
AC 2007-2128: CEDARLOGIC ? A NEW GRAPHICAL DIGITAL LOGIC CAD
TOOL

Clint Kohl, Cedarville University
Dr. Kohl serves as Associate Professor of Computer Engineering at Cedarville University. He
earned his B.S.E.E. from South Dakota State University, his M.S.E.E. from University of North
Dakota, and his Ph.D. in Computer Engineering from Iowa State University. His areas of interest
include digital electronics, computer architecture, programmable logic devices, and
microprocessor systems. 

Keith Shomper, Cedarville University
Dr. Shomper serves as an Associate Professor of Computer Science and has been at Cedarville
Universtiy since August 2003. He received his B.A. in Mathematics from the University of
Northern Colorado (1983) and his M.S. in Computer Science from the Air Force Institute of
Technology (1984). Dr. Shomper received his Ph.D. in Computer Science from the Ohio State
University (1993), specializing in computer graphics with minors in software engineering and
distributed computing. His dissertation was in the area of visual degugging of computer
programs. Dr. Shomper's research interests include computer graphics, distrubuted simulation,
and virtual reality. 

© American Society for Engineering Education, 2007

P
age 12.348.1



 
 
 

CedarLogic - a new Graphical Digital Logic CAD tool 

to aid in the teaching of Digital Logic Design. 

 

 

 
Abstract 
 
This paper describes, "CedarLogic" a graphical digital logic simulator that three senior 
undergraduate students created in fulfillment of their Senior Design Capstone course in the 2005-
2006 academic year. This educationally valuable software is being effectively used in an 
introductory Digital Logic Design (DLD) course.  This paper presents the background and need 
for this type of software tool, a brief analysis of currently available tools and then explains its 
functionality and usefulness. 
 
This easy to use logic simulator is valuable in both Digital Logic Design lectures and labs. The 
environment is graphical in nature and allows the user to very quickly build a logic circuit by 
clicking and dragging components from the reasonably complete library of gates and functions 
including: AND, OR, NOT, NAND, NOR, XOR, Multiplexers, Decoders, Adders, Comparators, 
Flip-Flops, Counters, Registers, RAM, ROM, and numerous Input and Output options.  One of 
the most helpful features of this software is the simultaneous build and simulate environment 
with wires colored according to their logic value (Red for logic High and Black for logic Low). 
This allows the user to quickly understand how the logic is working and, if it is not working 
properly, to correct mistakes.  The freshman students using this program for the first time have 
found it to be stable, helpful and in some cases even "fun" to play with and design. 
 
The paper concludes with some lessons learned through the Senior Design Capstone experience 
from which this multi-threaded software was designed, written, debugged, revised and released 
for experimentation in DLD. CedarLogic's 10,000+ lines of code is written in C++ and utilizes 
the wxWidgets GUI library and OpenGL to render the graphics. CedarLogic can be freely 
downloaded at http://sourceforge.net/projects/cedarlogic . 

 
Background and Need 

 
Digital Logic Design is a foundational course for many engineering and computer science 
students.  The first author has been teaching a freshman level Digital Logic Design course for 
over twelve years.  The course includes laboratory projects in which students physically wire up 
TTL gates on a breadboard, use the CedarLogic software tool to build more complex circuits and 
are briefly exposed to Altera’s Quartus II commercial logic software.   
 
We believe student learning can be accelerated and enhanced by the effective use of logic 
simulation software.  A student can connect a TTL logic circuit in lab and observe its 
functionality by flipping switches and watching LED’s light and still not understand how each 

P
age 12.348.2



logic gate is functioning.  Logic simulation software enhances learning by allowing the student 
to “see” the logic state (high or low) of each wire and come to a better understanding of how 
every logic gate in the network is functioning simultaneously.  Often students who use these 
software tools will have a “A Ha” experience and say; “Oh, now I see how that works.”  
Additionally, debugging faulty circuits is often quicker with this type of tool, since all nodes are 
observable rather than just the inputs and outputs.  After using logic simulation software for 
many years, we have determined the following list of desirable characteristics. 
 
