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Characterizing Indicators of Students’ Productive 
Disciplinary Engagement in Solving Fluids Mechanics 

Problems 
 
Abstract 
 
Engineering science courses are typically taught with lecture-based pedagogies and routinely 
assign problems sets comprised of problems authored by the professor or from the course 
textbook. With the high number of required engineering science courses, students spend a 
substantial amount of out-of-class effort on these types of problems. Yet, there is little research 
on how students engage in and learn from these problem sets. 
 
This study examines three groups of students while they work on fluid mechanics problem sets 
and identifies instances and origins of productive disciplinary engagement. When students 
disagreed and debated how to solve problems, they engaged in productive disciplinary 
discussion. Three factors contributed to this active discussion and disciplinary engagement: the 
nature of the problem, the norms of the class, and the goals of the students. Our findings have 
implications for designing problem types that include conflicting constraints or require students 
to debate for a worked out solution. 
 
Introduction 
 
To earn a bachelor’s degree in an engineering discipline, students must take 10 to 15 courses in 
the engineering sciences. These courses are typically taught with lecture-based pedagogies and 
focus on students learning a particular set of conceptual knowledge such as fluid mechanics, 
control systems, or thermodynamics. Engineering science courses usually require students to 
complete work outside of scheduled class time; this homework typically consists of weekly or bi-
weekly problem sets comprised of problems from a course textbook or written by the course 
instructor. Occasionally, these problem sets also incorporate modeling tasks or simulations. In 
courses with this structure, these problem sets are designed to have students practice the problem 
solving techniques that are part of the discipline. The number of problems assigned weekly 
varies by professor but typically the set of problems requires several hours of work (and in the 
U.S., a 3-credit hour college course assumes 6 hours per week of out-of-class effort). With the 
high number of these courses required, and the frequency of this type of assignment given, 
engineering students spend a large amount of their homework time solving problems in these 
assignments. Considering this substantial amount of time, there has been relatively little research 
into how students approach and learn from these problem sets. This paper, along with others 
from our research program, aim to begin to understand when and how students learn conceptual 
knowledge during these homework sessions. 
 
For our research program on the dynamics of learning in undergraduate engineering courses, we 
are building ethnographic records of engineering students carrying out homework problems and 
reflecting on their approaches to learning engineering through these outside-of-class 
assignments. We have been collecting video of students completing homework assignments in a 
variety of courses1 and developing and iterating on an approach to characterize productive 
disciplinary engagement during homework sessions. This specific paper focuses on students 



doing homework for a fluid mechanics class taught by a mechanical engineering professor. 
Analyzing video of three groups of students working on their weekly homework assignment, we 
ask: (a) when do we see episodes of productive disciplinary engagement? (b) what is the nature 
of student engagement? (c) what are the factors that lead to these episodes occurring? 
 
Background 
 
Our analysis builds upon work done by2,3 that looked for instances of productive disciplinary 
engagement (PDE) in chemical engineering senior design project teams. To identify these 
instances of PDE, Koretsky and Nolen use a construct from Volet and colleagues4 to distinguish 
between two cognitive orientations, task production and knowledge construction. Task 
production is cognitive talk focused on the completion of an assignment. Knowledge 
construction refers to group talk oriented at deepening their conceptual understanding. Koretsky 
and Nolen describe how groups navigate back and forth between task production and knowledge 
construction throughout their work together. 
 
Koretsky and Nolen2 also looked for instances of productive disciplinary engagement, a 
construct originally proposed by Engle and Conant5,6. Productive means students are 
intellectually progressing. Disciplinary refers to using the language and engaging in the practices 
of the academic discipline, as if the students were professionals in the practice. When students 
are productively disciplinarily engaged, they are immersed in the practices of the discipline that 
result in deep learning. Koretsky and Nolen2 found productive disciplinary engagement was 
triggered by productive friction in the group; that is, students’ PDE began when constraints and 
components of the students’ design conflicted. 
 
When collaboratively working on problem sets, students could be trying to accomplish a number 
of goals, including to learn and understand the material, complete the homework as quickly as 
possible, figure out what the professor wants them to do and earn a good grade, or build or 
manage relationships with other students. In this paper, we describe factors that cause a student, 
or a student group, to prioritize some goals over others. This prioritization affects the cognitive 
engagement of groups; it determines whether they spend more time co-producing tasks or co-
producing knowledge. Our analysis aims to understand what factors, such as student 
epistemologies7, instructor expectations, course norms, or given assignments, cause students 
solving homework to prioritize some goals over others. 
 
