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Abstract: This paper discusses the prediction of Tropical Storm occurrences in a future 
time scale using Bayesian and frequentist approaches.  Bayesian prediction limits are 
calculated using an informative prior based on the data on Atlantic Tropical Storms from 
1851 to 1943.  We adopt a prior from the Gamma family of distributions.  Our sample 
includes occurrences of Atlantic Tropical Storms for the period of years 1944 to 2002.  
Bootstrap methods are used to estimate the prior distribution.  Frequentist prediction 
limits are also derived.  Bayesian Networks are used to investigate the causal 
relationships between storm factors and strength and damage. 
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1. Introduction 
 

Atlantic Tropical Cyclones are classified as Subtropical Storms, Tropical 
Storms and Hurricanes according to windspeed [1], [2].  Saffir and Simpson 
developed the Saffir-Simpson Hurricane Scale to further assign hurricanes into 
five categories based on windspeed [3] as presented in Table 1.  Different levels 
of storm damage are associated with the different categories.  Storms with 
windspeed below the minimum for a Category 1 Hurricane are considered 
Tropical Storms or Subtropical Storms [3]. 

In this paper, we construct prediction limits for Hurricane-level Atlantic 
Tropical Storms using both Bayesian and frequentist approaches. The problem is 
stated in section 2.  In section 3 we describe the methodology using both Bayesian 
and frequentist approaches.  In section 3.1, we address the Bayesian approach [4], 
[5].  Bootstrap sampling methods and numerical techniques are investigated.  We 
restrict ourselves to prior distributions that belong to the Gamma family.  Section 
3.1 continues with historical data that record the number and intensity of Atlantic 
Tropical Cyclones per year for the period of years 1851-1943 are considered as 
prior information.  These data pre-date aircraft reconnaissance.  The predictive 
distribution is estimated as a conditional probability of the future outcome given 
the informative sample. The modified Jeffrey’s and uniform distribution are 
considered as limiting cases of a gamma prior distribution.  The Bayesian 
methodology applied in this paper and an algorithm for constructing prediction 
limits for a Poisson process using a frequentist approach is described in [6].  For 
further readings about predictive analysis we suggest [4] and [7]. 

 



 

An introduction to Bayesian Networks is presented in section 4.  Conditional Probabilities of 
factors influencing storm strength and damage are used to investigate causality using Bayesian 
Networks. 

 
2. Statement of the problem 
 

Let F denote a future experiment, whose outcomes follow a Poisson distribution Po(tλ), and 
E denote an informative experiment, whose outcomes follow Po(sλ).  Let Y be the random 
variable describing the number of occurrences of some phenomenon from experiment  F during 
the future time interval with known length t, and X be the random variable describing the 
number of occurrences of some phenomenon from the informative experiment E during the 
given time interval s.  Both random phenomena are considered independent and with the same 
unknown rate of occurrences λ. 
 We will construct a function (u(X) in frequentist approach, ν*(X) in Bayesian) that takes only 
integer values and that will serve as an upper bound for the values of the random variable Y.  
Construction of the lower prediction limit will be derived the same way. 

It can be shown using probabilistic methods that Atlantic Tropical Storm occurrences from 
1944 - 2002 follow a Poisson distribution [6].  This is the sample that we work with.  Both 
frequentist and Bayesian limits are compared to the true storm occurrences in Table 3. 
 
3. Methodology 
 

We investigate methods of forecasting prediction intervals for annual Atlantic Storm 
occurrences using Bayesian, bootstrap sampling, and frequentist approaches.  We also employ 
Bayesian Networks to evaluate causality of storm strengths based on conditional probabilities. 

 
3.1 Prediction Using Bayesian Approach 
 

In our application, we interpret the prior distribution as an expression of our state of 
knowledge about the parameter.  Gelman et al [8] describe two basic interpretations about the 
prior distribution: the population of possible parameter values or our state of knowledge about 
the parameter.  In setting up the prior distribution, we choose a class of distributions based on 
mathematical convenience, which for a Poisson distribution would be the conjugate class of 
gamma distributions, Gam(a,b).  The predictive distribution, the distribution of the random 
variable Y|X, is negative binomial NB(r,p) with probability of success p=(bns+1)/(bt+bns+1) and 
r=z+a, where an integer approximation is taken instead of a.  We use this distribution to predict 
the annual occurrences of tropical storms. 

