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BYOE: The Fidget Car – An Apparatus for Small Group Learning in  
Mathematics, Systems and Controls  
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Please contact Laura Ray, Thayer School of Engineering, Dartmouth College, 
lray@dartmouth.edu, for assistance with Fidget Cars. 
 
Abstract 
 
We present the Fidget Car – a one degree-of-freedom car driven by a DC motor – for use in small 
group laboratory exercises or classroom-based small group learning activities of 10-40 minutes in 
length. These activities can be directed towards a number of STEM courses, ranging from 
undergraduate mathematics or introductory engineering to systems and controls classes in 
electrical and mechanical engineering. The motivation for developing these activities is to enable 
students to develop intuition regarding core systems and controls concepts prior to or integrated 
with presentation of mathematical concepts and analysis techniques: the activities are designed to 
enable students to “visualize” the mathematics of systems.  We provide an overview of the Fidget 
Car design, a materials list, example activities and use cases for the Fidget Car, and a pointer to a 
Google site archiving materials for reproducing and using the Fidget Car. We illustrate approaches 
for data acquisition and analysis that incorporate only a smartphone, a laptop, and open-source 
physics software, enabling activities to be conducted in a classroom setting. 
 
Introduction 
 
Systems and controls classes are often difficult for engineering undergraduates owing to 
mathematical rigor coupled with few opportunities to intuit system response characteristics. While 
many undergraduate systems and controls courses incorporate a course in differential equations as 
a prerequisite, often the math is integrated within the systems class, or, if a prerequisite math course 
exists, that course rarely includes elements that enable students to develop physical intuition 
regarding system response characteristics. The Fidget Car was developed to address the need for 
activities that enable students to develop insight regarding first- and second-order system response 
characteristics and effects of common nonlinearities, such as saturation, friction, and differentiable 
sensor nonlinearities. The cohort of authors worked together during a weeklong summer workshop 
to develop and refine learning activities to be used with the car.  The activities build on each other, 
such that students must recall concepts from earlier activities as they perform later activities to aid 
learning.  We see use cases for the Fidget Car ranging from first-year engineering mathematics to 
upper-level courses in control theory.  In this paper, we cover the design and development of the 
Fidget Car and exemplar activities that can be targeted towards students at different stages within 
an undergraduate engineering program.  A companion paper [1] details a sequence of activities 
specifically for systems and controls education. 
 
Fidget Car Apparatus 

 
The Fidget Car, shown in Fig. 1, is comprised of readily available components with the exception 
of a custom power amplifier and four simple machined parts, including an L-bracket chassis, a 
base plate, a sensor mount, and a mount for an optional tachogenerator.  Figure 2 provides a 



schematic for the power amplifier, and Fig. 3 shows partial drawings for the four parts indicating 
material dimensions. The Fidget Car is designed around a common 12 V DC motor (7750 RPM 
no load speed) and a 60:14 timing belt drivetrain that drives a rigid axle.  Axles are supported by 
miniature ball bearings mounted within bearing housings fastened to the chassis L-bracket with 
machine screws and are secured laterally using shaft collars.  Wheels are mounted directly to hubs 
fastened to axles with setscrews and secured laterally using retaining rings. The toolset required to 
assemble the mechanical system includes allen wrenches, a small screwdriver, needlenose pliers, 
and retaining ring pliers. 
 
