, generate the

private and public key for the user account by executing:

shell$ ssh-keygen -t dsa

That will generate the hidden .ssh directory with the necessary attribute. Change into the .ssh directory

and do the following. [9]

shell$ cp id_dsa.pub authorized_keys

With these procedures done, the public keys are duplicated as the authorized keys. They will be used for

authentication for all future connections without passwords being requested from other nodes. Now the

MPI applications can be executed on multiple nodes of this cluster without being asked for passwords.

5. Conclusion

With the maturity and availability of high performance computers, numerical simulation has surpassed

experimentation and become the most important tools for research and design as it is very cost effective.

Most engineering applications utilize numerical simulation to resolve problems. In turn, the efficiency of

numerical simulation depends on high performance computing. That fact necessitates engineering

education to cover high performance computing. As the development of processors has shifted to multi-

core approach, parallel programming becomes imperative to take advantage of the extra cores of modern

CPUs. Likewise, that demands the inclusion of parallel programming in engineering education.

Nonetheless, the challenge for most institutions to offer both topics in engineering education is the high

cost of high performance computers. The author explored and managed to discover three approaches to

build affordable high performance computing platforms for high performance computing education.

The first approach is to adopt PCs equipped with multi-core processors and install multithreading

libraries. Multithreaded programs which exhibit parallelism can be executed on all cores of the multi-

core processor. Students can learn parallel programming through writing the multithreading programs.

This approach does not require any extra hardware or configuration to build the high performance

computing platform. The second approach is to adopt the emerging GPU programming by acquiring PCs

equipped with inexpensive GPU cards. This approach requiring only insertion of GPU cards into the PCI

641

Express slots in the PCs and installation of software drivers. The third approach is to build commodity

cluster with PCs and network switches. This approach needs some system configurations which are all

described in this paper. As retired PCs can be used and all required software can be downloaded for free,

this approach is the cheapest way to build high performance computing platforms. While the three

approaches may not have the computing power to carry out large scale parallel applications, all of them

exhibit full features of parallel systems and applications. Hence, they are ideal for teaching high

performance computing in engineering education.

References

[1] Quinn, Michael J., Parallel Programming in C with MPI and OpenMP, McGraw Hill, 2004

[2] Karniadakis, George and Kirby, Robert, Parallel Scientific Computing in C++ and MPI, Cambridge University Press,

2003

[3] Grama, Ananth et al., Introduction to Parallel Computing, Addison-Wesley, 2003

[4] Sloan, Joseph D., High Performance Linux Clusters, O’Reilly, 2005

[5] Bookman, Charles, Linux Clustering, New Riders, 2003

[6] Vrenios, Alex, Linux Cluster Architecture, Sams, 2002

[7] Lucke, Robert, Building Clustered Linux Systems, 2005

[8] Gropp, William et al., Beowulf Cluster Computing with Linux, 2
nd

 Ed., MIT Press, 2003

[9] www.openmpi.org FAQ

[10] Pacheco, Peter S., Parallel Programming with MPI, Morgan Kaufmann Publishers, Inc. 1997

[11] Sobell, Mark, A Practical Guide to Red Hat Linux, Third Edition, Prentice-Hall, 2006

[12] http://www.linux-nis.org/nis-howto/

[13] Hughes, C. and Hughes, T., Professional Multicore Programming, Wiley, 2008

[14] Hughes, C. and Hughes, T., Parallel and Distributed Programming Using C++, Addison-Wesley, 2004

[15] Reinders, James, Intel Threading Building Blocks, O’Reilly, 2007

[16] Nichols, B. et al., Pthreads Programming, O’Reilly, 1996

[17] Welling, A., Concurrent and Real-Time Programming in Java, Wiley, 2004

[18] Breshears, C., The Art of Concurrency, O’Reilly, 2009

[19] Parhami, B., Introduction to Parallel Processing, Plenum, 1999

[20] Buyya, R., High Performance Cluster Computing, Vol. 2, Prentice-Hall, 1999

[21] Magee, J. and Kramer, J., Concurrency, Wiley, 2006

[22] Yang, L. and Guo, M., High-Performance Computing, Wiley, 2006

[23] Arora, G. et al., Microsoft C# Professional Projects, Premier, 2002

[24] http://software.intel.com/en-us/blogs/2006/10/19/why-windows-threads-are-better-than-posix-threads/

[25] Gropp, W. et al., Using MPI, MIT Press, 1999

[26] Gropp, W. et al., Using MPI-2, MIT Press, 1999

[27] Sanders, J. and Kandrot, E., CUDA by Example, Addison-Wesley, 2011,

[28] Kirk, D. and Hwu, W., Programming Massively Parallel Processors, Morgan Kaufmann, 2010

[29] Hwu, W., GPU Computing Gems Emerald Edition, Morgan Kaufmann, 2011

[30] www.top500.org