Methodology  
 
This specific fluid mechanics class was chosen for research after retrospective interviews with 
fourth-year students (Swenson, in preparation). These interviews indicated that different students 
in this department perceive the types of questions posed by this instructor to be uniquely 
productive for the building of their conceptual knowledge. Classroom observations also indicated 
that this instructor had different, explicitly stated expectations for how he wanted students to go 
about their work both during class time and outside of class. One of his most insistent 
expectations was the students write on their homework solution every assumption they made 
when analyzing a system presented in a problem. A typical class period in this fluids course 
involved the professor and students working through a number of example problems, and at the 
beginning of each problem the professor would ask students in the class to name the 



assumptions. The most typical assumption, for example, was that the fluid was incompressible. 
Even if these assumptions seemed obvious, the penalty for students’ not writing them down on 
their homework was to have points taken off their homework score. Another problem solving 
technique the professor encouraged students to practice was to consider whether the solution 
seemed to be a reasonable answer. This thought process was modeled as a valuable engineering 
problem solving practice. 
 
Participants 
 
The students in the class were third-year mechanical, environmental, and biomedical engineering 
students. The lead author made a recruitment announcement during class time to explain that she 
was conducting an ethnographic study of homework sessions, and students volunteered to 
participate in the study. Groups of students who typically worked together were identified from 
the consenting population. Three groups of students were video recorded for one to two 
homework sessions. Students were contacted by e-mail to determine if their group was working 
together on the problem set and the time and location of this work. Sometimes participating 
groups decided to complete the problem set separately and were not recorded. One of the groups 
was comprised of biomedical engineering students and the other two included only mechanical 
engineering students. 
 
Data Collection 
 
During the video recording sessions, students worked together on the homework assignment 
assigned for that week. These problem sets were comprised of problems from the class textbook9 
or modeling problems created by the professor and executed in Microsoft Excel or MatLab. The 
sampling of what was recorded was determined by the problems the students decided to work on 
together in the group. Some recorded sessions begin with students having started the problems in 
the problem set while others work on all four problems from start to finish together. While this is 
not ideal for research purposes, it captures the authentic ways in which students work and does 
not require them to do anything out of the ordinary as a participant in this study. 
 
Table 1: Overview of Data Corpus 

Group Assignments Video Length 
Group 1: Emma* & Rachel, 
Mechanical Engineers 

Problem Set 21: 2 book problems, 2 
modeling problems 
Problem Set 22: 2 book problems, 2 
modeling problems 

1 hour, 10 minutes 
 
1 hour, 20 minutes 

Group 2: James, Matthew & Sabina, 
Biomedical Engineers 

Problem Set 21: 2 book problems, 2 
modeling problems 
Problem Set 22: 2 book problems, 2 
modeling problems 

1 hour 
 
Did not complete problems 
together 

Group 3: Ken, Zoe & Grace, 
Mechanical Engineers 

Problem Set 21: 2 book problems, 2 
modeling problems 
Problem Set 22: 2 book problems, 2 
modeling problems 
Problem Set 23: 3 book problems 

2 hours (both Problems Sets 21 
& 22)** 
 
 
2 hours 

*All names are pseudonyms  
**The students were working on and discussing Problem Set 21. It was due two days before the video recording 

session. 



 
Student Group Profiles 
 
The three groups differed in their behavior, focus, and discourse patterns. Group 1, Emma and 
Rachel, are mechanical engineers on the same varsity athletic team and work closely together. 
They were quieter as a group but remained focused on their work. Group 2, James, Matthew, and 
Sabina, all biomedical engineers, joked throughout their session. In between questions about 
equations, they talked about popular videos, made sarcastic comments, and laughed at each 
other. Group 3, Ken, Zoe, and Grace, were very thorough and detailed in their discussions and 
going about their work. While they didn’t always work through problems at the same pace, they 
checked answers, equations, and use of constants with each other as they did their work. Due to 
these characteristics, the Group 3 homework sessions generated the longest transcripts and 
richest episodes of data. 
 
