Can Students Build Production-Quality Software?

Gene Fisher
California Polytechnic State Unversity
San Luis Obispo, CA 93407

Abstract

The question posed in the title of this paper has been asked infarars. There ha keen
thoughtful scholarly publications on the subject, and less than scholarly opinion pieces. This
paper asks the question in the context of a year-long capstone course in software engineering,
taught at Cal Poly Umersity San Luis Obispo. Specifically product deelopment is the er-

riding goal for such a course, can a team of sen@-dftware engineering students defi

and deplg a genuinely production-quality software product?

Unfortunately the answer to this question in our case was "No". There are a number of reasons
for the ngative result, which will be gamined in the paperThe examination will include con-
sideration of whether it is reasonable teéd@oduct deelopment as the primary focus of a uni-
versity course, or if doing so sacrifices other important pedagogical goals.

1. Introduction

We haveoffered a year-long capstone course in saferengineering since the 2000-01 academic
year The course was introduced at the same time as guee&lenajor in software engineering,
which we currently offer in addition to degrees in Computer Science and Computer Engineering.

Our capstone has been the subject of a number wibpegereports, which va dronicled our

progres&’:8° Over its years of being offered, wevafocused to varying degrees on a number
of educational objeates. Fromthe perspecte d the students in the course, the objesti
include:

1. applythe skills learned in introductory software engineering courses to a real-world
software project

2. work with an external customen a poject of specific interest to that customer

3. work in project teams of varying sizes, including in teams comprised of upper-class and
lower-class students of software engineering

4. learnskills of project management
enhancéechnical skills of software gelopment
. deply a working product of some form

o o

The first objectie is very common to engineering capstone classes across the disciplines. That
is, students takwhat theg havelearned in lower-leel courses and apply it in a setting beyond
the classroom.

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 555



Our second objeate is dso a common feature of capstone courses, where studerksmith
external customers’External” means that the customers are beyond course instructors acting in

the role of customers.For us, customers are often chosen from outside industrial pattriers

some cases, we V& chosen partners from on ouwn campu® but still beyond the our own
department.

The third objectie for our capstone course, that of teawrky is also nearly uwersal in a cap-

stone &perience. A somehat unusual ariant of our team structure has been to mix students
from our introductory courses and capstone course in the same teams. This provides the upper-
level capstone students the opportunity to manage thek wf the lower-lgel students. This

team structure was a feature of the initial offering of our capstone Eoutskas not been
repeated in mansubsequent offerings, due primarily to class logistical difficulties.

The fourth objectie d project management is again very common in a capstone class. In the
cases where we )2 ombined upperand lower-division students, the capstone students man-
aged their lower-division team members. In other cases, studeuaks ghoose to focus on man-
agement primarilyor dl students would assume rotating management duties.

The fifth objectve d enhancing technical skills is important, but for us, as well as for others
reporting in the literature, a secondary objextiln order to achiee the other course objegts,
technical skills will ivariably be improed. However, teaching strictly technical content is taken
to be the objecte d lower-level courses that precede the capstone.

Finally, the sixth objectie, that of building a real software product, hasagis been an important
part of our capstone. Hower, as with the fifth objectre, the product itself has not typically
been the primary focus of the course.

In our experience, fully achieving all six of the objeeti has not been possible inyagiven
year We havetherefore chosen to emphasize different objestidepending on the instructional
staf and the nature of the customersalved.

For the 2011-12 academic ye#re focus was squarely on the product. In previous years, we had
sometimes wondered if it would be aswageous to focus primarily on product dely, to ofer
students a more real-world learningzieanment. Theexperience we gained in this effort, while
not successful in its primary objeatj will indeed help us continue to refine the course. It will
also help us understandvinto balance the different objewgés to be ahieved in a @apstone.

2. Curriculum Structur e of the Capstone Course

As noted in the introduction, ours is a year-long capstgpergnce. Theurriculum is divided
into the following three courses, each lasting for a ten-week quarter of instruction:

1. Requirements Engineering
2. Software Construction
3. Software Deployment

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 556



These titles reflect a somewhat traditional sequence ofaeftdeelopment, lnt in fact provide

only general guidelines for the structure of the curriculum. Depending a faculty preferences in
ary given year an ajile development process may be used, where students vigyatinalyze
requirements, construct the software, and deplo

While software testing is not specifically listed in the course titles, it of course playsralék
The faculty who teach the capstonesbased methodologies ranging from test-first to test-last to
points in betweenln 2009, students conducted a controlled experiment to compare the effec-

tiveness of different testing approaches

3. Specific Structure of 2011-2012 Capstone Course

The course wolved a project to bild a course scheduling tool for our own campus. The need
for such a tool had been well established, and a numbeiodfdiad been undertaken in the past
to produce oneKey features envisioned for the tool were the following:

* an aesy-to-use database of instructor information, which includes course teaching prefer-
ences and teaching time preferences

* an esy-to-use database of a departnseadurse offerings, including courses planned for
particular quarters

 the ability to define department-specific scheduling constraints to guide the scheduling
process

* a phisticated scheduling algorithm that generates an optimized schedule, based on
instructor preferences, planned course offerings, and departmental constraints

* the ability to fine tune a generated schedule, with automated checking to ensure schedule
completeness and consistency

The tool is intended to be used at the departmest, ley the same people who normally per-
form department scheduling. The result of a scheduling session is in a form suitable for elec-
tronic submission to the campus scheduling database.

Achieving the features listed ab®is in fact an ambitious undertaking. An advantage we had in

our efforts is a history of @rking on course scheduling projects. Specificalgrsions of the
scheduling tool had been assigned as two-quarter class projects in undergraduate software engi-
neering courses for a number of years. In addition, there had bezal senior projects that

had refined &y sheduling functionalityincluding the scheduling algorithm and schedule data-
base management. The results of these past efforts provided a solid base on which to work.
Using previous student work as a basis, we bedighat a production-quality scheduling tool

was an &hievable goal.

What was significantly e about the project was to expand the focus from a small-scale depart-
ment effort to a campus-widefeft. In late Spring 2011, a mailing was sent to department
schedulers across campus. The mailing briefly explained the obgeatithe scheduler project,

and inquired about interest in project participati@f. the approximately 70 recipients of the
mailing, nearly half responded with an interest in participating in the initial requirements gather-
ing phase.A follow-on message was sent in the week before classes begin, to confirm continued

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 557



interest in project participatiorA total of 36 respondents respondefiriatatively.

4. RelatedWork and the Definition of "Production-Quality”

The goal of building production-quality student software has the been subject of a number of

recent reports?>>#>19 The curricula described in these works share most of the goals outlined
above for our courses. Also common to thes®®$ and ours are the challenges faced when stu-
dents endear to build production softare. Thesehallenges include:

1. findingsuitable outside partners, from commercial or non-commergahiaations
2. logisticaldifficulties in collaborating with outside partners
3. clarifying delverable expectations with the partners, including posiegliwork

The last of these points requires a clear definition of "production-quality” software, so that all

concerned can be clear on the dihbles. Allenet al! define the term "production program-
ming" as "creating or modifying a software product to meet the needs of real customers". Others
use a comparable definition.

While the Allen definition is useful, it does not refer specifically to the postedelneeds of
customers. Irsome cases it may be possible towtela gable and well-tested product to cus-
tomers, with limited post-defery support. Howeer in todays world of fast-changing software
products, heing a maintenance andatution plan is an increasingly important part of a "pro-
duction-quality" delerable.

Post-deNery support can definitely be problematic for student projelets.example, Lange et

al3 note that some of their customersda@pected on-going “tech support" after student work
on the project is completed. Thmdicate that such support must be clearly addressed in the ini-
tial project agreement, presumably indicating that it will notuadable.

In several of the works cited abwee, there is discussion of different means to provide continuing
product support. Such means include projects that continue across multiple years or making stu-
dent products\ailable to the open-source communitin any case, we belie that providing
post-delvery support is a &y part of truly "production-quality” software.

In our case, we did not adequately plan for postdsglisupport, which is an important reason
we consider our &rts not to hae keen successful. This topic is discussed further in the next
section of the paper.

5. Resultsand Conclusions

As noted in the paper abstract, we did not achar primary objectie d building a truly pro-
duction-quality product. The specific reasons for our lack of success are the following:
1. Thescope the project & werly ambitious, gen given the substantial preparatory work
that had come before.
2. Theproject became a fully ground-up effort, rather than being an upgrade or incremental
addition to an existing system.

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 558



3. A specific technical decision taiid a web-based application instead of a desktop appli-
cation led to a number of delays in the project.

4. \We were unable to secure a long-term maintenance agreement witiffiaral organiza-
tion on campus.

5. Studentsvill be, andneed to be,tadents.

The first reason for failure is of coursetremely common in anengineering activity For a

group of students who cannotvdee full time to a project, estimating project scope is a signifi-
cant challengeWith a particularly well-agganized and motiated team of students, producing a
substantial amount of work may be possible. Havéen mary if not most cases, the nature of
academic work means that the scope of projects must be kept smaller than that envisioned for
mary useful software productsThe lesson (re-)learned here is to berenindful of defining

student projects to kia a sitably limited scope.