Data that record the number per year of tropical cyclones that reached storm strength and 
hurricane strength for the period of years 1851 through 1943 are considered based on NOAA 
analysis with early records and with great uncertainty.  The plot of the histogram with density for 
this data is shown in Figure 2.  Based on these data, we estimate parameters of the gamma 
distribution and later on we update this prior with data that record the annual occurrences of 
Atlantic Tropical Cyclones for the period of years 1944 through 2002. 

Based on the method of moments applied to the data set we adopt a gamma distribution with 
shape parameter a=4.583 and rate parameter 1/b = .642 (Gam(4.583, 1.558)) as our prior.  
Updating this information with sample data from 1944 to 2002 of size n=59, and z =



 

∑ Xi = 598n
i=1 , concludes in Gam(602.583, 0.017) as a posterior distribution for Λ, with the 

posterior mean of 10.244 that suggests an average of 10 tropical storms per year. 
In Figure 3 are graphed 1000 simulated observations from the prior distribution that we 

found to follow the Gamma distribution estimated from the records over the period of years 
1851-1943, while in Figure 4 are graphed 1000 simulated observations from the posterior 
distribution obtained after updating the prior information using the data 1944-2002.  The 
predictive distribution would be a negative binomial NB(1017, p) with probability of success 
p=(0.017*59+1)/(0.017t+0.017*59+1). 
 
3.2 Bootstrap Sampling Method 
 

In this section we consider bootstrap methods using two numerical approaches, 
approximation to chi-square and approximation to negative binomial distribution, to estimate the 
prior distribution.  In bootstrap methods the only probability mechanism considered is the one 
that fits data the best.  This gives bootstrapping a practical advantage compare to theoretical 
methods that would require all the possible probability distributions for the observed data [9].  
Using bootstrap, we resample samples of size m=93, same as the original dataset, and estimate 
from them parameters a and b of the assumed gamma prior. 

Approximation to Chi-Square:  When considering the approximation to Chi-Square 
distribution [10], parameters a and b of the assumed gamma prior are estimated as follows.  The 
estimate of the annual rate of storms occurrences, λ�, that is computed from each of 1000 
bootstrap samples of size m=93 yields a bootstrap sample of size B=1000.  This is considered as 
a sample drawn from the population of Λ.  The random variable W=2Λ/b would follow a gamma 
distribution with parameters a and 2, or chi-square distribution χ(2a)

2 .  The ratio of the 95% and 
5% theoretical quantiles of the random variable W=2Λ/b is set equal to the ratio of the 95% and 
5% empirical quantiles estimated from the bootstrap sample of  Λ. 
 This procedure is repeated 100 times, resulting in 100 estimates of a and b, each calculated 
using numerical methods.  Five possible prior distributions, corresponding to 0, .25, .5, .75, 1 
percentiles of the calculated values for a, are graphed in Figure 5. 

Approximation to Negative Binomial Distribution:  The bootstrap procedure is performed 
and 100 samples of size m=93 are drawn.  Then the sum of the 93 draws from each sample is 
taken.  We denote these sums by Ψi, i={1,2,…,B}, where B is the number of bootstrap samples.  
The set of the Ψi, i={1,2,…,B} is considered as a sample drawn from the random variable Ψ, that 
conditioned on parameter Λ, follows a Poisson distribution with parameter λm.  The rate 
parameter Λ is assumed to follow a gamma distribution.  Hence, the marginal distribution of the 
random variable Ψ would be a negative binomial distribution NB(a,p), with probability of 
success p=1/(1+mb).  Repeating this procedure 100 times and using the method of moments, we 
end up with 100 equations on a and b that are solved by numerical methods.  In Figure 6 are 
graphed five possible prior distributions corresponding to 0, .25, .5, .75, 1 quantiles of the 
calculated values for a. 

The noninformative priors that we considered are modified Jeffreys’ prior and the uniform 
prior.  Limits derived from noninformative priors are presented Table 2 [6]. 