Data Analysis and Results 
 
We begin by presenting the method of analysis and a summary of our findings examining all five 
homework sessions. Our focus then turns to a case study of a single episode of three students 
engaged in a productive, disciplinary debate over how a system should be modeled 
mathematically. 
 
The five homework sessions total eight hours of video across the three groups. We began 
analysis by examining the transcript line by line to determine whether the group of students was 
orientated towards task production or knowledge construction4. Instances of task production in 
this data set included conversations about the correct equation to use, how to model and change 
the settings of one’s computer model, and solving mathematical equations with reference to 
physical variables. We found that these activities made up the majority of the hours of data. 
Figure 2 shows the approximate number of total minutes each session each group spent task 
producing, knowledge constructing, or off-topic. Group 3 is the only group to spend extended 
periods of time constructing knowledge together. In the other two groups, Group 1 and Group 2, 
a single group member sometimes made a bid for deeper sense making (typically taking 10 to 20 
seconds to make such a bid) but if not taken up by the other students, the group would return to 
task production. An example of a bid is shown in the transcript excerpt below with James and 
Matthew. 
 
Table 2: Approximate time spent by each group task producing, constructing knowledge, and 
off-topic 

Group Problem Set Task Production 
(minutes) 

Knowledge 
Construction 

(minutes) 
 

Off-Topic 
(minutes) 

Group 1 Problem Set 21 62.25 0 6.5 
Group 1 Problem Set 22 73.5 0 4.75 
Group 2 Problem Set 21 46 2.25 4.5 
Group 3 Problem Set 21 & 22* 93.25 5.5 13.5 
Group 3 Problem Set 23 86 15.5 18.25 

*Members of the group were working on finishing Problem Set 21, due two days earlier, as other members were 
starting Problem Set 22. 



 
To illustrate task production and an unsuccessful bid to shift toward knowledge construction, we 
present an example of James and Matthew completing a text book problem from chapter six. 
 

 
Figure 1: Problem Statement 

 
They have just sat down to start the problem set. After a few minutes of off topic talk to the 
researcher and each other, James and Matthew throw out some ideas of how to start the problem.  
 

1. James: Oh is it all we need to do so we know that these (pointing to his notebook) are 
equal. We just want to be able to say that (pause) um (pause) d, d^2 psi over dx dy is 
equal to um the  opposite of - or is equal to d^2 psi over dy dx which- and we get those by 
these (points to  notebook) two things. 

2. Matthew: So we have to take… 
3. James: So we differentiate u with respect to x.  
4. Matthew: Ooohh yeah. 
5. James: And then v with respect to y cause he showed that on the board right? I didn't 

write it  down now. 
6. Matthew: I have that. 
7. James: So we don't even have to calculate psi necessarily. 
8. Matthew: No we just have to do the same. 
9. James: Well we could to make sure that it also makes sense. 
10. Matthew: Or we could just take the teacher's word for it. 
11. James: It looks like the- it is going to be... 
12. Matthew: Wait where is it? I guess I didn't - 

  
Here, in line 1, we see James proposing a way of going about the problem. In line 2, Matthew 
seems to accept this proposal and begins talking through the steps of the problem. Together, they 
walk through the math and discuss if they’re choosing the right operations based on what the 
instructor presented on the board. However, in line 9, James also proposes that they could “make 
sure it also makes sense” but Matthew rejects that bid for sense making. They spend the next 
three and a half minutes continuing to work on the problem and complete it. Sabina, though 
present in the room, remains silent. 
 
We characterize this as an instance of task production because the students’ main focus is 
figuring out the mathematical steps and manipulating equations without making sense of the 
physical variables represented by the equations and numbers. In this case, James even makes a 
bid to the group to ensure their math makes sense (“well we could to make sure it also makes 
sense”), but his proposal is rejected in favor of continuing to work through the problem (“or we 
could just take the teacher’s word for it). Throughout the corpus of data, there are many other 
instances of students focusing on finding and manipulating equations without reference to the 



physical phenomena modeled by the equations. Due to the high number of computer-based 
modeling problems in the data set, there is a large amount of talk on inputting formulas, correct 
syntax, and parameters of data sets into Microsoft Excel (task production), and little talk focused 
on understanding and interpreting the models (knowledge construction). The only exception is a 
short discussion by Group 3, Ken, Zoe, and Grace, about which parameters they should use when 
modeling a stream flowing around a circle. 
 