 1. Easy to use Windows program 
 2. Free or low cost 
 3. Simultaneous editing and simulation 
 4. Capable of changing the wires color according to its logic value 
 5. Smooth transition to advanced commercial software used in the later courses 
 
Prior to the development of CedarLogic, we used the software program “Diglog”.1  Diglog is one 
of the components of the Chipmunk distribution of computer-aided software tools developed at 
UC Berkeley in the late 1980’s and early 1990’s.  This Unix-based software is very powerful.  It 
has simultaneous editing and simulation, an extensive library of gates and can be placed in 
“Glow” mode where the wires glow red or black depending on their logic value.  It was ported to 
the Windows platform in 1998 by a group in Germany where a free download (logwin32.exe)2 is 
still available today. 
 
Diglog was written by Dave Gillespie and is a unit-time-delay digital circuit simulation package. 
Circuit schematic editing and parameter adjustments can occur while the simulator is in 
operation, supporting the metaphor of a virtual lab workbench.  A screen capture of a full adder 
is shown in Figure 1 below. 
 

 
Figure 1  Color Screen capture of a full adder in Diglog. 

P
age 12.348.3



 
The main disadvantages of Diglog are itemized in Table 1 below: 
 

Table 1 List of Key Diglog Disadvantages 

• No Undo feature 

• Non standard Windows interface 

• Busy wait implementation consumes 99% of CPU resources 

• White gates on black background make screen captures difficult and require inverting colors 

• Wires do not rubber band 

• Cut and paste is non-standard and it is easy to copy two gates on top each other 

• Printouts are cumbersome to obtain – non encapsulated Postscript only 

• Missing some common gates in the library (8to1 Mux, 16bit Memory device, etc) 

• Windows clipboard is not used 

• Opening and saving files difficult: command line based rather than standard windows 
open/save dialog box.  This requires remembering the exact file path and filename.  

• Difficult to implement a large multi-page circuit.  Multiple pages can be open at once but 
each page must be loaded/saved separately: students often forget and loose their work.   

 
Despite these weaknesses Diglog remains an excellent alternative for use in teaching Digital 
Logic Design.  We have been looking for other alternatives to Diglog for many years.  A 
multitude of options are available.  Some alternatives are listed in Table 2. 
 

Table 2 Partial List of Digital Logic Design and Simulation Software Alternatives 

• Quartus II from Altera Corp.   http://www.altera.com/  Free Web Edition 

• ISE WebPACK  from Xilinx Corp.  http://www.xilinx.com  Free Web Edition 

• Diglog   http://wwwags.informatik.uni-kl.de/utils/DIGLOG/main.html Free 

• MultiMedia Logic  by Softronix  http://www.softronix.com/logic.html  Free 

• Digsim by Paul Fishwick: http://www.cise.ufl.edu/~fishwick/dig/DigSim.html  
Free Web based Java Applet  

• Digital Simulator by Ara Knaian 1994 http://web.mit.edu/ara/ds.html Shareware $10-$20  

• EasySim:  Research Systems in Australia  
http://www.research-systems.com/easysim/easysim.htm  $14 

• Digital Works Logic Simulator  
http://microcontrollershop.com/product_info.php?products_id=663  Cost $77 

• B2 Logic Version 3 from Beige Bag Software  
http://www.beigebag.com/logic3.htm  cost  $179 

• DesignWorks Professional http://www.capilano.com/index.html  cost $395 

• Electronics Workbench http://www.electronicsworkbench.com/products/proprod_pl.html 
Educational packages start at $479 USD 

 
Each of these alternatives lack at least one of the items from the list of desirable characteristics 
shared earlier. 
 
Cedarville University currently requires students to use the Quartus II software from Altera 
Corporation in advanced coursework, and thus we are very familiar with it.  This commercial 

P
age 12.348.4



tool set is offered free to the public, however it is very large (≈500Mbytes) and not easy to learn.  
It does not offer simultaneous editing and simulating and the wires do not change color based on 
their logic value.  This outstanding program is just too complicated and not well suited for the 
introductory logic student.  A similar argument could be made for the ISE WebPack from Xilinx 
Corp. 
 
After years of searching for the right tool we decided to let some of our seniors attempt a 
simulator of their own design.  In the 2005-2006 Academic year two teams of students, 
undertook the project, with one of those teams consisting of two computer engineers and one 
computer scientist.  This team worked from scratch to create the program we call “CedarLogic”.   
 