 
 
 
 



 

3.3 Prediction Using the Frequentist Approach 
 

We describe the method of constructing the lowest upper bound u*(X) of the future outcome 
Y with respect to some error probability α.  Any function u(X) that takes only integer values, 
satisfies u(X)≥ u*(X), and has a probability of wrong prediction less than α, would be an upper 
limit. 

The algorithm for constructing the function u*(X) follows by calculating first the joint 
probability function of X and Y: 

 

   𝐩𝐄𝐅(𝐱, 𝐲|𝛌) = 𝐩𝐄(𝐱|𝛌)𝐩𝐅(𝐲|𝛌) = �(𝛌𝐬+𝛌𝐭)𝐱+𝐲𝐞−(𝛌𝐬+𝛌𝐭)

(𝐱+𝐲)!
� �(𝐱+𝐲)!(𝛌𝐬)𝐱(𝛌𝐭)𝐲

𝐱!𝐲!(𝛌𝐬+𝛌𝐭)𝐱+𝐲
�  (1) 

 
 
Conditionally, X given X+Y=r follows a binomial distribution, Bin(r,p). 
 The probability of the wrong coverage for an upper limit u(X), should not exceed α.  For any 
function u(X), 
 

   Pr�Y > u(X)� = � �(λs+λt)re−(λs+λt)

r!
Δr�

∞

r=0
 (2) 

 
where r=x+y, p=s/(s+t), 1-p=t/(s+t), and x ϵ Z+, y ϵ Z+, and r ϵ Z+, x ϵ {0,1,2,…,r}, and  
 

 
   𝚫𝐫 = � �𝐫𝐱�𝐩

𝐱(𝟏 − 𝐩)𝐫−𝐱𝐲>𝐮(𝐱)
𝐱+𝐲=𝐫

 (3) 

 
 
The sum Δr gives the probability over all points (x,y) that satisfy both conditions x+y=r, and 
y>u(x (x<r-u(x)).  This is the probability of the wrong coverage.  It should not exceed some 
predetermined error α, 
 
 
   𝚫𝐫 = � �𝐫𝐱�𝐩

𝐱(𝟏 − 𝐩)𝐫−𝐱 ≤ 𝛂
𝐱<𝐫−𝐮∗(𝐱)

 (4) 

 
 
where Δr depends on both r and u(•). 
 

For the inequality Pr{Y>u(X)} ≤ α to be satisfied, it is sufficient (from (4.2)) that Δr ≤ α for 
every integer r≥0.  Therefore, we need to find an integer valued function u(•) that makes Δr ≤ α, 
for all r ≥ 0. 
 Among all integer valued functions u(X) that satisfy the latter condition we are interested in 
the function u*(X), which gives the smallest upper bound for Y that satisfies Pr{Y>u*(X)} ≤ α. 
 Denote by F(r,p,x) the cumulative distribution function of  binomial, Bin(r,p).  If we take 
u*(x) = max{r:F(r,p,x)>α} - x, for every integer x≥0, then Δr ≤ α, for every r ≥ 0.  This is true 
because of the fact that the set of points over what Δr  is calculated, {(x,y):x+y=r and y>u*(x)}, 



 

agrees with the set of point such that F(r,p,x) ≤ α, {(x,y):x+y=r and r>x+u*(x)}.  Note for some 
values of r, the range of summation may be empty hence Δr = 0.  See Table 4 and [6]. For the 
observed r ϵ Z+ we find the value of Y using numerical methods by calculating first the 
maximum value of r (rmax), such that F(r,p,x)>α. 

Example 2:  In Table 2 are shown the values of rmax and u*(x) for the case where 0 ≤ x ≤ 13, y 
≥ 0, and α=.05.  When the observed value is x=4, the maximum value of r, such that F(r,p,4)>α, 
is rmax = 10.  Take u*(4)=10-4=6.   For this case Δ0 = Δ1= Δ2 are 0 as probabilities calculated in 
an empty set, while Δ1 through Δ16 are all calculated to be less than .05.  All other Δr were 
practically zero for all r≥17.  SPLUS statistical software was used for calculations [16]. 