We had hoped toaid the second reason for failure by using aisteng base of operational
code. Howeer, we cave the students substantial latitude in choosing the project direction.
Despite strong faculty recommendations to the contitamas the students’ choice to revediep

from the ground up rather than using the existing code bdse.aspect of failure reinforces the
lesson from abge. Namely that &culty need to be careful to control the scope of the project,
and mindfully assert managerial control when necessainys lesson is further reinforced by
reports in the literature, including most of those cited in Section 4.y Méithe successful
efforts to build production quality productsvolve gudents adding incrementally to an existing
project rather than building completely ground-up projects.

The third reason for failure is also common to software projects, that is, choosing the wrong
technology Understanding the gelopment technology has long been recognized &y daktor

in the success of a software project. While the studewtdvied in our project had significant
experience in desloping desktop applications, only anfdhad web-based gelopment experi-

ence. Thesteepness of the learning cerwas far greater than anticipated. The lesson here is
again one of asserting a reasonable amount of managerial control of the pitajesy. be OK to

have a 'sink or swim" polig for a student-run capstone project, and such aypcdic provide a

good learning experience for the students. Hawehe "sink or swim" polig may well conflict

with the goal to build production-quality software, which in our case it did.

The fourth reason for failure relates to the definition of "production-quality" software discussed
in the preceding section of the papEwen if the product had been suitable for deployment to the
customers, it would va& required some form of on-going\dopment. V¢ had hoped to make

an agreement with a suitable campugaoization to tak over the project, but this agreement did

not come to fruition. Understanding the importance of post«glidevelopment is one of the
most important lessons we learned from this capstone project.

Last and not least, students must be allowed to be studentg.ar€heot full-time workers who
bring pre-existing skills to the avkplace. Thg must be gren the opportunity todil and learn
from that filure. Inthis context, having students build production-quality softwarewsayal a
challenge, and may notvedys be a realistic goal.

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 559



Bibliography

[1] E. Allen, R. Cartwright, C. Reis, "Production Programming in the Classroom", Proceedings of the ACM
SIGCSE Conference, Reno,\Wda, February 2003.

[2] S. Gorka, J. MillerB. Howe, "Dereloping Realistic Capstone Projects in Conjunction with Industry”, Proceed-
ings of the ACM SIGITE Conference on Information Technology Education, Destin, Florida, USA, October 2007.

[3] D. Lange, R. Fguson, P Leidig, "An Update on the Use of Community-Based Non-Prg@hi2ations in Cap-
stone Projects"”, Proceedings of the ACM SIGCSE Conference owmatimmand Technology in Computer Science
Education, Darmstadt, Germardune 2011.

[4] M. Murray, "Implementing a Software Delopment Production Environment for Student Use: Advantages and
Challenges", Journal of Computing Sciences in Colleges, December 2012.

[5] T. Nurkkala and S. Brandle, "Software Studio: Teaching Professional Software Engineering"”, Proceedings of the
ACM SIGCSE Conference, Dalase¥as, USA, March 2011.

[6] D. Stearns, S. Meldal, C. S. TurnéFen Pounds in a Rie Pound Sack: Providing Undergraduate Software Engi-
neering Students with Technical Management Experience", Proceedings of the international Conference on Engi-
neering Education, Oslo, Norwaugust 2000.

[7] D. Stearns, J. DallgeC. Turnet T. Kearns, "Report on a Capstone Projegblving a Hundred Students, for an
Industrial Rirtner”, Proceedings of the international Conference on Engineering Education, Valencia, Spain, July
2003.

[8] C. S. TurnerG. Fsher D. Searns, "Learning Software Engineering by Doing: Progress Report on a Capstone
Sequence Molving Student Managed TeamdPyoceedings of the American Society for Engineering Education,
Pacific Southwes Sectiontdgkton, California, USA, April 2004.

[9] Vu, Frojd, Shenkel-Therolf, Janzen, "Evaluating Tesw#8riDevdopment in an Insustry-Sponsored Capstone
Project”, 6th International Conference on Information Technologyy Benerations, Las &ga, Nevada, USA,
April 2009.

[10] H. Ziv and S Patil, "Capstone Project: From Safter Engineering to Informatics”, Proceedings of the IEEE
Conference on Software Engineering Education and Training, Pittsburgh, Pennsylvania, USA, March 2010

Proceedings of the 2013 American Society for Engineering Education Pacific Southwest Conference
Copyright 2013, American Society for Engineering Education 560