Senior Design Format 

 

The software engineering course sequence at Cedarville University is the capstone design and 
development experience for students in our computer science and computer engineering 
programs.  The sequence consists of two courses.  The first course, Software Engineering I (also 
cross-listed for Computer Engineering students as Computer Engineering Senior Design I), 
covers process models for software project management, customer requirements analysis, 
preliminary and detailed design modeling, test case development and application prototyping.  
The second course, Software Engineering II (Senior Design II), emphasizes iterative application 
development, program reviews, test execution, user documentation, and deployment.   
 
While the course sequence begins in the fall semester of the students’ senior year, planning for 
the course typically begins at the end of the previous spring semester.  The process begins with 
students and faculty suggesting projects for the following year as the current year’s projects wind 
down.  Project ideas are usually a mixture of continued research from former student work and 
new applications for both the engineering department and industry partners.  Any student or 
faculty member in the program may submit a project idea.  We also receive a few external 
submissions from colleagues and business partners who are familiar with the courses.  During 
the summer, designated faculty coordinate with the proposed project sponsors to determine 
project scope, technical complexity, resource requirements, sponsor support and availability, and 
development schedule.  Such pre-coordination is necessary to help ensure we offer students 
projects which are suitably challenging in both size and content. 
 
With regard to project size and scope, we endeavor to provide projects employing all phases of 
the software development cycle, having approximately 800 to 1200 man-hours of work effort, 
and also requiring at least a modest attempt at independent research beyond our programs’ 
course curriculums.  Once all candidate projects are approved by the faculty, we develop a brief 
presentation for each one to give to our senior students on the first class day.  Students then rank 
order the projects in which they have the most interest.  At the same time, they also identify who 
among their peers they would like as team members.  This information is used by the faculty to 
make project assignments.  In general, we attempt to provide all students their first or second 
project choice.  We also usually honor their teammate choices.   

P
age 12.348.5



Requirements and Design Process 
 
After the teams are selected, the students spend the remainder of the first semester studying, and 
practicing, the topics listed for Software Engineering I above.  We accomplish this activity using 
a series of timed deliverables.  These deliverables are primarily, but not exclusively, documents 
in the first semester and software in the second semester.  For each document, we discuss its 
purpose in the context of the software development process in which it occurs, give an overall 
outline for the document, and discuss techniques for developing the content.   
 
Speaking of the development process, we should note here that we do not mandate that our 
students follow a specific software development process.  However, after studying several 
common processes, including some popular agile processes (e.g., extreme programming, feature-
driven development, etc.), we suggest to the student teams that they adopt an iterative 
development method.  Our motive for using iterative development is to encourage the teams to 
first develop a functional product exhibiting core features with subsequent iterations adding 
additional capability.   This development style tends to keep teams of three or four students fully 
engaged on their projects for the entire two-semester course sequence, with sufficient flexibility 
so that weak teams may successfully produce a core-level product and strong teams are 
motivated to accomplish additional build iterations to create feature-rich applications.   
 
Most commercial or industry applications are only as good as the analysis and design effort spent 
to create them.  However, most programming or term projects in undergraduate programs can be 
accomplished individually or with a small team in a few weeks.  For this reason, we size our 
problems as discussed above and encourage students to take seriously the documentation of 
project milestones and objectives, stakeholder requirements, design ideas and alternatives, and 
procedures for test execution.  Therefore, we require the following deliverables from the student 
teams in the first semester: 
 

1. Weekly Report:  Each week, each student team must submit an activity report indicating 
what actions each team member accomplished the previous week and what actions they 
plan on accomplishing the following week.  Teams are also asked to report the hours they 
spent on the project to encourage accountability on the team and to the instructor.  These 
reports, like most all other documents, have a specified content, but no specified format.  
Students are encouraged to keep these reports brief, usually just a paragraph or two from 
each team member, in order to minimize the management overhead. 

2. Program Management Plan:  The first major document for the team is the program 
management plan (PMP).  This document, due approximately four weeks after the start of 
the semester, allows students an early opportunity to describe their assigned project in 
their own words, to self-organize into various team roles (e.g., team leader, configuration 
management, quality control, etc.), to consider the hurdles they must overcome in order 
to complete the project, and to begin to draft the project plan that they will then monitor 
and track until project completion. 