The electrical system schematic is shown in Fig. 4. Two 12V NiMH batteries provide +12V and 
ground. The power bus is fabricated from a small piece of perfboard onto which an 18 position 
terminal block is soldered establishing connections for +12V, -12V ground, and the motor through 
switches. Both the power bus and switches are integrated within the sensor mount. A Sharp 
infrared sensor provides a voltage inversely proportional to distance from a target in front of the 
sensor. Figure 5 (from [2]) shows the voltage-distance relationship. The sensor is designed to be 
used in the nonlinear range of Fig. 5, and thus it is set back from the front of the car so that the 
linear region from 0 to ~5 cm is avoided.  A 5V regulator integrated with the power bus provides 
sensor power and ground. The Fidget Car includes a summing junction housed in a “black box” 
and a prototyping board for implementing series compensators, although the summing junction 
can easily be implemented on the prototyping board at a cost savings of approximated $15 per car.  
A summing junction schematic with buffered inputs is shown in Fig. 6 and can be based on a 
general purpose operational amplifier, such as the LM741. The prototyping board mounted on top 
of the summing junction in Fig. 1 is fused so that the board, the power amplifier, and the summing 
junction circuits are protected from accidentally shorting a power or ground line. The two toggle 
switches enable control of power to the system and power to the motor separately, such that 
students can debug control circuits with the motor off. The linear power amplifier provides up to 
3 A of current to the motor and accepts signal voltages of up to 12 V. The power amplifier gain is 
adjustable through a trim pot.  
 
The Fidget Car is designed as an “all in one” apparatus with associated activities that can be 
integrated throughout a systems and control curriculum.  A Google site [3] archives handouts and 
assessments developed for learning activities; a video showing assembly of the car; datasheets; 
materials list; and schematics for reproducing the car. 66 cars have been distributed to authors 
since July 2017, and an additional 20-25 cars are available for distribution to other faculty members 
interested in adopting the activities described herein. A materials list for the car is provided in 
Table A.2 and lists two sources for most parts. One source is for production in small quantities 
(~1-19 cars), and a second leverages quantity pricing for production in large quantities (20+ cars).  
A parts list for the power amplifier is provided in Table A.1. The approximate per-car cost is $350 
in small quantities and $230 in large quantities. Learning activities for a control theory class require 
a kit of parts that includes a variety of resistor and capacitor values ranging from 1 k to 3 M 
and 0.01 F to 10 F; operational amplifiers; trim pots; solid wire of various colors; spare fuses; 
and a trim pot tool.  
 



 
Figure 1  Fidget Car. 

 

 

 
Figure 2 Power amplifier schematic and layout 

 



   

   
Figure 3 Partial drawings of the four machined parts. Top left: Aluminum base plate (1/16” thick), Bottom left: three 
views of aluminum L-bracket (1/8” thick); Top right: sensor mount (1/4” thick); Bottom right: optional tachogenerator 
mount. (1/8” thick). Dimensions in inches. 
 

 
Figure 4 Electrical System Schematic. 



        
Figure 5  Sharp infrared sensor characteristics              Figure 6 Summing junction with buffered inputs. 
(from [2]). 
 
Fidget Car Dynamics and Example Learning Activities 
 
The dynamics of the Fidget Car are governed by the DC motor driving a load (wheels on the 
ground) and are approximated by a first-order linear system describing the velocity v(t) in response 
to a voltage input to the power amplifier V: 
 

                ߬ ௗ௩
ௗ௧
൅ ݒ ൌ  (1)                                                            ܸܭ

 
  is the time constant (seconds) and K is the DC gain of the system, which includes the gain of the 
power amplifier.  In addition, the dynamics include a number of common nonlinearities, including 
saturation (power amplifier and operational amplifiers), static and Coulomb friction between the 
wheels and the ground, and a differentiable sensor nonlinearity. 
 
Measurement of the system parameters constitutes an introductory activity that can be used in 
courses ranging from a first course in engineering analysis to a junior or senior-level control theory 
course.  In this activity, students apply open-loop step voltages of 2-6 V to the Fidget Car and 
acquire the open-loop response by using a stationary smartphone to video record the car’s motion 
as it is released from rest. Students use free online tracker software [3] to extract position vs. time 
and velocity vs. time data from the video from which they can derive a time constant and DC gain, 
and compare the experimental response to the model response.  Figure 7 shows a frame from a 
video of an overhead recording of the response along with example data.  The tracker software 
automatically tracks a marker on the car (red tape in Figure 7) and uses a user-defined reference 
distance (tile length in Figure 7) to provide position vs. time and velocity vs. time in physical units.  
The process of taking a video, importing it into tracker, and extracting the data takes approximately 
10 minutes once a student is familiar with the tracker software. 
 