Table 3 compares forecasted numbers to actual numbers of Atlantic Tropical Storms using 
both Bayesian and the frequentist methods described in this paper.  For 2003, all methods 
perform reasonably well.  The unusually active 2005 storm season makes the actual figures 
significantly higher than forecast figures using all methods.  Bayesian methods could have an 
advantage in this situation, allowing the effects of these unusual levels in subsequent forecasts to 
be lessened as each year’s posteriors are considered as the next forecast’s priors. 
 
4. Causation using Bayesian Network 
 

We investigate causality of Atlantic coastal property loss and damages using Bayesian 
Networks.  Bayesian Networks allow analysis of a set of random variables using a directed 
acyclic graph (DAG) to represent conditional dependencies.  The additional requirement that 
relationships represented be causal results in a Causal Network [11]. 

In our application, the evaluated random variables fall into three categories: 1) factors that 
affect storm strength: whether the storm is Cape Verde-type, the Sea Surface Temperature of the 
Caribbean Sea, and whether it is an El Niño year, 2) internal factors: Storm Category and County 
Population in the storm path, and 3) outcome factors: population loss percentage and County 
damage in dollars. 

Storms that originate off the coast of Cape Verde tend to be stronger [12].  Higher Sea 
Surface Temperatures in the Caribbean Sea and Gulf of Mexico tend to strengthen storms as well 
[13].  Figure 7 shows the path followed by Cape Verde-type storms.  It has been observed that El 
Niño winds tend to weaken Atlantic storms [10], [14], [15]. 
 The factors to be evaluated are represented as conditional random variables in the nodes of a 
Bayesian Network, represented using the Netica Bayesian belief software package [17] shown in 
Figure 8.  Initial conditional probabilities are associated with each node.  To test beliefs 
represented in the Bayesian Network, we set one or more nodes to true and update beliefs.  In 
Figure 9 [17], we fix characteristics of an individual storm (Cape Verde-type is TRUE, 
Caribbean Sea Surface Temperature is 29.4C, and El Niño year=FALSE) and then evaluate the 
conditional probabilities that the storm will have a particular category on the Saffir-Simpson 
Hurricane Wind Scale.  Resulting probabilities are shown in Table 5.  
 
5. Discussion 
 
 In this paper, we investigated methods of forecasting prediction intervals for annual Atlantic 
Storm occurrences using Bayesian and frequentist approaches.  We utilized Bayesian Networks 
to evaluate causality of storm strengths based on conditional probabilities. 
 



 

The influence of the data in the calculation of the Bayesian upper prediction limits is 
considerable, because of the fact that we have a relatively big sample size (n=59) for a rare 
event, and the sum of the observations is also large (z = ∑ Xi59

i=1 ), such that no difference appears 
among corresponding prediction limits derived from each noninformative prior (see Table 2), 
while we could show that this is not always true. 

We constructed two different priors.  The difference that appears in priors estimated based on 
Chi-Square and Negative Binomial approach results in different prediction limits at the end; It is 
of interest to mention that neither of them agrees with the frequentist ones.  All prediction limits 
calculated so far, based on both frequentist and Bayesian approaches, are presented in Table 3. 
 This is ongoing work related to the first author’s MS thesis.  He intends to investigate further 
the use of Bayesian Networks to show causality between environmental factors and storm 
strength, with the possibility of extension to show other causal relationships [18].
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Figures 
 

 
Figure 1. North Atlantic tropical storm occurrences 1851-2002 
 

 
Figure 2. Histogram with density for annual occurrences of Atlantic Tropical Cyclones during 1851-1943 
 
 
 

 
Figure 3. Histogram of the 1000 simulated observations from gamma prior 
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Figure 4. Histogram of the 1000 simulated observations from posterior distribution 
 

 
Figure 5. Density graph of possible priors with parameters estimated using the Chi-Square approach 
 
 
 

 
Figure 6. Density graph of possible priors with parameters estimated by using the Negative Binomial approach 
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Figure 7. Tracks of the Cape Verde Hurricanes [12] 
 
  



 

 
 
Figure 8. Bayesian Network (initial state) 
 
 
 

 
 
Figure 9. Bayesian Network with updated beliefs 



 