3. Software Requirements Document:  As students are planning their development schedule, 
they also begin conducting interviews with stakeholders to become more familiar with 
the application.  The culmination of these interviews is reflected in the software 
requirements document (SRD).  The SRD includes a full description of the application’s 

P
age 12.348.6



features from a user’s perspective.  It also presents the application in context with the 
systems (e.g., hardware, software, process) with which it must integrate.  The final 
version of the SRD is due six to seven weeks into the semester. 

4. Software Design Document:  At 12 weeks, the software design document (SDD) is due.  
The SDD begins where the SRD left off by describing the user-visible components (e.g., 
the graphical user interface or GUI) of the application in a systems context.  It then 
iteratively refines these components, typically into object classes with their attributes, 
methods, and associations, until a level of detail is reached that allows implementation to 
begin. 

5. Test Plan:  The final document in the first semester is the test plan.  It is due at the same 
time as the SDD.  The test plan identifies what mechanisms and procedures the team will 
use to ensure software is evaluated before being submitted to the application build. 

6. Initial Presentation:  The final deliverable for the first semester is a presentation on the 
software’s semester-end capability.  In addition to a demonstration of the software, 
students must evaluate themselves against their project plans and devise mitigation 
strategies for incomplete work.  When referring to incomplete work we should note that 
students are not expected to have a complete or even nearly complete application at the 
end of the first semester.  However, according to the technical risks they identified in the 
SRD, they are expected to demonstrate some concrete progress in implementing the 
technically challenging parts of their design to validate their design choices and lower 
their developmental risk in the spring semester. 

 
With the completion of the initial presentation, each team finishes the first semester requirements 
and should have a solid understanding of the tasks that lay ahead in the project.  We discuss a 
general outline for these tasks in the next section. 
 
Implementation and Testing  

 
As the second semester kicks off, there is far less classroom instruction and supervisory activity 
which must occur.  In this semester, student teams operate independently with brief weekly 
contact from their team advisors.  Therefore, in order to ensure consistent progress is made 
throughout the semester, each advisor identifies a set (e.g., three to five) of milestones which 
their team must demonstrate to show progress.  For example, a professor might require a “core” 
product delivery four to five weeks into the semester.  Teams not delivering their application by 
the milestone receive a grade penalty. 
 
In addition to the instructor-set milestones, all students have the following additional 
deliverables in common: 
 

1. Weekly Report:  As in the first semester, a report on past and planned weekly activities is 
required to ensure teams maintain momentum. 

2. Final Build:  About three weeks prior to the end of the semester, students demonstrate 
and submit the final build of their application which also includes any user 
documentation, maintenance notes, and installation notes, software or scripts.     

3. Final Presentation:  At the same time as the final project submission, teams deliver a 
formal project presentation accompanied with a written project report.  The presentation 

P
age 12.348.7



is a 50-minutes briefing summarizing the team’s work over both semesters on the 
application.  The presentation is publicly announced and open to faculty, students, 
sponsors, and guests of these groups.   

4. Final Report:  The project report is written to accompany the presentation and become the 
permanent record of the student’s work. This report includes a project abstract, definition 
statement, background, objective and constraints, design, results, and addenda (e.g., 
design diagrams, bill of materials, electronic media, etc.). 

5. Poster Presentation:  The final deliverable is a poster presentation of the student’s work 
during graduation week.  This activity lets the students share the results of their work 
with friends, family, and those interested in the work, yet unable to attend the formal 
presentation. 

 
Application Design and Implementation 

 

As mentioned earlier, CedarLogic was designed to be simple to use and consistent with common 
Windows application conventions.  We also were strongly interested in removing the busy loop 
simulation handling which caused poor program response and made the visual display flicker 
badly as the circuit model grew larger.  Finally, as consistent with good program design, we 
wanted to cleanly separate the implementation of the graphical user interface (GUI) from the 
simulation engine—what we call the “logic core.” 
 
To accomplish the first objective, that of giving the application a consistent Windows look-and-
feel, we turned to the wxWidgets GUI programming toolkit.  While there are other toolkits 
supporting the same objective, we preferred the open source and free wxWidgets for its clean 
implementation, full user interface feature set, compatibility with OpenGL, and complete 
documentation.  WxWidgets also provided some useful general-purpose programming libraries, 
one of which was very useful in implementing the message-passing interface to accomplish 
objective three.  As can be seen in Figure 5, the wxWidgets interface presents its interaction 
elements: the scroll, menu and tool bars, the window decorations, the icons, canvas, and tabs, 
etc., in a manner consistent with a Windows application.  That is, CedarLogic “looks” like a 
Windows application.  What cannot be seen in the figure, but which is readily apparent when 
running the application, is that wxWidgets also gives CedarLogic the same “feel” as a Windows 
application.  For example, toolbar icons have pop-up help, drag-and-drop actions are executed 
with the same mouse buttons and familiar movements, and keyboard shortcuts are available 
using common mnemonics. 
 