Instances of knowledge construction in this data set included conversations with students making 
sense of equations, connecting variables to real life scenarios, and discussing how to translate 
perceived behaviors of stream flows to computer models. These instances of knowledge 
construction were closely analyzed for evidence of PDE. While we found both eleven instances 
and bids for PDE, in this report we provide an in-depth recount of one instance of productive 
disciplinary engagement in order to understand how the event was triggered and the nature of the 
engagement. 
 
Instances of PDE are often identifiable by the increased amount of disciplinary talk, as well as 
passionate engagement of the participants6. The following transcript stood out in our analysis 
because of the sustained, active participation by all three students as well as their fluency to 
jumping between pieces of evidence and translating the fluid mechanics model into an analogous 
kinematic system. The following case study provides evidence how emphasized classroom 
practices may have sparked a disagreement that led to PDE. 
 
Case Study 
 
Three students, Zoe, Grace, and Ken, are working on a book problem together at tables in an 
engineering school computer lab. They are given the following system and asked to find the exit 
velocity of the fluid at the end when it shoots out into the air three inches high.  
 

 
Figure 2: Diagram from Homework Problem  

 



Zoe and Grace are trying to figure out how to solve the problem when Ken interjects with his 
answer. In response, Zoe questions his answer. This disagreement turns into a sustained fifteen 
minute debate about how to solve the problem and reach a logical answer. 
 
Ken begins by declaring his answer and explains how he calculated the problem. Zoe expresses 
her doubt in the validity of the answer – her reason being that that’s way too fast to be realistic. 
She explains her reasoning by transforming the model into projectile motion instead of thinking 
about it as a moving fluid. 
 

1. Ken: but it (the exit velocity) is going 48.15 inches per second 
2. Zoe: 48… 
3. Ken: point 15 inches per second 
4. Zoe: and it's only going 3 inches (high out of the end of the pipe)? 
5. Ken:  Well I found out from the outlet to that height both pressures are the same the 

difference in height and the velocity at the top of the like water stream is pretty much 
zero cause that's like aaahhh (raises his arm a small bit and brings it down about three 
inches quickly) and it falls back  down so I found out what the velocity exciting the pipe 
is- 

6. Zoe: It can't be that fast because you're losing something to energy but also if you were 
going that fast and only (unintelligible) inches like I don't know it would be like cause 
like you're saying the flow is going for less than a second I mean not less than a second 
cause I feel like 48 inches per second is really fast and like the water would have to be 
dropping a lot faster than it's going and also I feel like if you use projectile motion if 
you're like exiting that fast like you'll do something like that (traces a parabolic arc with 
her finger) you don't just like crash after 3 inches. 

 
In this transcript we see Ken stating the assumption he used to solve the problem - that both the 
exit and the top of the spot are at atmospheric pressure (line 5)– lead his calculations just to be 
about velocity and height. In response, Zoe tries to interpret this answer as reasonable or not and 
struggles with the fact that if the water is going 48.15 inches per second, and the water is only 
going 3 inches in the air, “the flow is going for less than a second.” She calls on her knowledge 
of kinematics, relating the water particles to projectiles, making a parabolic trajectory of water 
particles up from the pipe and falling back down. The discussion continues. 
 

7. Grace:  maybe that's what's supposed to be if there was no loss of friction. You haven't 
accounted for that right? 

8. Ken: I mean I don't have to. I know that the pressure at the outlet's zero and the pressure 
at the top of the stream is zero and there's the only thing that matters is the velocity being 
transferred as like 

 
Grace proposes that maybe there is an unstated assumption, but Ken rejects this proposal, re-
explaining his process. Zoe considers his approach. 
 