This activity can be conducted in a number of ways and can incorporate a number of learning 
objectives depending on class size, use of the activity in the classroom vs. as part of a laboratory, 
and instruction provided before, during, or after the exercise. Class size impacts the ability to 
perform the activity in the classroom, as the logistics of having a large number of Fidget Cars 
available may be impractical for lecture-based courses. However, even in a large class, a single 
Fidget Car can be used interactively, with student helpers, to obtain responses for two to three 
different voltages; the data can  be immediately shared  with the class for subsequent  analysis in 



 
Figure 7  (a) Frame from a video of a system modeling exercise in progress, (b) Measured position and velocity data 
(blue) and first-order model response derived from the data (red). 
 
small groups, and time constants and DC gains calculated by each group can be readily shared 
with the instructor for discussion and comparison among groups. An introductory engineering 
class whose learning objective for the activity is to learn to characterize first-order systems can 
begin the exercise with the solution to the differential eq. (1) rather than with the differential 
equation, since students have exposure to exponential functions in calculus. Students can then 
practice different methods to find the parameters of a solution of the form ݒሺݐሻ ൌ ൫1ܸܭ െ ݁௧/ఛ൯	given 
a constant voltage and known initial condition.  Subsequent to the activity, the differential equation 
for the system may be introduced or derived from physical laws as a lead-in to the mathematics of 
first-order systems. In an upper-level course, groups may also evaluate linearity from a dataset 
comprising responses for several different voltages.  We found that linearity holds well for voltages 
above ~3 V. Effects of static friction are illustrated by having students determine the minimum 
voltage at which the car moves. 
 
While the velocity dynamics of the Fidget Car are first-order, position dynamics (as the integral of 
velocity) are second order. A second-order underdamped position response is readily portrayed by 
closed-loop feedback control of position with a proportional control gain of 4 to 8 V/V. The open-
loop system transfer function between position and the input voltage to the power amplifier is 
 

௫ሺ௦ሻ
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௄
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                 (2) 

 
where ݔሺݏሻ is the Laplace transform of position ݔሺݐሻ. The sensor provides a voltage inversely 
proportional to position, which, when linearized, provides a relationship between the linearized 
position and sensor voltage ௦ܸ: 
 

௦ܸሺݐሻ ൌ ௦ܸ௢ ൅ ሻݐሺݔ௦௘௡௦௢௥ሺܭ െ  ௢ሻ            (3)ݔ
 
ሺݔ௢, ௦ܸ௢ሻ is the operating point selected and ܭ௦௘௡௦௢௥ is the slope of Fig. 5 at the operating point. 
The sensor nonlinearity offers a learning opportunity related to linearization, which is commonly 
taught as a mathematical concept, i.e., use of the Taylor series, without understanding its 
implications within a system model.  Here, students may use the sensor characteristics in Fig. 5 
linearize the sensor model directly and determine its gain providing an alternate approach to 
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understanding a first-order Taylor series approximation. In a separate exercise, students may also 
calibrate the sensor instead of using the curve given by the manufacturer.  Note that ܭ௦௘௡௦௢௥ is 
negative for the infrared sensor leading to an additional learning opportunity – that of 
understanding the role of the negative sign in loop stability and how and where to change the sign 
if needed. In the Fidget Car, the sign of the feedback loop can be changed at the summing junction, 
by swapping the polarity of the motor, or placing an inverting, unity-gain op-amp in the loop.   
 