The second objective, removing the busy loop, was the most technically challenging, but 
necessary improvement over Diglog.  Regardless of the complexity of the circuit Diglog 
demands all available CPU resources.  This makes using other programs perform very sluggishly 
when running at the same time.  For example, students running Diglog and trying to write their 
lab reports in Microsoft Word found that Word behaved very sluggishly. 
 
With CedarLogic we moved to an interaction method that is far more common and compatible to 
WIMP4 applications:  event programming with callbacks.  Having made this decision, it was a 
natural choice to also separate the code which simulates the circuit, the “logic core” from the 
code which presents the simulation, the “GUI.”  The GUI is the part of the application that takes 

P
age 12.348.8



advantage of wxWidget’s presentation features as described above.  It also uses OpenGL, a 
industry-standard graphics library, to accomplish all drawing on the circuit canvas and tool 
palettes.  With OpenGL and wxWidgets, the new interface is clean, colorful, and responsive 
 
The logic core is the heart of the application.  It is an event-driven simulator which keeps an 
internal model of the diagram under construction and receives timed, state change events on the 
model’s wires which it processes at each time step using a priority queue.  This means that a 
circuit in CedarLogic has two models which must be kept consistent:  the visual model shown in 
the GUI and manipulated by the user and the simulation model kept in the logic core and updated 
at each time step.  To keep these models consistent, we first investigated using a shared-memory 
model.  However, after experiencing several problems with race-conditions, we eventually 
moved to a multi-threaded model using sockets to communicate between the GUI and logic core 
threads.  This technique was not only easier to program, but also made the message passing 
between the two threads clearly visible, simplifying testing.  This method has also proved quite 
extendable, as we have begun to add additional devices to the CedarLogic palette. 
 
The first CedarLogic delivery consisted of 61 C++ source files (both headers and source code) 
and one gate description file following the extendable markup language (XML) token format.  
Overall, this constitutes 12,700 lines of computer code, not including over 3,000 lines of 
comments.   
 
Explanation of the Key features of CedarLogic 

 
CedarLogic is a native Windows application complete with a setup Wizard (see Figure 3) 
 

    
        Figure 3  Setup Wizard                                          Figure 4  Open Dialog Box 
 
Once installed a standard windows interface presents itself to the user.  If previous files have 
been saved, a standard Windows Open Dialog box (Figure 4) greets the user and allows him to 
change directories and select the appropriate file.  CedarLogic files use the extension .cdl which 
does not conflict with common file extensions.  Figure 5 shows an example of CedarLogic 
implementing and simulating a full adder. 
 

P
age 12.348.9



 
Figure 5  Basic CedarLogic Interface 

 
Notice in Figure 5 that the wires are either red (logic high or 1) or black (logic low or 0) and that 
the program is immediately simulating the circuit.  The user can drag and drop new components 
onto the canvas, rearrange the position of a gate with rubber banding wires, select, cut, copy and 
paste.  Additionally, in the view menu, an O-Scope view is available to capture a waveform trace 
of the simulation.  This view can be easily exported as a bitmap to the windows clipboard for 
pasting into a word processor.  Figure 6 shows an example of the O-Scope tool. 
 

  
Figure 6  CedarLogic O-Scope View 

 
To aid the new user, a complete help system is available as shown in Figure 7.  The help system 
has Contents, Index and Search tabs.  A number of easy-to-follow tutorials are also provided to 

P
age 12.348.10



help the new user understand CedarLogic’s features.  Figure 8 shows a detail of the tool bar and 
page tabs.   
 