9. Zoe: you're using Bernoulli's equation without friction just not formally using it but that's 
like what you're saying right now. No cause you're saying that since the density is the - 
wait what - since the pressure is the same and then you are using the change in height to 
find the final velocity that's just like another way of using Bernoulli's equation cause like 
that's what Bernoulli's equation is that's like pressure velocity but the thing is Bernoulli's 



unless you're accounting for the loss in friction because there is some loss in friction here 
then you can't  

10. Ken: but even with the loss of friction going through the pipe it's still going to leave with 
some velocity to be able to- 

 
Zoe contends with Ken’s equation choice, trying to reason how he might have incorporated the 
loss of friction. Ken sticks to his argument that there is no need to consider friction; he is only 
considering the system outside of the pipe. Zoe is still not satisfied and resorts back to her 
kinematics reasoning. 
 

11. Zoe: Yeah but it's not going to be that velocity. Because okay so if you have something 
that's going like exiting at 48 inches per second it won't just go up 3 inches because even 
think of a projectile motion, but you're like kicking an initial velocity of 48 inches per 
second. It's not just going to do like bloop (makes a small arc off the table with her hand). 
It will be like waaaaaaaaa (makes a large sweeping arc with her arm). You know? Just 
like if it's not water just something that you're initially kicking at 48 inches. Especially if 
you're like kicking straight up like 48 inches per second that's a lot of initial velocity. 

 
Zoe once again uses her knowledge of kinematics to consider the speed of the water. She asks 
the group to think about what kind of parabolic arcs an object would make going 48 inches per 
second and gestures to illustrate it for the group. Ken tries to meet her reasoning. 
 

12. Ken: when I come down to it, it just comes into like potential energy verses like kinetic 
energy masses cancel the only thing left is height and gravity 

13. Zoe: but then you have to account for friction because like we don't live in a frictionless 
world, right? It's like even in the energy equation you still use friction. 

 
We see Ken now leveraging his kinematics knowledge to try to address Zoe’s concern about the 
answer making sense. 
 

14. Ken: are you saying friction between the air molecules or friction between the pipe that 
doesn't matter. Cause when it exits the pipe there's no friction anymore. 

15. Grace: no but the whole point is that like it goes through a friction-ful system 
16. Ken: yeah but it's still leading with a velocity like I'm only looking at this section once it 

leaves  
17. Zoe: I- 
18. Ken: and then once it reaches the top yeah it can have a higher velocity over here and it 

slows down but when it leaves here to get to three inches up in the air doing this math 
with Bernoulli's it has to have some sort of velocity to reach that height. 

19. Zoe: Okay I disagree with you and- 
20. Grace: You're only looking at the end? 
21. Ken: Yeah so this leaves at some distance here is velocity needed to reach a height of 

three inches. So I want to find out what velocity this leaves at. 
 
Ken tries to understand Zoe’s model of friction and tries to clarify to the whole group he’s only 
considering the system when it leaves the pipes (line 14). He continues trying to find an 
explanation to convince them his answer is correct, but Zoe is still not convinced. 
 



22. Grace: I think you multiplied by twelve when you were supposed to divide. You want to 
cancel out the units here. 

23. Ken: inches, inches per foot, dealing with inches, inches per second squared, inches 
squared over second squared, inches per second 

24. Grace: okay 
25. Ken: I want to run kinematics on like thinking like a ball to see if it comes out roughly 

the same as like a sanity check 
 
Grace, clearly frustrated, looks at Ken’s paper and comes to the conclusion there must be a math 
error. Ken walks her through his units to assure her it’s correct. He then decides in order to prove 
it to them he’s going to use kinematic equations. 
 
They continue to circle back to the same issues – whether or not friction has an impact on the 
system and if Ken is using Bernoulli correctly. Zoe is relentless in the answer not making sense. 
She adds more evidence by recalling the professor solving a problem in class and after finding an 
answer, checks and concludes he used the wrong method. They finally agree to disagree, but a 
minute later Ken asks Zoe how she’s going to solve the problem. She proposes a method and 
Ken exclaims that’s the method he used. Finally, at the end of fifteen minutes Zoe and Grace 
realize they were misunderstanding how Ken used pressure in his equation. They agree and 
finally get Ken’s answer. 
 
Discussion 
 
The instance of productive disciplinary engagement was characterized by the intensity of the 
argument as well as the variety of disciplinary evidence used in the argument. Zoe, Grace, and 
Ken were highly engaged as they all made “substantive contributions to the topic under 
discussion” 6, attended to each other’s comments, were sustained in the discussion for a long 
period of time, and were passionate in their contributions. Their arguments centered on choices 
of how to best model the system; a fundamental disciplinary practice. The argument 
encompassed three points: was Ken’s answer valid, was Ken using the correct equation, and 
should friction be used to model the system. 
 