Tables 
 

 
Table 1. Saffir-Simpson Hurricane Scale 

 
Category Winds 
One 74-95 mph 
Two 96-110 mph 
Three 111-130 mph 
Four 131-155 mph 
Five greater than 155 

mph 
 

 
Table 2. Prediction Using the Frequentist Approach 

 
x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

rmax 2 4 6 8 10 12 4 15 17 19 21 22 24 26 
u*(x) 2 3 4 5 6 7 8 8 9 10 11 11 12 13 

 
 

Table 3. Prediction limits derived based on both frequentist and Bayesian approaches 
 

Method  Period 2003 2004 2005 2005-2006 
 t 1 2 5 10 
Actual Atlantic 
Hurricane 
Occurrences 

 16 15 28 38 

Frequentist 
Lower 6 9 9 19 

Upper 16 21 22 40 

Hist.Dat.Inf 
Method of 
Moments 

Lower 6 7 8 18 

Upper 16 20 21 39 

1/λ 
Lower 6 7 7 19 

Upper 16 20 21 39 

Uniform prior  
Lower 6 7 7 18 

Upper 16 20 21 39 

 
 

  



 

 
Table 4. Poisson upper prediction limit 

 
r\x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
               
0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0.333 1 0 0 0 0 0 0 0 0 0 0 0 0 
2 0.111 0.556 1 0 0 0 0 0 0 0 0 0 0 0 
3 0.037 0.259 0.704 1 0 0 0 0 0 0 0 0 0 0 
4 0.012 0.111 0.407 0.802 1 0 0 0 0 0 0 0 0 0 
5 0.004 0.045 0.21 0.539 0.868 1 0 0 0 0 0 0 0 0 
6 0.001 0.018 0.1 0.32 0.649 0.912 1 0 0 0 0 0 0 0 
7 0 0.007 0.045 0.173 0.429 0.737 0.941 1 0 0 0 0 0 0 
8 0 0.003 0.02 0.088 0.259 0.532 0.805 0.961 1 0 0 0 0 0 
9 0 0.001 0.008 0.042 0.145 0.35 0.623 0.857 0.974 1 0 0 0 0 
10 0 0 0.003 0.02 0.077 0.213 0.441 0.701 0.896 0.983 1 0 0 0 
11 0 0 0.001 0.009 0.039 0.122 0.289 0.527 0.766 0.925 0.988 1 0 0 
12 0 0 0.001 0.004 0.019 0.066 0.178 0.368 0.607 0.819 0.946 0.992 1 0 
13 0 0 0 0.002 0.009 0.035 0.104 0.241 0.448 0.678 0.861 0.961 0.995 1 
14 0 0 0 0.001 0.004 0.017 0.058 0.149 0.31 0.524 0.739 0.895 0.973 0.997 
15 0 0 0 0 0.002 0.009 0.031 0.088 0.203 0.382 0.596 0.791 0.921 0.981 
16 0 0 0 0 0.001 0.004 0.016 0.05 0.127 0.263 0.453 0.661 0.834 0.941 
17 0 0 0 0 0 0.002 0.008 0.027 0.075 0.172 0.326 0.522 0.719 0.87 
18 0 0 0 0 0 0.001 0.004 0.014 0.043 0.108 0.223 0.391 0.588 0.769 
19 0 0 0 0 0 0 0.002 0.007 0.024 0.065 0.146 0.279 0.457 0.648 
20 0 0 0 0 0 0 0 0.004 0.013 0.038 0.092 0.191 0.339 0.521 
21 0 0 0 0 0 0 0 0 0.007 0.021 0.056 0.125 0.24 0.399 
22 0 0 0 0 0 0 0 0 0 0.012 0.033 0.079 0.163 0.293 
23 0 0 0 0 0 0 0 0 0 0 0.019 0.048 0.107 0.206 
24 0 0 0 0 0 0 0 0 0 0 0 0.028 0.068 0.14 
25 0 0 0 0 0 0 0 0 0 0 0 0 0.042 0.092 
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0.058 

 
 

 
 
 
 

Table 5. Bayesian Network updated beliefs 
 

Category P(Category | CapeVerde=T, SST=29.4C, ElNiño=F) 
TS 0.48873 
CAT1 0.18979 
CAT2 0.085211 
CAT3 0.089085 
CAT4 0.1162 
CAT5 0.030986 

 