 
Figure 7 CedarLogic Help 

 

Figure 8 Tool bar and Page Tabs 
 

Cedarlogic’s target audience is freshman computer science and engineering students so it was 
designed to be simple to use.  To reinforce this simplicity, we wanted an application that 
followed windows conventions, therefore all basic windows operations are present in their 
expected places using familiar menu and toolbars.  Common operations such as New, File Open, 
Save, Print, Undo, Redo etc. have a corresponding icon on the tool bar and feature pop-up help 
when the cursor floats over them.  A slider is provided to aid in adjusting the speed of 
simulation.  Ten page tabs appear across the top allowing very large logic circuits to be built and 
interact with circuits on the other pages.  Signals are allowed to communicate across pages 
through the use of off page connects called “To” and “From”. Pressing the space bar centers and 
zooms the circuit to maximum viewable size, and the cursor keys allow for easy and intuitive 
movement around the circuit. Another interesting and helpful feature is the “mini-map” in the 
lower left hand corner of the main window.  This birds eye view of the circuit allows the user to 

P
age 12.348.11



see the full extent of all components with a red box showing the portion of the circuit that 
appears on the main page. 

 
 
The Library pallet is organized into nine categories and contains all the basic logic functions 
needed to make complex logic circuits. Two, three, four and eight input basic gates are provided.  
A variety of inverters and tri-state buffers are found in the Invert & Connect category along with 
the To and From off page connectors.  The Input and Output category contains logic switches, a 
clock, keypad, power, ground, LED’s and two types of seven-segment displays. The Decorations 
category provides a line of text to document a circuit or make a written comment. Two, four, 
eight and 16 input/output muxes and decoders are provided in the Mux and Decoder category.  
These palettes are shown in Figure 9. 
 

       
Figure 9 First five gate categories 

 
The Add & Compare category contains a 1-bit and 4-bit full adder and a 4-bit cascadeable 
comparator.  D and JK flipflops are provided in the Flip Flops category.  In the Registers 
category, 4, 8, 12, and 16-bit registers are available along with a 4-bit shift register.  These 
counting registers are capable of resetting, counting up or down, holding or performing a parallel 
load.  Finally, the ninth category of RAM and ROM contain 4, 8, 12 and 16-bit chips.  These 
categories are shown in Figure 10. 

P
age 12.348.12



     
Figure 10 Final four gate categories 

 
This complete set of gates fully supports all designs and homework assignments given in the 
Digital Logic Design course.   
 
Student Response 

 
In the Fall 2006, two sections of Digital Logic Design, consisting of over 60 students were 
required to use CedarLogic to complete both homework and laboratory assignments.  The 
student response was very positive.  Because of its standard interface, students learned the 
program quickly and would able to concentrate on learning the subject matter rather than be 
distracted by the oddities of the former Diglog interface.  The ability to undo mistakes, easily 
export a bitmap of the circuit to the clipboard in a single operation, paste it into their word 
processor, and to save and load circuits using a standard dialog box were among the most 
popular improvements over Diglog.  It has been exciting to have some students just play with the 
program and create interesting and fun circuits.  Large multi-page circuits have been successfully 
completed with hundred of gates and components.  Figure 11 shows a class project near the end 
of the course that implements a practical washing machine controller.  This file gives a good 
representation of a more complex circuit. 
 

P
age 12.348.13



 
Figure 11 Washing Machine Controller Circuit 

 
Conclusion 

 

This project was a success in many dimensions.  The final result is a robust, simple, and full-
featured application for digital logic simulation.  The senior design students had a good 
experience designing, coding, and testing their work.   
 
We hope CedarLogic will be helpful to students and instructors at other institutions as it has been 
here at Cedarville University.  In addition, we hope the readers find useful suggestions in this 
paper to develop their project-oriented courses in a manner that motivates students to develop 
software that has serviceability beyond their college years. 
 
Acknowledgment 

 
1.. UC Berkeley, CS Division 387 Soda Hall, Berkeley CA 94720  
 (http://www.cs.berkeley.edu/~lazzaro/chipmunk/) 
 
2. http://wwwags.informatik.uni-kl.de/utils/DIGLOG/main.html  
 
3. The Quartus II design software delivers the highest productivity and performance for FPGAs, 
CPLDs, and structured ASICs and offers numerous design features to accelerate the design 
process  http://www.altera.com  
 

P
age 12.348.14



4.  WIMP stands for Windows, Icons, Menus, and Pointers and is the predominate user interface 
for interacting with computers and applications.  The WIMP interface was developed at Xerox 
PARC in the mid-80’s and popularized by Apple computer and later by Microsoft Windows 
operating systems. 

P
age 12.348.15