Zoe’s arguments considering the validity of Ken’s answer were driven by a discrepancy between 
his result and a system in her head. She repeatedly asks her classmates to think of a ball moving 
or someone kicking at Ken’s suggested velocity of 48.15 inches per second (line 11). Something 
going so fast, she reasons, would not only have a height of three inches. 
 
Zoe and Grace together make the argument the Ken’s velocity must be that fast because he’s 
negating friction. Ken claims the fluid, once exiting the system, does not have any friction acting 
on it and therefore he doesn’t need to consider it in his equation. Finally, because Zoe and Grace 
believe Ken should have friction in his equation, they therefore don’t think he should be using 
Bernoulli’s equation. 
 
These arguments arise from problem solving practices modeled by the instructor. Zoe’s 
discrepancy between Ken’s solution and her kinematic models echoes the instructor’s practice of 
reflecting on the validity of the answer at the end of each problem. The argument about including 



friction in the model is a disagreement about initial assumptions made of the system. Again, this 
practice echoes their problem solving practice in class. 
 
Like the examples of PDE found in Engle and Conant5 and Koretsky and Nolan2, this instance of 
PDE was triggered by disagreement. Like students in prior studies, this argument created a 
discipline-rich discussion where students debated assumptions and considered alternative models 
of reasoning. This study highlights an unstudied type of problem solving; this was not a design 
problem with conflicting constraints or a problem the students themselves choose to pursue. 
Instead, it was a narrowly defined problem with a single answer.  
 
Conclusions & Implications 
 
Koretsky and Nolan make the claim that “standard, linear textbook and laboratory tasks provide 
a narrower, more sequestered context with fewer opportunities for productive friction.” Our data 
agrees with that for the most part; the conditions of textbook problems create few opportunities 
of conflict that can spark moments of PDE. This, as well as past data1, demonstrates students are 
mostly engaged in task production while completing problem sets. We do not claim task 
production activities such as learning how to create a computer models or solving mathematical 
equations are things students should not be practicing as budding engineers. We believe using 
mathematics to solve problems is an essential part of an engineering education. Yet, we believe 
homework sets need to provide more opportunities for productive disciplinary engagement. 
 
In this paper, we see instructor-normed expectations in solving problems prompt Zoe and Grace 
to question the assumptions and equation choices made by Ken. These questions cause the 
disagreement about how to model the system that triggers PDE. To encourage more of these 
instances, instructors could take more time to emphasize problem solving practices needed for 
the real world. In our retrospective interviews with fourth-year students (Swenson, in 
preparation), students stated that problems based in real-world scenarios prompted deeper 
disciplinary thinking and a more authentic use of their conceptual knowledge. Like Engle and 
Conant5 and Koretsky and Nolen2, conflict triggered this instance of PDE. Problems, for either 
in-class work or problem sets, could be designed to include conflicting constraints and require 
students to argue their assumptions and decisions. One possible problem type is Model Eliciting 
Activities (MEAs)10,11. MEAs are real-world, client-driven problems that require students to 
deepen their conceptual knowledge and apply it to create a generalizable mathematical model. 
These more complex problems that demand students revise and test provide more opportunities 
for conflicting requirements that may spark PDE. Another problem variation could be providing 
two or three proposed solutions to a textbook problem and asking students to write an argument 
for which solution they believe solves the problem best. This would take the focus off 
mathematical operations and instead zoom in on actively choosing how to model systems and 
evaluate solution types. 
 
This study was limited by the number of cases examined and is not necessarily representative of 
the wide range of fluid mechanics courses. We selected this course because of the unique 
teaching practices of this instructor at this university and because we wanted to understand how 
the conditions of his classroom affected the dynamics of student work. Other limitations include 
the population studied was self-selecting and we were limited in the amount we were able to 



capture due to decisions made by the student groups. While obtaining an identical data set for 
each group would be preferable, we as researchers aim to capture authentic student homework 
practices and choices. There is very little data capturing student work in this way, and we believe 
a fine-grained examination of these homework sessions that are intrinsic to the undergraduate 
engineering experience is vital for understanding student learning. 
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