With a proportional control gain ܭ௣ in the forward loop, the system open-loop transfer function is 
 

௫ሺ௦ሻ
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where, now ݔሺݏሻ represents the position relative to the operating point. The concept of a setpoint 
or operating point in control theory is an important, but often overlooked topic, and the Fidget Car 
provides a visual representation of the relationship between a reference input and the associated 
operating point.  The closed-loop transfer function is  
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where ݔௗሺݏሻ is the desired position.  ܭ௣ is varied by replacing a single resistor.  In an activity to 
characterize second-order response, students acquire closed-loop position vs. time data in response 
to a step input.  The reference input to the summing junction is set using a trim pot, with voltage 
corresponding to the desired position of the car behind a physical target placed in front of the car, 
such as a foam core card. A close approximation to a step response incorporates two cards 
separated by known distance, e.g., 3-6 inches, with the car in its steady-state position behind a 
card.  Sudden removal of the card closest to the car initiates a step response. The response of the 
car is captured by a stationary smartphone looking down on the car as it moves, and the tracker 
software is used to track a feature on the car providing position vs. time data. Figure 8 shows 
several frames of a step response video along with an example response and photograph of the 
experiment in progress. 
 
Exercises with proportional control serve several purposes.  First, they reiterate the concept of a 
closed-loop transfer function, and from this, they show that the characteristics of the response 
change by either changing the setpoint (setting ܭ௦௘௡௦௢௥), or by changing the proportional control 
gain. Second, the experiment illustrates the response characteristics of a second-order system.  
Students can calculate second-order system transient response measures (peak overshoot, peak 
time, damping ratio, damped and undamped natural frequency, settling time) from the response 
and obtain a closed-loop transfer function and/or closed-loop roots as a function of gain. In an 
introductory systems class, the activity simply enables students to visualize second order response 
and to practice analyzing overdamped and underdamped systems using response measures.  In a 
higher-level class, the activity can be extended to introduce root locus analysis by providing a 
series of responses that have a decreasing damping ratio as gain increases.  These responses can 
be directly related to the closed-loop transfer function from which damping ratio, natural 
frequencies, and settling times can be predicted using measured DC gain ܭ ,  the value of ܭ௦௘௡௦௢௥ 
given the setpoint, and the known proportional control gain ܭ௣. Again, in a large class, the 



instructor can (using student assistants) acquire responses for a number of different control gains, 
distribute position vs. time data for a single gain to each group in the class for analysis, and plot 
points on the s-plane given damping ratio and natural frequency calculated by each group for each 
gain. The damping ratio and natural frequencies thus acquired trace out a root locus – illustrating 
the concept of a root locus before the concept is introduced mathematically, and reinforcing the 
root locus as a showing the locus of closed-loop roots as a system parameter varies.  
 
Summary and Extensions 
 
We have highlighted a few of the small group learning activities developed for the Fidget Car.  
Additional activities have been developed to provide a visual introduction to control theory; to 
motivate the need for system modeling; to introduce the concepts of steady-state error, sensitivity,  
system type, and disturbance rejection; and to develop series compensation using proportional 
integral, proportional derivative, PID, lead, and lead-lag compensators. These activities are 
described in detail in a companion paper [1]. 
 
An optional tachogenerator mounted axially with the drive motor in Fig. 1 provides for additional 
activities involving velocity control with a stationary system.  The tachogenerator is comprised of 
an integrated DC motor and AC tachometer, which when rectified, provides a voltage proportional 
to speed. An optional inverted pendulum with a differential optical angle measurement circuit (not 
shown in Fig. 1) can be added to the Fidget Car for more advanced courses in control theory.  The 
addition of these two elements provides an all-in-one apparatus for control of a first-order Type 0 
system (velocity control of a DC motor), a second order Type 1 system (position control of the 
Fidget Car), and an unstable Type 0 system (Inverted pendulum).  
 
 

 

  
Figure 8  Top: Frames from the first half-cycle of oscillation in a video of the closed-loop step response for 
position control with a proportional controller, Bottom left: Screenshot of step response experiment n progress.  
Bottom right: Measured position response from the video for several consecutive step inputs (positive and 
negative commanded position values). 
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Appendix A.  Materials List for Fidget Car 
 

Table A.1  Power Amplifier Parts List 
 

 
   



Table A.2 Mechanical and Electrical Materials 

 
 



 
Table A.2 (continued) Mechanical and Electrical Materials 

 
 


